Articles | Volume 21, issue 4
https://doi.org/10.5194/hess-21-2233-2017
https://doi.org/10.5194/hess-21-2233-2017
Research article
 | 
26 Apr 2017
Research article |  | 26 Apr 2017

Historical and future trends in wetting and drying in 291 catchments across China

Zhongwang Chen, Huimin Lei, Hanbo Yang, Dawen Yang, and Yongqiang Cao

Related authors

A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data, 17, 3835–3855, https://doi.org/10.5194/essd-17-3835-2025,https://doi.org/10.5194/essd-17-3835-2025, 2025
Short summary
Evapotranspiration stress intensifies with enhanced sensitivity to soil moisture deficits in a rapidly greening China
Yuan Liu, Yong Wang, Yong Zhao, Shouzhi Chen, Longhao Wang, Wenjing Yang, Xing Li, Xinxi Li, Huimin Lei, Huanyu Chang, Jiaqi Zhai, Yongnan Zhu, Qingming Wang, and Ting Ye
Hydrol. Earth Syst. Sci., 29, 3379–3404, https://doi.org/10.5194/hess-29-3379-2025,https://doi.org/10.5194/hess-29-3379-2025, 2025
Short summary
Enhanced understanding of dominant drivers of Water Yield change across China through the improved coupled carbon and water model
Huilan Shen, Hanbo Yang, and Changming Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2152,https://doi.org/10.5194/egusphere-2025-2152, 2025
Short summary
The general formulation for runoff components estimation and attribution at mean annual time scale
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349,https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Estimating the sensitivity of the Priestley–Taylor coefficient to air temperature and humidity
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024,https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary

Cited articles

Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current changes in tropical precipitation, Environ. Res. Lett., 5, 025205, https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, 1998.
Arnell, N. W.: Climate change and global water resources, Global Environ. Change, 9, S31–S49, 1999.
Budyko, M. I.: Evaporation under Natural Conditions, Israel Program for Scientific Translations, Jerusalem, 1948.
Download
Short summary
The significant climate changes remind us to characterize the hydrological response to it. Based on the long-term observed hydrological and meteorological data in 291 catchments across China, we find a pattern of the response stating that drier regions are more likely to become drier, whereas wetter regions are more likely to become wetter. We also reveal that the precipitation changes play the most significant role in this process.
Share