Articles | Volume 21, issue 4
https://doi.org/10.5194/hess-21-2233-2017
https://doi.org/10.5194/hess-21-2233-2017
Research article
 | 
26 Apr 2017
Research article |  | 26 Apr 2017

Historical and future trends in wetting and drying in 291 catchments across China

Zhongwang Chen, Huimin Lei, Hanbo Yang, Dawen Yang, and Yongqiang Cao

Related authors

Increasing Sensitivity to Soil Moisture Deficits Predominantly Intensifies Evapotranspiration Stress in a Greening China
Yuan Liu, Yong Wang, Yong Zhao, Shouzhi Chen, Longhao Wang, Wenjing Yang, Xing Li, Xinxi Li, Huimin Lei, Huanyu Chang, Jiaqi Zhai, Yongnan Zhu, Qingming Wang, and Ting Ye
EGUsphere, https://doi.org/10.5194/egusphere-2024-3764,https://doi.org/10.5194/egusphere-2024-3764, 2025
Short summary
A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-460,https://doi.org/10.5194/essd-2024-460, 2024
Preprint under review for ESSD
Short summary
The general formulation for runoff components estimation and attribution at mean annual time scale
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349,https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Estimating the sensitivity of the Priestley–Taylor coefficient to air temperature and humidity
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024,https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024,https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Ratio limits of water storage and outflow in a rainfall–runoff process
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024,https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary

Cited articles

Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current changes in tropical precipitation, Environ. Res. Lett., 5, 025205, https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, 1998.
Arnell, N. W.: Climate change and global water resources, Global Environ. Change, 9, S31–S49, 1999.
Budyko, M. I.: Evaporation under Natural Conditions, Israel Program for Scientific Translations, Jerusalem, 1948.
Download
Short summary
The significant climate changes remind us to characterize the hydrological response to it. Based on the long-term observed hydrological and meteorological data in 291 catchments across China, we find a pattern of the response stating that drier regions are more likely to become drier, whereas wetter regions are more likely to become wetter. We also reveal that the precipitation changes play the most significant role in this process.