Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 2
Hydrol. Earth Syst. Sci., 20, 859–874, 2016
https://doi.org/10.5194/hess-20-859-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: HYPER Droughts (HYdrological Precipitation – Evaporation...

Hydrol. Earth Syst. Sci., 20, 859–874, 2016
https://doi.org/10.5194/hess-20-859-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Feb 2016

Research article | 23 Feb 2016

Importance of maximum snow accumulation for summer low flows in humid catchments

Michal Jenicek et al.

Related authors

Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020,https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020,https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Hydrology and beyond: the scientific work of August Colding revisited
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020,https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020,https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020,https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020,https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020,https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary

Cited articles

Andréassian, V., Coron, L., Lerat, J., and Le Moine, N.: Climate elasticity of streamflow revisited – an elasticity index based on long-term hydrometeorological records, Hydrol. Earth Syst. Sci. Discuss., 12, 3645–3679, https://doi.org/10.5194/hessd-12-3645-2015, 2015.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, https://doi.org/10.1002/hyp.7195, 2009.
Beaulieu, M., Schreier, H., and Jost, G.: A shifting hydrological regime: a field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia, Hydrol. Process., 26, 2672–2682, https://doi.org/10.1002/hyp.9404, 2012.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/NCLIMATE2246, 2014.
Publications Copernicus
Download
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments...
Citation