Articles | Volume 20, issue 12
Hydrol. Earth Syst. Sci., 20, 4963–4981, 2016
https://doi.org/10.5194/hess-20-4963-2016
Hydrol. Earth Syst. Sci., 20, 4963–4981, 2016
https://doi.org/10.5194/hess-20-4963-2016

Research article 16 Dec 2016

Research article | 16 Dec 2016

Estimating catchment-scale groundwater dynamics from recession analysis – enhanced constraining of hydrological models

Thomas Skaugen and Zelalem Mengistu

Related authors

A stochastic event-based approach for flood estimation in catchments with mixed rainfall and snowmelt flood regimes
Valeriya Filipova, Deborah Lawrence, and Thomas Skaugen
Nat. Hazards Earth Syst. Sci., 19, 1–18, https://doi.org/10.5194/nhess-19-1-2019,https://doi.org/10.5194/nhess-19-1-2019, 2019
Short summary
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana, Tuomo Saloranta, Thomas Skaugen, Jan Magnusson, Ole Einar Tveito, and Jess Andersen
Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,https://doi.org/10.5194/essd-10-235-2018, 2018
Short summary
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016,https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A history of TOPMODEL
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021,https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021,https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021,https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary

Cited articles

Andréassian, V., Perrin, C. Michel, C., Usart-Sanchez, I., and Lavabre, J.: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models, J. Hydrol., 250, 206–223, 2001.
Berghuijs, W. R, Hartmann, A., and Woods, R. A.: Streamflow sensitivity to water storage changes across Europe, Geophys. Res. Lett., 43, 1980–1987, https://doi.org/10.1002/2016GL067927, 2016.
Bergström, S.: The HBV model – its structure and applications, SMHI Reports Hydrology No. 4, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 1992.
Bergström, S., Lindström, G., and Petterson, A.: Multi-variable parameter estimation to increase confidence in hydrological modelling, Hydrol. Process., 16, 413–421, https://doi.org/10.1002/hyp.332, 2002.
Beven, K. J.: Changing ideas in hydrology – the case of physically-based models, J. Hydrol., 105, 157–172, 1989.
Download
Short summary
This paper introduces a new formulation of hydrological subsurface dynamics for hydrological models. The frequency distribution of the fluctuations of the catchment-scale subsurface storage is estimated from observed recessions and the mean annual runoff. The new formulation of the subsurface has been tested for 73 Norwegian catchments and is found to perform as well as the previous calibrated subsurface formulation. Recessions are better simulated using the new formulation.