Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4963-2016
https://doi.org/10.5194/hess-20-4963-2016
Research article
 | 
16 Dec 2016
Research article |  | 16 Dec 2016

Estimating catchment-scale groundwater dynamics from recession analysis – enhanced constraining of hydrological models

Thomas Skaugen and Zelalem Mengistu

Related authors

A stochastic event-based approach for flood estimation in catchments with mixed rainfall and snowmelt flood regimes
Valeriya Filipova, Deborah Lawrence, and Thomas Skaugen
Nat. Hazards Earth Syst. Sci., 19, 1–18, https://doi.org/10.5194/nhess-19-1-2019,https://doi.org/10.5194/nhess-19-1-2019, 2019
Short summary
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana, Tuomo Saloranta, Thomas Skaugen, Jan Magnusson, Ole Einar Tveito, and Jess Andersen
Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,https://doi.org/10.5194/essd-10-235-2018, 2018
Short summary
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016,https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Multi-model approach in a variable spatial framework for streamflow simulation
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024,https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024,https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024,https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024,https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary

Cited articles

Andréassian, V., Perrin, C. Michel, C., Usart-Sanchez, I., and Lavabre, J.: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models, J. Hydrol., 250, 206–223, 2001.
Berghuijs, W. R, Hartmann, A., and Woods, R. A.: Streamflow sensitivity to water storage changes across Europe, Geophys. Res. Lett., 43, 1980–1987, https://doi.org/10.1002/2016GL067927, 2016.
Bergström, S.: The HBV model – its structure and applications, SMHI Reports Hydrology No. 4, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 1992.
Bergström, S., Lindström, G., and Petterson, A.: Multi-variable parameter estimation to increase confidence in hydrological modelling, Hydrol. Process., 16, 413–421, https://doi.org/10.1002/hyp.332, 2002.
Beven, K. J.: Changing ideas in hydrology – the case of physically-based models, J. Hydrol., 105, 157–172, 1989.
Download
Short summary
This paper introduces a new formulation of hydrological subsurface dynamics for hydrological models. The frequency distribution of the fluctuations of the catchment-scale subsurface storage is estimated from observed recessions and the mean annual runoff. The new formulation of the subsurface has been tested for 73 Norwegian catchments and is found to perform as well as the previous calibrated subsurface formulation. Recessions are better simulated using the new formulation.