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Abstract. In this study, we propose a new formulation
of subsurface water storage dynamics for use in rainfall–
runoff models. Under the assumption of a strong relation-
ship between storage and runoff, the temporal distribution
of catchment-scale storage is considered to have the same
shape as the distribution of observed recessions (measured
as the difference between the log of runoff values). The mean
subsurface storage is estimated as the storage at steady state,
where moisture input equals the mean annual runoff. An im-
portant contribution of the new formulation is that its pa-
rameters are derived directly from observed recession data
and the mean annual runoff. The parameters are hence es-
timated prior to model calibration against runoff. The new
storage routine is implemented in the parameter parsimo-
nious distance distribution dynamics (DDD) model and has
been tested for 73 catchments in Norway of varying size,
mean elevation and landscape type. Runoff simulations for
the 73 catchments from two model structures (DDD with
calibrated subsurface storage and DDD with the new esti-
mated subsurface storage) were compared. Little loss in pre-
cision of runoff simulations was found using the new esti-
mated storage routine. For the 73 catchments, an average of
the Nash–Sutcliffe efficiency criterion of 0.73 was obtained
using the new estimated storage routine compared with 0.75
using calibrated storage routine. The average Kling–Gupta
efficiency criterion was 0.80 and 0.81 for the new and old
storage routine, respectively. Runoff recessions are more re-
alistically modelled using the new approach since the root
mean square error between the mean of observed and sim-
ulated recession characteristics was reduced by almost 50 %
using the new storage routine. The parameters of the pro-
posed storage routine are found to be significantly correlated

to catchment characteristics, which is potentially useful for
predictions in ungauged basins.

1 Introduction

The movement of groundwater to streams is an important
component of catchment hydrology and simulating its move-
ment is key to accurately reproducing the hydrograph. Un-
fortunately, at the spatial scale of interest for studying the
dynamics of hydrological systems (the catchment scale), we
are not able to actually see and learn how water is transported
in the subsurface. Hence, for many decades the (subsurface)
storage–runoff relationship has been the basis for countless
hydrological model concepts. The subsurface water storage,
hereafter denoted subsurface storage or storage, is to be un-
derstood as the dynamics storage, i.e. the variation in storage
between the wet and dry periods (Kirchner, 2009). In this pa-
per, we will develop and test a new formulation for storage
dynamics. The proposed subsurface storage model is based
on linear reservoir theory and its parameters are derived di-
rectly from recession analysis, digitised maps and the mean
annual runoff.

The linear reservoir, often visualised as a straight-sided
bucket with a hole in the bottom (Beven, 2001; Dingman,
2002), has an exponentially declining outflow and is the basis
for the exponential unit hydrograph (UH). It has served as the
most commonly used storage–runoff relationship and plays
a fundamental role in conceptual rainfall runoff models. A
single linear reservoir is, however, too simple for describ-
ing the variability and non-linearity of hydrological response
(Brutsaert and Nieber, 1977; Lindström et al., 1997). Some
groundwater models conceptualise the stream–aquifer inter-
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actions as the drainage of an infinite number of independent
linear reservoirs (Sloan, 2000; Pulido-Velasquez et al., 2005;
Bidwell et al., 2008; Rupp et al., 2009). This comes as a re-
sult of solving the linearised Dupuit–Boussinesq equation for
saturated flow as an eigenvalue and eigenfunction problem.
In order to capture the variability in hydrological response,
most conceptual rainfall–runoff models also use a system of
several, often modified, linear reservoirs to describe the soil
moisture accounting and runoff dynamics. The system may
vary in complexity (and hence in the inclusion of free cali-
bration parameters), but the linear reservoir remains the basic
building block. Examples of such models are the UH models
of Nash (1957) and Dooge (1959) and the explicit soil mois-
ture accounting (ESMA) models, of which the workhorse of
operational Nordic hydrology, the Hydrologiska Byråns Vat-
tenbalans (HBV) model (Bergström, 1992) serves as an ex-
ample (see Beven, 2001 for a discussion on the evolution of
rainfall–runoff models). In Lindström et al. (1997), the up-
per zone (the reservoir responsible for quick response) of
the HBV model was formulated as a non-linear reservoir,
Q =ϑS1+δ , where Q is runoff, S is storage and ϑ and δ are
calibrated constants. For δ= 0, this is, of course, an ordinary
linear reservoir.

Recession behaviour should be characteristic for a specific
catchment (Tallaksen, 1995; Kirchner, 2009; Stoelzle et al.,
2013; Berghuijs et al., 2016) since it provides hydrological
information integrated over the catchment. Such a scaled-
up hydrological signal contrasts that of information derived
from the extrapolation of point measurements. Recession
data have often been used to derive the storage–runoff rela-
tionship, and Brutsaert and Nieber (1977) discuss several the-
oretical models from the soil sciences as a basis for describ-
ing the non-linearity of storage–runoff relationships and in-
vestigate this relationship using recession events. Lamb and
Beven (1997) developed a tool that used recession data to pa-
rameterise non-linear storage–runoff relationships but were
not always able to fit single analytical functions. In Kirch-
ner (2009), runoff is assumed to depend solely on the amount
of water stored in the catchment and very carefully selected
recession events are used to parameterise the storage–runoff
relationship. The recession events were selected such that the
possible contaminating effect of precipitation and evapotran-
spiration on the recession data was minimised. For two rivers
in the UK, highly non-linear relationships between storage
and runoff were found using this approach.

Recession characteristics are, in this paper, used to esti-
mate parameters characterising the storage dynamics. The
parameters associated with storage are hence estimated di-
rectly from observed data and a priori model calibration to
runoff. Such an approach has many attractive features. First,
when we use the precipitation–runoff relationship in model
calibration, the estimated parameters will be conditioned on
both inputs (precipitation and temperature) and the output
(runoff). The calibrated parameters will therefore be sensitive
to biases and errors in the inputs. Consequently, the more un-

certain and biased the precipitation input, the more uncertain
and biased parameter estimates (e.g. Dawdy and Bergman,
1969; Kuczera and Williams, 1992; Andréassian et al., 2001;
Engeland et al., 2016). Second, when a single parameter is
estimated directly from data, one removes the possibility that
its value is conditioned on the value of the other parame-
ters, i.e. that the calibrated parameter values compensate for
structural or data errors (Beven, 1989; Kirchner, 2006, 2009).
Third, when a single parameter is estimated directly from ob-
served data and not through the optimisation of a model, one
does not have to take into account the possible (and proba-
ble) errors associated with the model structure (Beven, 2001,
p. 21; Kirchner, 2009). In such a way, the errors associated
with the modelling of, for example, snow and groundwater,
do not influence the parameter estimate. In this paper, we dis-
tinguish between calibrated and estimated parameters. The
term “calibrated parameters” refers to parameters being part
of a set that is simultaneously optimised when minimising
the difference between observed and simulated runoff. The
term “estimated parameters” refers to parameters estimated
independently and directly from observed data. These values
are not tuned to minimising the difference between simulated
and observed runoff as would be the case if they were cali-
brated.

The new formulation of storage dynamics proposed in
this paper is implemented in the distance distribution dy-
namics (DDD) model (Skaugen and Onof, 2014; Skaugen
et al., 2015), which is briefly reviewed in the next section. In
this model, the dynamics of runoff are modelled using lin-
ear reservoirs (unit hydrographs – UHs) arranged in parallel,
a principle which resembles the stream–aquifer interaction
model described by, for example, Bidwell et al. (2008). The
UHs are turned on and off according to the level of satura-
tion in the catchment. The UHs are parameterised from re-
cession data and digitised maps, so the DDD model incorpo-
rates many of the modelling approaches presented above.

The main objective of this study is to assess how the new
formulation of storage, with its parameters estimated directly
from recession characteristics and the mean annual runoff,
compares with the current formulation of the storage, where
its parameter is calibrated against runoff. The comparison
will be carried out for a large number of catchments and for
runoff and recession behaviour. In the discussion, some im-
plications with respect to predictions in ungauged basins and
spatially variable groundwater modelling are discussed.

2 Methods

2.1 Hydrological model

The DDD model (Skaugen and Onof, 2014; Skaugen et al.,
2015) is a rainfall–runoff model written in the programming
language R (http://www.r-project.org) and currently runs op-
erationally at daily and 3-hourly time steps at the opera-
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tional flood forecasting service of the Norwegian Water Re-
sources and Energy Directorate (NVE). The DDD model in-
troduces new concepts in its description of the subsurface
and of runoff dynamics. Input to the model is precipitation
and temperature. In the subsurface module (see Fig. 1), the
capacity of the subsurface water reservoir M (mm) is shared
between a saturated zone, S (mm), called the groundwater
zone and an unsaturated zone with capacity D (mm), called
the soil water zone. The actual water present in the unsatu-
rated zone, D, is called Z (mm).

The subsurface state variables are updated after evaluating
whether the current soil moisture, Z(t), together with the in-
put of rain and snowmelt, G(t), represent an excess of water
over the field capacity, R, which is fixed at 30 % (R= 0.3) of
D(t) (Grip and Rohde, 1985, p. 26; Colleuille et al., 2007).
If so, excess water X(t) is added to S(t). To summarise,

Excess water : X(t)=Max
{
G(t)+Z(t)

D(t)
−R,0

}
D(t) (1a)

Groundwater :
dS
dt
=X(t)−Q(t) (1b)

Soil water content :
dZ
dt
=G(t)−X(t)−Ea(t) (1c)

Soil water zone :
dD
dt
=−

dS
dt
, (1d)

where Q(t) is runoff. Actual evapotranspiration, Ea(t), is
estimated as a function of potential evapotranspiration and
the level of storage. Potential evapotranspiration is estimated
as Ep= θcea · T (mm day−1), where θcea (mm ◦C−1 day−1) is
the degree-day factor which is positive for positive tempera-
tures and zero for negative temperatures. Actual evapotran-
spiration thus becomes Ea=Ep× (S+Z)/M and is drawn
from Z.

In the current version of DDD, M is a calibrated parame-
ter and is divided into equal-sized storage levels, i, for which
their associated UHs are all assigned different wave veloci-
ties, or celerities, vi (m s−1). The celerities increase for in-
creasing i (see next section). Experience using the DDD
model shows that the subsurface water capacity parameterM
largely controls the variability of the hydrograph. Low values
of M increase the amplitude of the hydrograph since the en-
tire range of celerities is engaged, and vice versa.

Calibrated model parameters are hereafter denoted by θ
with subscripts (e.g. θM), in order to clearly distinguish be-
tween estimated and calibrated parameters.

2.2 Runoff dynamics

The runoff dynamics are completely parameterised from ob-
served catchment features derived using the Geographical In-
formation System (GIS) and runoff recession analysis. Cen-
tral for the formulation of runoff dynamics for a catchment
is the distance distribution derived using GIS. The distances,
d (m), from points in the catchments to the nearest river reach
are calculated for each catchment. For more than 120 studied

Figure 1. Schematic of the subsurface water reservoir M of DDD.
G(t) represents moisture input, rain and snowmelt. The dotted hor-
izontal line is the actual level, Z, of soil moisture in D. The ratio
(G(t)+Z(t)) /D(t) controls the release of excess water to S and
hence to runoff. Note thatD, S andZ are functions of time, whereas
M is fixed.

catchments in Norway, the exponential distribution describes
the distribution of distances well. Figure 2 shows the empir-
ical and exponential distributions for two Norwegian catch-
ments and although the mean distance d is different, the ex-
ponential distribution is a good fit for both catchments. The
parameter, γ , of the exponential distribution

f (d)= γ e−γ d , (2)

equals 1/d. The distance distributions (Fig. 2) express the
areal fraction of the catchment as a function of distance from
the river network. In Appendix A, analytical relations be-
tween exponential distance distributions and linear reservoirs
are described.

In the DDD model, water is conveyed through the soils
to the river network by waves with celerities determined
by the actual storage, S(t), in the catchment. The celer-
ities associated with the different storages are estimated
by assuming exponential recessions with parameter 3 in
Q(t)=Q03e

−3(t−t0), where Q0 is the peak discharge im-
mediately before the recession starts (Nash, 1957). We can
determine the parameter 3(t) from the difference

3(t)= log(Q(t))− log(Q(t +1t)), Q(t) > Q(t +1t), (3)

at any time t during the recession due to the lack-of-memory
property of the exponential distribution (Feller, 1971, p. 8).
The parameter3 is thus the slope per1t of the recession (of
logQ(t)). From Eqs. (A2) and (A7) in Appendix A, we find
the celerity v (m s−1) as a function of 3:

v =
3d

1t
. (4)

If we sample 3 values from all recession events (the only
condition is that Q(t)>Q(t +1t)) according to Eq. (3), we
find that they can be fitted to a gamma distribution. This is
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Figure 2. Empirical and fitted (exponential, red line) cumulative distribution functions (CDFs) of distances from a point in the catchment to
the nearest river reach for two Norwegian catchments, Møska (top panel) and Narsjø (bottom panel). The catchments are located in the south
and north-east, respectively, in southern Norway. The mean distance (denoted d_mean in the figure) and catchment size differ, but the shape
of the distribution is similar.

a development from the exponential model used in Skaugen
and Onof (2014) and is based on more detailed analysis of
a much larger number of runoff records. For the 73 catch-
ments used in this study, the gamma distribution was a good
fit for all catchments. In Fig. 3, we have plotted the empiri-
cal and the gamma distribution of 3 for six catchments with
estimated shape, α, and scale, β, parameters of the gamma
distribution, and it is clearly seen that the flexibility of the
gamma distribution is needed in order to model the observed
quantiles (see, for example, Fig. 3d and f).

The capacity of the subsurface reservoir, θM, is divided
into storage levels of equal capacity. The storage levels i cor-
respond to the quantile of the distribution of 3 under the as-
sumption that the higher the storage, the higher the values
of 3. Each level is further assigned a celerity vi = λid

1t
(see

Eq. 4), where λi is the parameter of the individual unit hydro-
graph for storage level i, and estimated such that the runoff
from several storage levels will give a UH equal to the expo-
nential UH with parameter 3i , i.e.

3ie
−3I (t−t0) =$1λ1e

−λ1(t−t0)+$2λ2e
−λ2(t−t0)

+ . . .+$iλie
−λi (t−t0), (5)

where $ are the weights associated with the discharge from

each level estimated by $i =3i/
i∑

k=1
3k . From Eq. (5),

λi are solved successively for increasing i under the assump-
tion that λ1=31 (see Skaugen and Onof, 2014).

The quantiles of 3 are mapped to a uniform distribution
of S, F(3)= S

θM
, which implies that all storage levels are

equally probable and that the equally spaced storage levels
have equal capacity of water, i.e. if θM= 50 mm and we use
five storage levels (i= 1 . . . 5), each level has a capacity of
10 mm. In Skaugen and Onof (2014), no increase in the pre-
cision of daily runoff simulations was found using more than
five storage levels.

2.3 Reformulation of the subsurface of DDD

An obvious problem of the approach described above is
that we attempt to estimate an extreme value, the max-
imum catchment-scale storage θM, a task which is obvi-
ously associated with more uncertainty than estimating the
mean catchment-scale storage, ms. Another problem is the
assumption of a uniform distribution of storage levels. A
quick investigation of observed groundwater level fluctua-
tions suggests that this is not the case. Figure 4 shows his-
tograms of observed groundwater levels from three obser-
vation boreholes located in a small catchment (the Groset
catchment, 6.33 km2) in southern Norway. The figure clearly
illustrates that fluctuations in storage and groundwater levels
are spatially variable and should ideally be treated as such
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Figure 3. Empirical and fitted (gamma, blue line) CDFs of 3 for six Norwegian catchments. 3 is sampled using Eq. (3) for all observed
recession events.

in rainfall–runoff models (Rupp et al., 2009; Sloan, 2000).
This is a consequence of the differences in water level fluc-
tuations depending on the location of the borehole relative
to the river (i.e. at the top of a hillslope versus adjacent to
a river) and also on the catchment variability of topography
and soil porosity (Refsgaard et al., 2012). It is therefore very
difficult to parameterise the distribution of the catchment-
scale groundwater fluctuations from such single observation
points (Kirchner, 2009). In addition, the distribution is un-
likely to be uniform as none of the individual histograms ex-
hibits such a behaviour.

To overcome the problems identified above, we attempt to
develop a storage model that differs from the previous model
in that the groundwater reservoir is parameterised by its mean
storage, ms, as opposed to the maximum storage, θM. In ad-
dition, regarding the practical problems associated with the
observation of catchment-scale fluctuations of storage, we
make the assumption that recession and its distribution car-
ries information on the distribution of catchment-scale stor-
age. More precisely, we assume that the temporal distribution
of catchment-scale storage can be considered as a scaled ver-
sion to that of the recession characteristic, 3. Consequently,

the subsurface reservoir no longer increases linearly with the
quantiles (which is the case with storage levels of equal ca-
pacity), but rather increases non-linearly according to the
shape of the distribution of 3.

Since the distribution of3 is modelled as a two-parameter
gamma distribution, we can write

f (3)=
1

βα0(α)
3α−1 exp(−3/β), α > 0, β > 0, (6)

where α and β are the shape and scale parameters, respec-
tively, and estimated from observed 3 values (using Eq. 3).

The distribution of S is hence also modelled as a two-
parameter gamma distribution:

f (S)=
1

ηα0(α)
Sα−1 exp(−S/η), α > 0, η > 0, (7)

where the scale parameter, η, is

η = β/c, (8)

and c is a constant and equal to
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Figure 4. Histograms (in black, green and red) of groundwater levels at three different locations in the Groset catchment (6.33 km2) located
in southern Norway.

c =3/ms, (9)

where3 is the mean value of3, estimated from the parame-
ters of the fitted gamma distribution and represents the mean
recession characteristic. Note that since the distribution of S
is a scaled version of 3, the shape parameter α is equal for
the two distributions.

In order to model the storage as a two-parameter gamma
distribution, we need to estimate the mean storage, mS. We
can then determine the constant c from Eq. (9), and finally,
the scale parameter η using Eq. (8).

If we assume that the mean value of the sampled3 values,
3, represents the slope of recession in a state of mean storage
in the catchment, then the associated UH is

u3(t)=3e
−3(t−t0). (10)

The temporal scale of the UH in Eq. (10) is th,max= dmax/vh,
where dmax is the observed maximum distance of the hill-
slope distance distribution and vh is the celerity associated
with 3 through vh=

3d
1t

(see Eq. 4). Let th,max be divided
into suitable time intervals, 1t , then the number of time in-
tervals it takes to drain the hillslope is J = th,max/1t . When
Eq. (10) is integrated over successive time intervals, we ob-
tain weights, µj , which, if multiplied by the excess moisture
input, X(1t), give the response (the water entering the river
network) for the different time intervals. The weights are cal-
culated as

µ(3)j =

(j)1t∫
(j−1)1t

u3(t)dt j = 1. . .J
∑

µ(3)j = 1, (11)

and scaled so that the sum of weights equals 1. The runoff at
time interval j is calculated as

Q(j1t)=X(1t)µ(3)j . (12)

For estimating the mean storage, mS, we first calculate the
mean annual runoff, MAR, which corresponds to a daily ex-
cess moisture input X of

X
[
mm day−1

]
= (1000 ·MAR

[
m3 s−1

]
· 86 400[s])/A

[
m2
]
, (13)

where A is the catchment area.
After J successive days of input X, routed with the UH

of Eq. (10), we reach a steady state where the volume of the
input equals the output (MAR). The total sum of moisture
input after J days is

J ·X = SSS+QSS, (14)

where total runoff, QSS, after J days is

QSS =

J∑
k=1

k∑
j=1

X ·µ(3)j , (15)
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and k is the number of days and the subscript denotes “steady
state”. The water left in the soils, SSS, at steady state (after
J time intervals) and hence assumed to represent the mean
storage mS, is SSS= J ·X−QSS, which can also be calcu-
lated as

SSS =

J−1∑
k=1

J∑
j=k+1

X ·µ(3)j =mS. (16)

With an estimate of the mean storage,mS, we can use Eqs. (8)
and (9) to estimate the scale parameter, η, of the distribu-
tion of S. The shape parameter, α, is already determined and
equal to that of the distribution of3. The gamma-distributed
storage levels Si are calculated as quantiles of the gamma-
distributed storage:

Si

M
=

Si∫
0

1
ηα0(α)

Sα−1 exp(−S/η)dS, (17)

where M is now estimated as the 99 % quantile of the distri-
bution of S.

2.4 Test of new storage routine

We will test the performance of the new formulation of
storage by replacing the formulation of the storage where
θM is a calibrated parameter and storage is uniformly dis-
tributed with a formulation where storage is gamma dis-
tributed with parameters, η and α, derived from recession
data and MAR. The model with the current storage routine is
denoted DDD_θM and the model with the new storage rou-
tine is denoted DDD_mS.

DDD_mS and DDD_θM are tested for 73 catchments dis-
tributed across Norway (see Fig. 5). The catchments vary in
latitude, size, elevation and landscape type (see histograms
of selected catchment characteristics in Fig. 6) and thus con-
stitute a varied, representative sample of Norwegian catch-
ments.

The time series for precipitation and temperature are mean
areal catchment values extracted from an operational meteo-
rological grid (1 km2

× 1 km2) produced by MET Norway,
which provides daily values of precipitation and temperature
for Norway from 1957 to the present day (see http://www.
senorge.no). The runoff data are provided by the NVE. The
time series of precipitation, temperature and runoff were split
into a calibration data set (1 September 1995–31 Decem-
ber 2011) and a validation data set (1 January 1980–31 Au-
gust 1995).

DDD_θM is calibrated using an R-based Monte Carlo
Markov chain method (Soetart and Petzhold, 2010). Alto-
gether, 11 parameters (including θM) are calibrated (see pa-
rameters denoted by θ with subscripts in Table 1). The cali-
brated parameters, except for θM, are also used when running
DDD_mS.

Figure 5. Location of the 73 catchments used to evaluate the new
storage routine.

3 Results

Figure 7a–e shows different skill scores obtained for the sim-
ulations of the 73 catchments with DDD_θM (skill is shown
with red crosses) and for DDD_mS (skill is shown with blue
circles) for the validation data set. The figure is organised
such that the catchments are sorted geographically starting
from the south-east (S-E), then follows towards the south-
west (S-W) and central Norway (M-N) and finally north-
ern Norway (N-N). Figure 7a shows the Nash–Sutcliffe effi-
ciency criterion (NSE; Nash and Sutcliffe, 1970), Fig. 7b the
Kling–Gupta efficiency criterion (KGE; Gupta et al., 2009;
Kling et al., 2012) and Fig. 7c–e the three components of the
KGE (correlation, bias and variability error, respectively).
The variability error is given by the ratio of the coefficients
of variation of simulated and observed runoff as suggested
in Kling et al. (2012). The mean values of the skill scores
for DDD_θM and DDD_mS are shown as straight lines in the
plots. We have also added a moving average of the results for
enhanced readability. We see from Fig. 7 that little precision
is lost in the results for DDD_mS. The mean values of NSE
and KGE are slightly better for DDD_θM. The result for bias
is better for DDD_mS (Fig. 7d), whereas the results for the
correlation and variability errors favour DDD_θM. Overall,
the differences in skill between DDD_mS and DDD_θM are
very small. Mean values of the skill scores for DDD_mS and
DDD_θM are shown in Table 2.
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Figure 6. Histograms of catchment characteristics for the 73 catchments. (a) Mean of the hillslope distance distribution, d , (b) areal per-
centage of lakes, (c) areal percentage of bogs, (d) catchment area, (e) mean elevation, (f) areal percentage of glaciers, (g) areal percentage of
forests and (h) areal percentage of bare rock.

The observed distribution of the recession characteris-
tic 3, is crucial for both the estimation of the subsurface
celerities and the estimation ofmS. If the distribution of sim-
ulated 3, denoted 3̇, is similar to that of the observed, this
suggests that recessions are well simulated and hence that the
dynamics of the model are realistic. Figure 8 shows scatter
plots of the mean and standard deviation of observed 3 and
simulated 3̇ for DDD_mS (blue circles) and DDD_θM (red
crosses). The root mean square error (RMSE) of the mean 3̇
is clearly less for DDD_mS, whereas the RMSEs of standard
deviation of 3̇ for DDD_mS and DDD_θM are similar (see
Table 3).

Figure 9 shows histograms of simulated storage from
DDD_θM (Fig. 9a) and DDD_mS (Fig. 9b) with empirical
cumulative distribution functions (CDFs) (Fig. 9c) of the ob-
served 3 (black line) and simulated 3̇ (DDD_θM with a red
line and DDD_mS with a blue line) for a specific catchment.
The CDF of 3̇ simulated with DDD_mS is clearly in better
agreement with that of the observed. The shape of the his-
tograms of storage fluctuations are very different, and as we
have no data to estimate the true empirical distribution of

storage at the catchment scale, we cannot claim that the fluc-
tuations simulated with DDD_mS are closer to the truth than
those simulated by DDD_θM. However, since the parame-
ters of the subsurface and the dynamic module of DDD_mS
are estimated prior to model calibration and the recessions
are demonstrably better simulated, it is reasonable to suggest
that the catchment-scale storage fluctuations simulated with
DDD_mS are closer to the truth.

4 Discussion

The new formulation for the subsurface storage gives good
results, and it is promising that the replacement of a rou-
tine with calibrated parameters with a routine with estimated
parameters produces runoff simulations which are equally
precise and robust. In addition, the simulated recessions, 3̇,
are much closer to those observed, suggesting a more real-
istically modelled storage–runoff relationship (i.e. the non-
linearly increasing storage capacity). Comparing simulated
runoff in such a manner constitutes a rather strict test for
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Figure 7. Skill scores for DDD_mS (blue circles) and DDD_θM (red crosses) for 73 Norwegian catchments. Mean skill score values are
shown in horizontal lines (same colour code). (a) NSE, (b) KGE, (c) KGE_r (correlation), (d) KGE_b (bias) and (e) KGE_g (variability
error) are shown.

DDD_mS. DDD_θM has an advantage since the parame-
ter θM is optimised together with the other calibration pa-
rameters. These optimised parameters are not necessarily op-
timal for DDD_mS.

The reduction of calibrated parameters in the storage
and dynamic module of the DDD model has attractive
implications for the problem of predictions in ungauged
basins (PUB) (see, e.g. Sivapalan, 2003; Parajka et al., 2013;
Hrachowitz et al., 2013; Blöschl et al., 2013; Skaugen et al.,
2015). In Skaugen et al. (2015), seven model parameters of
the DDD model (including θM and the parameters for the
distribution of λ) were estimated from catchment character-
istics (CCs) using multiple regression analysis. All model pa-
rameters were found to correlate significantly with the CCs.
The median NSE for 17 catchments was found to be 0.66
and 0.72 for two time series when DDD was run with model

parameters estimated from CCs. The change in the model
structure of DDD presented in this paper with respect to pre-
dictions in ungauged basins implies that we need to estimate
the parameters for the distribution of 3 from CCs. The es-
timation of θM through multiple regression with CCs, how-
ever, is no longer needed. Although it is not within the scope
of this study to conduct a full PUB analysis, we investigated
how the parameters of the distribution of 3 can be region-
alised. Since λ is a function of 3 (see Eq. 5), the parameters
of the distribution of λ and 3 are obviously highly corre-
lated (from a sample of 84 Norwegian catchments, we found
correlations between the shape, α, and the scale, β, param-
eters of 3 and λ of %(α)3,λ= 0.97 and %(β)3,λ= 0.98). In
Skaugen et al. (2015), the parameters for the distribution of λ
could be expressed as functions of the mean of the distance
distribution, d, percentage of lake, percentage of bare rock
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Figure 8. Scatterplot of mean (a) and standard deviation (b) of observed 3 and simulated with DDD_mS (blue circles) and DDD_θM (red
crosses) 3̇ for 73 catchments.

Figure 9. Histograms of storage simulations with DDD_θM (a) and DDD_mS (b). Empirical CDFs of observed3 (black line) and simulated
3̇ with DDD_θM (red line) and DDD_mS (blue line) are shown in (c).
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Table 1. Parameters of the DDD model with description and method of estimation. Some parameters have fixed values obtained through
experience in calibrating DDD for gauged catchments in Norway. These values are within the recommended range for the HBV model
(Sælthun, 1996). The GIS analyses are carried out using the national 25× 25 m DEM (http://www.statkart.no).

Parameter Description Method of
estimation

Hypsographic curve
11 values describing the quantiles 0, 10, 20,

GIS
30, 40, 50, 60, 70, 80, 90, 100

θWs (%) Max liquid water content in snow Calibrated
Hfelt Mean elevation of catchment GIS
θTlr (

◦C/100 m) Temperature lapse rate (0 ◦C per 100 m) Calibrated
θPlr (mm/100 m) Precipitation gradient (mm per 100 m) Calibrated
θPc Correction factor for precipitation Calibrated
θSc Correction factor for precipitation as snow Calibrated
θTX (

◦C) Threshold temperature rain/snow Calibrated
θT S (

◦C) Threshold temperature melting/freezing Calibrated
θCX (mm ◦C−1 day−1) Degree-day factor for melting snow Calibrated
CGlac (mm ◦C−1 day−1) Degree-day factor for melting glacier ice 1.5× θCX
CFR (mm ◦C−1 day−1) Degree-day factor for freezing Fixed value: 0.02,

Sælthun (1996)
Area (m2) Catchment area GIS
maxLbog (m) Max of distance distribution for bogs GIS
midLbog (m) Mean of distance distribution for bogs GIS
Bogfrac Fraction of bogs in catchment GIS
Zsoil Areal fraction of zero distance to the river network for soils GIS
Zbog Areal fraction of zero distance to the river network for bogs GIS
NOL Number of storage levels Fixed value: 5,

Skaugen and
Onof (2014)

θcea (mm ◦C−1 day−1) Degree-day factor for evapotranspiration Calibrated
R Ratio defining field capacity Fixed value: 0.3,

Skaugen and
Onof (2014)

α Shape parameter of gamma-distributed celerities Estimated
from recession

β Scale parameter of gamma-distributed celerities Estimated
from recession

θCV Coefficient of variation for spatial distribution of snow Calibrated
θvr (m s−1) Mean celerity in river Calibrated
mRd (m) Mean of distance distribution of the river network GIS
sRd (m) Standard deviation of distance distribution of the river network GIS
Rdmax (m) Max of distance distribution in river network GIS
θM/mS (mm) Max subsurface water reservoir/mean of subsurface water reservoir Calibrated/

estimated
from recession

d (m) Mean of distance distribution for hillslope GIS
dmax (m) Max of distance distribution for hillslope GIS
Glacfrac Fraction of bogs in catchment GIS
mGl (m) Mean of distance distribution for glaciers GIS
sGl (m) Standard deviation of distance distribution for glaciers GIS
Areal fraction of glaciers in elevation zones 10 values GIS

and catchment length with significant coefficients of deter-
mination of R2

λ(α)= 0.45 and R2
λ(β)= 0.35, respectively. A

similar analysis using the new model structure (DDD_mS)
with an added new subroutine for the spatial distribution of

snow water equivalent (SWE) (Skaugen and Weltzien, 2016)
showed that the parameters of the distribution of3 were sig-
nificantly correlated (p value< 0.01) to the mean of the dis-
tance distribution, d, areal percentage of lake and the catch-
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Figure 10. Empirical CDFs of 3 (circles) and scaled S(t) (blue line) for two Norwegian catchments.

Table 2. Mean values of skill scores obtained with simulating with
DDD_mS and DDD_θM for 73 catchments. KGE_r measures cor-
relation, KGE_b the bias error and KGE_g the variability error. All
skill scores have an ideal value of 1.

NSE KGE KGE_r KGE_b KGE_g

DDD_mS 0.73 0.80 0.87 0.92 0.94
DDD_θM 0.75 0.81 0.88 0.91 0.97

Table 3. Root mean square error (RMSE) values for the mean and
standard deviation of simulated 3̇ for the 73 catchments.

RMSE mean 3 RMSE SD 3

DDD_mS 0.04 0.045
DDD_θM 0.07 0.049

ment gradient (see Table 4). From Table 4, we note that the
shape parameter is positively correlated to the areal percent-
age of lake (L %). In Fig. 3f, this catchment has L % of
9.5 %, whereas in Fig. 3c, L % is only 4.4 %. The signifi-
cant correlations yield significant multiple regression equa-
tions with coefficients of determination of R2

3(α)= 0.59 and
R2
3(β)= 0.54. Hence, the potential for improved predictions

in ungauged basins is promising.
The assumption of equal shape for the distributions of 3

and S is, of course, difficult to verify as no direct observa-

Table 4. Significant Spearman correlation (p value< 0.01) between
catchment characteristics and the shape, α, and scale, β, parameters
of the distribution of 3. The correlations are based on estimated
model parameters for 83 Norwegian catchments.

Correlation Mean of distance Lake percentage, Catchment
distribution, d L % gradient

α – 0.33 –
β −0.36 −0.44 0.31

tions of S are at hand. Myrabø (1997) conducted ground-
water measurements on a very dense spatial grid over a tiny
catchment (0.0075 km2) in southern Norway for a short pe-
riod of time in order to investigate subsurface dynamics over
an entire catchment. These data are unfortunately not avail-
able and no other similar experiment from Norway is known.
However, if we use the equation for the linear reservoir in
Appendix A (Eq. A4) and express the rate constant as a func-
tion of 3 (Eqs. 4 and A6), we can, for observed recession
values of Q and 3, calculate the corresponding values of S
and compare the distributions of 3 and (the scaled) S.

S(t)=
Q(t)1t

1− e−3(t)
(18)

Figure 10 shows such a comparison for two catchments, and,
except for the highest quantiles, the distributions of 3 and
(scaled) S are almost identical and hence supporting our as-
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sumption. The high frequency of high S values present in
Fig. 10, also seen for several other catchments (not shown),
is the result of the combination of high Q values and low
values of 3, i.e. very modest recession for situations with
high runoff values. Such events are probably not represen-
tative for describing recession characteristics of the catch-
ment. By sampling 3(t) and estimating S(t) under the con-
dition that precipitation at the time (t +1t) could not ex-
ceed a low threshold of 0, 2 and 5 mm, we found that the
frequency of very high values of S estimated by Eq. (18)
were reduced. Hence, the very high values of S did not rep-
resent storage for true recession events. Moreover, the distri-
bution of 3 was insensitive to such conditioning, implying
that Eq. (3) is a robust estimate of recession characteristics,
whereas the distribution of S is highly sensitive. This way
of conducting recession analysis differs, mainly in the man-
ner of sampling the recession events from those described
in recession analysis reviews such as Tallaksen (1995) and
Stoelzle et al. (2013). Common for many of the recession se-
lecting algorithms reported in the literature is the censoring
of the recession events with exclusion of events with rainfall
or periods of high evapotranspiration (e.g. Kirchner, 2009)
and exclusion of the early stages of the recession to avoid
the influence of preceding storm and surface flow (Stoelzle
et al., 2013). In this study, all recession events that satisfy
Q(t)>Q(t +1t) are used to estimate the parameters of the
distribution of 3. We have found that the distribution of 3
remains quite insensitive to precipitation (see above), and it
is equally important that the parameters of the distribution
of3 are correlated to (and can be estimated from) catchment
characteristics.

There are other assumptions presented in this paper that
remain difficult to test because S is not observed at the catch-
ment scale. We assume that (i) 3 represents the slope of re-
cession in a state of mS and (ii) that water left in the soils at
steady state for MAR represents mS. These assumptions are
needed so that we can estimate mS, and hence have an ana-
lytical expression for the distribution of S through Eqs. (8)
and (9). Since we are interested in a mean behaviour, linking
the two known means, MAR and3, with the unknown mean,
mS, seems reasonable and the most straightforward. The ac-
tual spatially distributed subsurface state for mean storage
(see below for more detailed discussion on subsurface states)
can, of course, vary and be associated with different reces-
sions (different 3 values), but this does not rule out that
3 and mS are good representatives for describing a mean
behaviour. A catchment under steady state for MAR, where
water is routed through the hillslopes with a unit hydrograph
parameterised using3, is a very simplistic way of describing
runoff dynamics. However, it serves the purpose of establish-
ing a scenario of mean behaviour where input (precipitation)
balances the storage and output (runoff), and hence gives a
plausible estimate of mS.

In Kirchner (2009), the storage–runoff relationship is as-
sumed to be a single-valued function, i.e. S is a single-valued

Figure 11. Snapshot of the saturated zone S of the DDD model.
The catchment is represented as one hillslope. The x axis shows the
distance from the river (right-hand side) to the top of the hillslope
(left-hand side). The y axis show the storage levels. The darker the
blue colour, the more water is present in the storage level.

function of Q. This leads to a very simple model with re-
gards to the number of states in the subsurface, namely one.
The number of states in DDD, however, can be very high.
If we consider Eq. (16), the number of summations (time
steps) constituting SSS can be viewed as a number of sub-
surface states since each summation represents a volume
water that will sooner or later propagate into the river net-
work. Equation (16) describes the subsurface using only one
(mean) UH. In the DDD model, the number of storage lev-
els is fixed to five, and the UHs constituting the storage lev-
els all have the same shape (exponential) but have different
temporal scales. The temporal scale (level of discretisations)
of the UHs varies according to their associated celerity, and
the slowest (lowest) storage level may be discretised such
that hundreds of time steps are necessary for the complete
attenuation of the UH. Such a system actually provides a 2-
D representation of the subsurface (Rupp et al., 2009; Sloan,
2000) and gives numerous subsurface states (Harman, 2015).
It is hence entirely possible to have different configurations
of states associated with the same runoff. Figure 11 shows a
snapshot of how DDD models the storage S. The catchment
is represented as one hillslope where the x axis shows the dis-
tance (in metres) from the river reach (at the right-hand side)
to the top of the hillslope (at the left-hand side). The y axis
shows the different storage levels. We see the outline of boxes
(especially for the higher storage levels), which represents
the temporal discretisation of the UHs. Each box represents
an area according to the distance distribution and the asso-
ciated celerity that will drain per time interval. The higher

www.hydrol-earth-syst-sci.net/20/4963/2016/ Hydrol. Earth Syst. Sci., 20, 4963–4981, 2016



4976 T. Skaugen and Z. Mengistu: Estimating catchment-scale groundwater dynamics from recession analysis

Figure 12. Simulated storage S plotted against simulated runoff Q for a catchment of 49 km2 (a) and a catchment of 1833 km2 (b).

the celerity, the more parts of the catchment area are repre-
sented by each box. The darker the blue colour, the more wa-
ter is present in the box. Figure 11 can be seen together with
Fig. A1 in Appendix A, which illustrates how the distance
distribution (and the travel-time distribution) determines the
fractional areas that drain per time interval for a given celer-
ity (see also Harman, 2015 for distribution of storage and
water age). In Fig. 11, we can also note that it is more or less
dry at the top of the hillslope and saturated near the river.
This is consistent with the wetting up of a catchment from
the riparian zone outwards and up the hillslope (Dunne and
Black, 1970; Kirkby, 1978, p. 275; Myrabø, 1997).

Figure 12 shows simulated storage, S, plotted against sim-
ulated runoff,Q, for two catchments of different size (49 and
1833 km3). It is quite clear that the relationship between Q
and S is not single valued. The variability ofQ for the same S
(and vice versa) is to be expected given the multitude of
possible configurations of the subsurface states (i.e. the dis-
cretisations of the UHs). The shape of the clouds of points
resembles those found for observations of groundwater ver-
sus runoff (Rupp et al., 2009; Laudon et al., 2004; Myrabø,
1997). The points in Fig. 12, however, do not level off to
the same degree as seen for groundwater observations. This
can probably be explained by the fact that storage in DDD
is simulated for an entire catchment, and it is more unlikely
that an entire catchment will reach full saturation than indi-
vidual groundwater boreholes located relatively close to the
river (Myrabø, 1997; Laudon et al., 2004).

The parameters of the subsurface and the dynamical mod-
ules of the DDD model are all estimated prior to calibration

against streamflow and we see this as a necessary develop-
ment if we are to effectively test new algorithms for snow
distribution, snowmelt, evapotranspiration etc. at the scale
that matters for most practical applications, the catchment
scale (Clarke et al., 2011). Multivariable parameter estima-
tion (Bergström et al., 2002) has been put forward as a means
to increase confidence in hydrological modelling and mod-
els. Although we agree that such procedures indeed narrow
the parameter space (although not its number of dimensions),
the interaction and compensating nature of the calibration pa-
rameters makes it almost impossible to reject flawed model
structures so that we can concentrate on building models that
work well for the right reasons. In this paper, and in previous
ones (Skaugen and Onof, 2014; Skaugen et al., 2015), infor-
mation ready at hand, such as GIS-derived distance distribu-
tion functions and runoff records, have proved to be useful
for parameterising algorithms describing basic hydrological
processes.

5 Conclusions

In this paper, a new formulation of the subsurface in the
DDD model is presented. In the new formulation, the stor-
age capacity increases non-linearly with saturation, follow-
ing a two-parameter gamma distribution. The parameters of
the gamma distribution are estimated directly from observed
runoff recession data and the mean annual runoff and not
through model calibration against runoff. The new storage
formulation has been tested for 73 catchments in Norway
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of varying size, mean elevation and landscape type, with lit-
tle loss in precision. In addition, more realistic runoff reces-
sions are found using the new subsurface routine, suggesting
a more realistic storage–runoff relationship.

A preliminary analysis shows that the parameters of the
new storage routine can be estimated from catchment char-
acteristics, which is promising for continued advances in pre-
diction in ungauged basins.

The DDD model exhibits a spatially variable representa-
tion of the subsurface and allows for different subsurface
states associated with the same value of runoff. This con-
stitutes a more realistic representation of the subsurface and
is more in line with more dedicated groundwater models.

Future work includes implementing a more physically
based energy balance approach for snowmelt in DDD and
testing the new model structure for predictions in ungauged
basins in a similar analysis to that of Skaugen et al. (2015).

6 Data availability

The precipitation, temperature and runoff data used in this
study can be obtained by contacting the corresponding au-
thor.
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Appendix A: Distance distributions and linear
reservoirs

In Fig. A1, the information of the distance distribution is vi-
sualised differently from Fig. 2. In Fig. A1, for the same two
catchments as in Fig. 2, the consecutive fractional areas for
each distance interval 1d are plotted against the distance to
the river network, and the ratio, κ , between consecutive frac-
tional areas is a constant. It has been shown (Skaugen, 2002)
that the parameter γ of the exponential distribution relates
to κ as

γ =− log(κ)/1d. (A1)

If we assume that a uniform moisture input (i.e. excess rain-
fall or snowmelt) is transported through the hillslope to the
river network with a constant velocity, v (or celerity; see
Skaugen and Onof, 2014; Beven, 2006), then 1d is the dis-
tance travelled by water during a suitable time step, 1t , i.e.
1d = v1t . When d Eq. (2) is replaced with d/v, the dis-
tance distribution hence becomes a travel-time distribution
with mean equal to d

v
and parameter

ξ =− log(κ)/1t, (A2)

which constitutes a unit hydrograph (Maidment, 1993; Bras,
1990, p. 448). The variable κ is now the ratio between vol-
umes of water drained per time step, i.e. the volume of water
drained into the river network is reduced by κ for each time
step.

A linear reservoir has this same property of consecutive
runoff values having a constant ratio. This can be seen if
we compute successive volumes and runoff values accord-
ing to a linear reservoir in recession with rate constant ϑ ,
i.e. Q(t)=ϑS(t). The ratio between consecutive values of
runoff,

κ =Q(t +1t)/Q(t), (A3)

remains constant and equal to 1−ϑ 1t . Hence, a catch-
ment with an exponential distance distribution and a constant
celerity is equivalent to a linear reservoir with a rate constant
equal to (1− κ)/1t , i.e.

Q(t)=
(1− κ)
1t

S(t). (A4)

Furthermore, from Eqs. (A2) and (A3) we see that the rate
constant of a linear reservoir relates to the parameter of the
travel-time distribution as

ϑ =
1− e−ξ1t

1t
. (A5)

Since the mean of the travel-time distribution is 1
ξ
=
d
v

, the
rate constant relates to the mean of the distance distribution
as

ϑ =
1− e−(v/d)1t

1t
, (A6)

and the celerity can hence be formulated as

v =
− log(1−ϑ1t)d

1t
=
− log(κ)d

1t
. (A7)

This brief discussion on the distance distribution and linear
reservoirs shows that if a catchment exhibits an exponen-
tial distance distribution, linear reservoirs come as a natu-
ral choice for modelling the interaction between hillslopes
and the river network. Furthermore, the distance distribu-
tion suggests a geometrical configuration of the hillslope (or
aquifer) (Fig. A1) and the linear reservoir model is partly
parameterised from the parameter of the distance distribu-
tion (Eq. A5). These latter statements assume, of course, that
the topographical catchment area and that of the aquifer are
equal, an assumption that does not always hold (Bidwell et
al., 2008).
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Figure A1. Fractional catchment area as a function of distance from the river network for the same two catchments as in Fig. 2. The ratio, κ ,
between consecutive areas is shown.
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