Articles | Volume 20, issue 7
Hydrol. Earth Syst. Sci., 20, 2649–2667, 2016
https://doi.org/10.5194/hess-20-2649-2016
Hydrol. Earth Syst. Sci., 20, 2649–2667, 2016
https://doi.org/10.5194/hess-20-2649-2016

Research article 08 Jul 2016

Research article | 08 Jul 2016

A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

Firas Saleh et al.

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A history of TOPMODEL
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021,https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021,https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021,https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary

Cited articles

Adams, T.: Verification of the NOAA/NWS MMEFS Operational Hydrologic Ensemble Forecasting System in the Ohio River Valley, World Environmental and Water Resources Congress 2015 at Floods, Droughts, and Ecosystems, 2688–2700, 2015.
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Pol., 21, 35–49, 2012.
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Allamano, P., P. Claps, and F. Laio, Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009.
Amengual, A., Romero, R., Vich, M., and Alonso, S.: Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting chain: Application to a medium size basin of Mediterranean Spain, Hydrol. Earth Syst. Sci., 13, 793–811, https://doi.org/10.5194/hess-13-793-2009, 2009.
Download
Short summary
An operational framework was implemented to generate retrospective ensemble streamflow forecasts for an extreme hydrological event, Hurricane Irene. The implications of this work benefit streamflow forecast efforts and can be used for numerous applications, such as forecasting the water resources variability, predicting fate of water quality and climate change scenarios. Socio-economic analysis may be used to weigh on how improved forecasts prevent life loss and minimize property damage.