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Abstract. This paper investigates the uncertainties in hourly
streamflow ensemble forecasts for an extreme hydrological
event using a hydrological model forced with short-range en-
semble weather prediction models. A state-of-the art, auto-
mated, short-term hydrologic prediction framework was im-
plemented using GIS and a regional scale hydrological model
(HEC-HMS). The hydrologic framework was applied to the
Hudson River basin (∼ 36 000 km2) in the United States
using gridded precipitation data from the National Centers
for Environmental Prediction (NCEP) North American Re-
gional Reanalysis (NARR) and was validated against stream-
flow observations from the United States Geologic Survey
(USGS). Finally, 21 precipitation ensemble members of the
latest Global Ensemble Forecast System (GEFS/R) were
forced into HEC-HMS to generate a retrospective stream-
flow ensemble forecast for an extreme hydrological event,
Hurricane Irene. The work shows that ensemble stream dis-
charge forecasts provide improved predictions and useful in-
formation about associated uncertainties, thus improving the
assessment of risks when compared with deterministic fore-
casts. The uncertainties in weather inputs may result in false
warnings and missed river flooding events, reducing the po-
tential to effectively mitigate flood damage. The findings
demonstrate how errors in the ensemble median streamflow
forecast and time of peak, as well as the ensemble spread (un-
certainty) are reduced 48 h pre-event by utilizing the ensem-
ble framework. The methodology and implications of this
work benefit efforts of short-term streamflow forecasts at re-
gional scales, notably regarding the peak timing of an ex-
treme hydrologic event when combined with a flood thresh-
old exceedance diagram. Although the modeling framework

was implemented on the Hudson River basin, it is flexible
and applicable in other parts of the world where atmospheric
reanalysis products and streamflow data are available.

1 Introduction

Riverine floods are known to adversely impact affected com-
munities by causing casualties, inflicting damage to physical
property, temporarily disrupting social and economic activ-
ities, and forcing a community to take emergency measures
(IFRC, 2013). In the United States, for example, floods are
recognized as the main natural disaster with USD 7.96 billion
in flood-related damages per year and 82 fatalities per year,
averaged over the past 30 years (NWS, 2014). It is reported
that 78 % of emergencies are weather related (Weaver et al.,
2014; Hoss and Fischbeck, 2016).

The increase in global averaged temperatures enhanced the
potential for severe to extreme weather events (Becker and
Grunewald, 2003; WMO, 2003). As the world warms, north-
ern regions and mountainous areas are experiencing more
precipitation falling as rain rather than snow, with a pro-
nounced increase in precipitation being observed in the area
of eastern North America (Karl, 2009). The special report
on “Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaptation” of the Intergov-
ernmental Panel on Climate Change (IPCC), critically as-
sessed recent scientific literature on climate change and the
impacts from extreme events. They reported that increased
frequency and intensity of rainfall, based on climate mod-
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els, substantially contributed in local flooding (Kundzewicz
et al., 2014). Studies addressing flood damage in the United
States show that the impact of floods to a community has in-
creased over time as a result of both climate factors, such as
precipitation, and societal factors, such as increased popula-
tion and urban development (Pielke Jr., 2000; Changnon et
al., 2001). Furthermore, studies report that associated mon-
etary damages from flooding are also likely to go up in the
21st century and beyond (Milly et al., 2002; Allamano et al.,
2009; Pall et al., 2011). The rise in the number of extreme
weather events in recent years has spurred the need to bet-
ter predict floods and mitigate flood damage. Such advanced
warnings are not only important for economic losses but can
mean the difference between life and death (NWS, 2012).
Studies suggest that as little as 1 h of lead time can result in
a 10 % reduction in flood damages if forecast information is
communicated in a timely manner (McEnery et al., 2005).
Flood modeling and prediction has greatly advanced in re-
cent years with the advent of geographic information systems
(GIS), high-resolution digital elevation models (DEMs), dis-
tributed hydrologic and weather models and better delivery
systems on the internet (McEnery et al., 2005). However,
despite the advancement in hydrological prediction systems,
such systems remain plagued by uncertainty from numeri-
cal weather prediction models (Clark and Hay, 2004) and,
hydrologic model and structure parameters (Krzysztofowicz,
2001a; Gupta, 2005).

In terms of atmospheric forcing, the main source of uncer-
tainty in streamflow forecasts arises from precipitation fore-
cast errors which include errors arising from parameteriza-
tions of physical processes in atmospheric models, resolution
and initial conditions (Krzysztofowicz, 2001a; Bartholmes
and Todini, 2005; Cuo et al., 2011). In this context, ensem-
ble hydrological forecasts using every member in the ensem-
ble are appealing to account for the uncertainty in numeri-
cal weather prediction (NWP) model forecasts (Buizza et al.,
1999; Krzysztofowicz, 2001b; Bowler et al., 2008; Hamill et
al., 2008; Cloke and Pappenberger, 2009).

Recent studies show the promise of adopting streamflow
ensemble forecast techniques due to advantages over deter-
ministic forecasts (Habets et al., 2004; Younis et al., 2008;
Boucher et al., 2011; Schellekens et al., 2011; Verkade and
Werner, 2011; Alfieri et al., 2013) as well as a way of ac-
counting for uncertainties in hydrological forecasting (Chen
and Yu, 2007; Demeritt et al., 2007; Davolio et al., 2008;
Pappenberger et al., 2008; Reggiani and Weerts, 2008; Cloke
and Pappenberger, 2009; Bao et al., 2011; Bogner and Pap-
penberger, 2011; Cuo et al., 2011; Schellekens et al., 2011;
Alfieri et al., 2012; Amengual et al., 2015). Other advan-
tages include the ability to distinguish between an extreme
event forecast that is more or less likely to occur within the
model’s forecast horizon (Buizza, 2008; Golding, 2009) and
better decision making with respect to operational hydrolog-
ical concerns (Ramos et al., 2007; McCollor and Stull, 2008;
Boucher et al., 2012). Furthermore, ensemble-based stream-

flow forecasts tend to be more consistent between succes-
sive forecasts (Pappenberger et al., 2011). Fan et al. (2014)
showed benefits in the use of ensembles, particularly for
reservoir inflows on flooding events, and in comparison to
the deterministic values given by the control member of the
ensemble and by the ensemble mean.

Komma et al. (2007) reported that for longer lead forecast
times, the variability of the precipitation ensemble is ampli-
fied as it propagates through the catchment system as a result
of non-linear catchment response. They also showed that the
ensemble spread is a useful indicator to assess potential fore-
cast errors for lead time greater than 12 h.

A numbers of existing techniques are currently used by
the hydrologic community to account for uncertainty in
hydrological forecast systems. For instance, Krzysztofow-
icz (2001a) implemented a method to combine uncertain-
ties from both hydrological models and precipitation fore-
casts using a Bayesian forecasting system (BFS). This ap-
proach was based on decomposing the total uncertainty in
the river stage into precipitation uncertainty and hydrologic
uncertainty, which are quantified independently and then in-
tegrated into a predictive distribution of the river stage. Mon-
tanari and Grossi (2008) indirectly related the forecast er-
ror to the sources of uncertainty in the forecasting proce-
dure through a probabilistic link with the current forecast is-
sued by the hydrologic model, the past forecast error and the
past rainfall. Olsson and Lindström (2008) performed analy-
sis on separating the contributions of the precipitation fore-
cast errors and the hydrological simulation errors. Weerts et
al. (2011) used quantile regressions to assess the relation-
ship between the hydrological forecast and the associated
forecast error. Renard et al. (2010) addressed the total pre-
dictive uncertainty and separated it into input and structural
components under different inference scenarios. They high-
lighted the inherent limitations of inferring inaccurate hydro-
logic models using rainfall–runoff data with large uncertain-
ties. Brown (2015) quantified the total uncertainty in future
streamflow as a combination of the meteorological forcing
uncertainties and the hydrologic modeling uncertainties. He
implemented a Meteorological Ensemble Forecast Proces-
sor (MEFP) to quantify the meteorological uncertainties and
correct biases in the forcing inputs to the streamflow fore-
casts modeling.

In spite of the advancements and advantages in streamflow
ensemble forecasts reported in the literature there are a num-
ber of key scientific questions that need better understand-
ing. These include how the meteorological forecast uncer-
tainty reflects in the ensemble streamflow forecast; how the
degree of spread and hydrological response correlates with
the lead time of the forecast and the scale of application;
and how effective streamflow ensemble forecasting is dur-
ing an extreme hydrological event. The present work inves-
tigates these questions by retrospectively forecasting stream-
flow of an extreme event (Hurricane Irene) in the Hudson
River basin, USA. Hurricane Irene had strong hydrological

Hydrol. Earth Syst. Sci., 20, 2649–2667, 2016 www.hydrol-earth-syst-sci.net/20/2649/2016/



F. Saleh et al.: A retrospective streamflow ensemble forecast for an extreme hydrologic event 2651

Figure 1. Geostationary Operational Environmental Satellite
(GOES) east image of Hurricane Irene making landfall on 28 Au-
gust 2011 (image source: National Oceanic and Atmospheric Ad-
ministration (NOAA), 2011).

effects from high moisture content that brought very heavy
rainfall rates to the US east coast including the Hudson River
basin (Coch, 2012) (Fig. 1). The total estimated damage from
Hurricane Irene was around USD 15.8 billion. This includes
about USD 7.2 billion from inland flooding and storm surges
(Avila and Cangialosi, 2011).

In this paper, we first describe the case study area and
context. We then summarize the main data sets that were
used to implement the hydrologic framework. Subsequently,
we provide a detailed quantitative analysis and discussion of
the uncertainties in the streamflow forecasts associated with
the forcing from weather models and demonstrate how un-
certainties in streamflow forecast median, time of peak and
spread are reduced approaching a given event.

2 Materials and methods

2.1 Study area and context

The study encompasses the Hudson River basin (USA)
which originates from the Adirondack Mountains of upstate
New York and drains into the Atlantic Ocean (Fig. 2). The
drainage area of the basin is approximately 36 000 km2, cov-
ering 25 % of New York State and other portions of the
states of New Jersey, Connecticut, Massachusetts and Ver-
mont. The basin is considered one of the largest drainage ar-
eas in the eastern seaboard of the United States. According
to a national water quality assessment study conducted by
the United States Geological Survey (USGS), nearly 60 % of
the water supplied in the basin is for commercial or indus-
trial use. Several reservoirs within the Hudson River basin

Figure 2. Map showing the Hudson River basin topography includ-
ing basin divisions (thin black lines) and hydrographic network.
Examples of land use, curve number and imperviousness data sets
(zoomed) that were used in HEC-GeoHMS to construct the hydro-
logical model are also shown. The upper right side of the figure
exhibits an example of the HEC-HMS model structure and its sub-
basins using standard hydrologic grids (SHG (2× 2 km)).

contribute to the New York City water-supply system, which
supplies water to about 8 million people.

In 2011, Hurricane Irene caused severe damage and
widespread destruction that affected the east coast of the
United States. The storm made landfall as a strong tropical
storm at Little Egg Inlet in New Jersey on 28 August 2011
(Fig. 1). The total precipitation accumulation from Hurricane
Irene during 27–30 August 2011 was more than 300 mm in
certain areas of the Hudson River basin (Fig. 4). It inundated
streams throughout New Jersey resulting in peak stream
flows exceeding the 100-year recurrence interval at many
stream gages and causing heavy property and road damage.
For instance, the Passaic and Hackensack River basins in
northern New Jersey (south of the Hudson River basin) wit-
nessed new record peaks at a number of streamflow-gauging
stations.

President Obama issued a Major Disaster Declaration for
counties in New York and New Jersey impacted by Hurri-
cane Irene. In total, 38 counties across New York State were
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Rainfall‐Runoff Model (HEC‐HMS 4.1)

 Model setup & parameters
 Calibration 
 Validation

Uncertainty analysis (HEC‐HMS 4.1)

 Model structure and parameters

Ensemble post‐processing, visualization & 
statistics (R)

Stevens Flood Advisory System 
www. stevens‐tech.edu/sfas/

Database (MySQL)

Distributed meteorological GRIB files processing
(QGIS & R)
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(HEC‐DSSVue, QGIS, Hec‐GeoHMS)

 Observed river flow (USGS)
 Spatial data (land use, 
topography & soil)

Figure 3. Framework design steps including spatial data and USGS discharge time series. Processing of general regularly distributed infor-
mation in binary GRIB precipitation files data was carried out in Qgis (Qgis, 2011), R and Python, and exported to the HEC-DSSvue storage
system. Basin parameters were derived for the study area and the hydrological model was run using these inputs.

impacted with an estimated USD 1.5 billion in FEMA public
assistance costs and 10 deaths (FEMA, 2011). In New Jer-
sey, the property damage was estimated to be USD 1 billion.
In addition to high monetary damages, millions of people
across the state were evacuated and seven deaths were re-
ported (Watson et al., 2013; NJOEM, 2014).

2.2 Modeling framework description

The operational framework diagram is shown in Fig. 3 and
the data sets used in constructing the Hudson River basin
regional scale hydrological model are depicted in Fig. 2.
The framework was validated using the National Centers
for Environmental Prediction (NCEP) North American Re-
gional Reanalysis (NARR) precipitation data (Mesinger et
al., 2006). A retrospective forecast of Hurricane Irene uti-
lizing the 21 ensemble members from NOAA’s Global En-
semble Forecast System Reforecast (GEFS/R) was then used
(Hamill et al., 2015).

Apart from this work, the framework is currently opera-
tional and fully automated on the Pharos (Greek for “light-
house”) Linux supercomputer at Stevens Institute of Tech-
nology. It produces four forecast cycles of ensemble river
discharge per day, simulated at hourly time steps, which feed
into the New York Harbor Observing and Prediction Sys-
tem (NYHOPS) (Bruno et al., 2006; Georgas et al., 2007,
2014). NYHOPS was developed at Stevens Institute of Tech-
nology’s Davidson Laboratory to generate forecasts of the
Atlantic coast, New York Harbor and Hudson River region
through in situ monitoring equipment and hydrodynamic
modeling (Blumberg et al., 2015).

2.2.1 HEC-HMS model description

The Hudson River basin was modeled using the latest Hy-
drologic Engineering Center’s Hydrologic Modeling System

(HEC-HMS), version 4.1 (USACE, 2015). HEC-HMS, de-
veloped by the US Army Corps of Engineers, is a concep-
tual semi-distributed hydrological model that has been used
extensively in rainfall–runoff modeling and other related hy-
drological studies (Anderson et al., 2002; Neary et al., 2004;
Knebl et al., 2005; Amengual et al., 2009; Chu and Stein-
man, 2009; Halwatura and Najim, 2013; Meenu et al., 2013;
Seyoum et al., 2013; Zhang et al., 2013; Yang and Yang,
2014). The model uses a number of adjustable empirically
derived parameters that describe the overall structure of the
basin including parameters for runoff, baseflow and river
routing (Feldman, 2000). In this work, the modified Clark
(ModClark) distributed method (Kull and Feldman, 1998)
was used to account for the spatial variability and charac-
teristics of the basin. The gridded precipitation inputs were
used to enable spatially distributed infiltration calculations at
all regions of the basin. Infiltration capacity in the model was
quantified using the gridded curve number (CN) methodol-
ogy derived by the Soil Conservation Service (SCS) (USDA,
1986; Mishra and Singh, 2013). The SCS CN method esti-
mates precipitation excess as a function of cumulative pre-
cipitation, soil type, antecedent soil moisture content, land
use, total length of the river and the elevation of the catch-
ment area (Scharffenberg, 2015). The baseflow component
of the model includes the initial flow and the recession con-
stant to account for groundwater contributions to stream flow
(Chow, 1959; Maidment, 1992; Feldman, 2000). The river
flow routing was based on the Muskingum equations of the
HEC-HMS model (USACE, 2015).

2.2.2 Hudson River basin hydrological model data sets

The ArcGIS HEC-GeoHMS 10.2 extension (Fleming and
Doan, 2013) was used to prepare and import the geographi-
cal information system (GIS) data into HEC-HMS (Johnson
et al., 2001). The regional model data sets shown in Fig. 2
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Figure 4. Summary of HEC-HMS performances at the USGS
streamflow stations. The circles represent the criteria of Nash and
Sutcliffe (NSE) while the squares represent the BIAS (%). The sta-
tistical criteria are computed at hourly time steps. The model perfor-
mances are illustrated for the NARR precipitation forcing. The map
also shows the total observed accumulated precipitation received in
48 h during 28–29 August 2011 (data from National Oceanic and
Atmospheric Administration, 2011). The time series for selected
flow stations are presented in Fig. 5.

include topography obtained from the USGS National Eleva-
tion Dataset (NED) (Gesch et al., 2002), land surface cover
obtained from the US Department of Agriculture National
Resource Conservation Service (NRCS) and soil data for
New York State and New Jersey gathered from the State Soil
Geographic Database (STATSGO) (Miller and White, 1998).
Land use data sets were obtained from the USGS National
Land Cover Dataset (NLCD) (Homer et al., 2012).

The Hudson River basin was first delineated into sub-
basins based on flow direction and accumulation derived
from a digital elevation model (DEM) using HEC-GeoHMS
(Fleming and Doan, 2013), and then each sub-basin was sub-
divided into hydrologic response units, each of which has a
gridded curve number representing its runoff response rate
based on its unique combination of land use, soil type and
slope (Gassman et al., 2007). The gridded SCS curve num-
ber was obtained by intersecting land use and land cover

with the soil data using the CN-grid tool in HEC-GeoHMS.
An example of the curve number grid GIS layer over a sub-
basin of the Hudson River is shown in Fig. 2. It is impor-
tant to point out that model runoff estimation can be very
sensitive to soil moisture, and using static SCS curve num-
ber parameters may introduce limitations when the model is
run operationally. To overcome such limitations, the frame-
work utilizes a look-up table for the initial abstraction pa-
rameters based on the hindcast and the continuous run of the
model with the NARR data. Other future techniques that in-
volve integrating machine learning techniques to automati-
cally select the optimal initial abstraction parameters on the
fly can be advantageous as well. The sub-basins’ storage co-
efficients and imperviousness percentage were derived from
the GIS data sets described earlier this section using HEC-
GeoHMS 10.2 (Fig. 2). The observed streamflow data for 15
USGS gauging stations, located in the Hudson River basin
(Fig. 2), were automatically retrieved using the R dataRe-
trieval package (Hirsch and De Cicco, 2015).The observed
discharge data were recorded at 15 min time intervals and
imported to the USACE Data Storage System Visual Utility
Engine (HEC-DSSVue) (HEC, 2009).

The model’s baseflow recession constants were derived us-
ing an automated base flow separation technique based on the
R low flow statistics package “lfstat” (Gustard and Demuth,
2009; Koffler and Laaha, 2012). In total, 25 years of observed
historical flow data were used to derive the baseflow reces-
sion constants for each sub-basin in order to better simulate
the falling limb of the simulated discharge hydrograph. The
optimal recession constant values for the sub-basins ranged
from 0.67 to 0.90 depending on the sub-basin that was con-
sidered. The calculated recession constant values were con-
sistent and in agreement with the ones reported in the litera-
ture (Pilgrim and Cordery, 1993; Feldman, 2000).

For the initial baseflow, we used observed conditions in the
gauging stations to reduce uncertainties in the model as the
model was intended to forecast short-term extreme events,
within a 96 h forecast horizon, and not long-term simulations.
The model was forced with gridded precipitation, discussed
in detail in the next sections of this paper, to work with the
ModClark transform method (Kull and Feldman, 1998).

2.3 Model meteorological data sets

2.3.1 North American Regional Reanalysis

NARR is a long-term, dynamically consistent, high-
resolution, high-frequency, atmospheric and land surface hy-
drology data set for the North American domain (Mesinger
et al., 2006). NARR was developed as a major improve-
ment upon the earlier National Centers for Environmen-
tal Prediction – National Center for Atmospheric Research
Global Reanalysis 1 (NCEP-NCAR GR1). NARR data have
successfully assimilated high-quality and detailed precipi-
tation observations into the atmospheric analysis to create
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a long-term, consistent, high-resolution climate data set for
the North American domain. The temporal resolution of
the NARR data is 3 h and the spatial resolution is 32 km
(Mesinger et al., 2006). The NARR precipitation data have
been used in a number of hydrological studies. For in-
stance, Choi et al. (2009) used the NARR data sets to suc-
cessfully calibrate the semi-distributed land-use-based runoff
processes (SLURP) model. Solaiman and Simonovic (2010)
used the NARR data in a regional hydrological basin and
reported satisfactory performance of such data in scarce re-
gions.

In this work, NARR precipitation data, 26–31 August
2011, corresponding to Hurricane Irene was used in the hy-
drological model applied to the Hudson River basin in a 2 km
common hydrologic gridded format using bicubic interpo-
lation. Table 1 displays the rainfall accumulation totals ex-
tracted from the NARR data for selected sub-basins of the
Hudson River. The hydrological simulation using this data
set of precipitation was considered as the simulation of ref-
erence and was compared with the ensemble forecast that is
reported in the next section.

2.3.2 Global Ensemble Forecast System Reforecast
(GEFS/R)

The Global Ensemble Forecast System (GEFS) is a weather
forecast model made up of 21 ensemble members (Hamill
et al., 2013, 2015). The GEFS accounts for the amount of
uncertainty in a forecast by generating an ensemble of multi-
ple forecasts, each minutely different, or perturbed, from the
control forecast. The GEFS 1◦ horizontal resolution data re-
forecasts used initial conditions obtained from high-quality
reanalyses data and the same assimilation system that is used
operationally. These reforecasts have been shown to be par-
ticularly useful for the calibration of relatively uncommon
phenomena such as heavy precipitation (Hagedorn, 2008;
Hamill et al., 2008). In relation to hydrology, reforecasts help
produce quantitative probabilistic estimates of river stream-
flow that are as sharp and reliable as possible (Schaake et al.,
2007).

2.4 Statistical criteria used to assess models’
performance

The performance of the models was statistically evaluated us-
ing the criteria of Nash–Sutcliffe efficiency, referred to here-
after as NSE (Eq. 1), and bias (in %) between simulations and
observations, referred to hereafter as BIAS (Eq. 2). The NSE
measures the fraction of the variance of the observed flows
explained by the model in terms of the relative magnitude
of the residual variance (noise) to the variance of the flows
(information); the optimal value is 1.0 and values should be
larger than 0.0 to indicate minimally acceptable performance

(Nash and Sutcliffe, 1970; O’Connell et al., 1970).

NSE= 1−

N∑
i=1

(Pi −Oi)
2

N∑
i=1

(Oi −Oi)2

, (1)

where N is the number of compared values, Pi is the simu-
lated (forecast) value, Oi is the observed value and Oi is the
average of Oi time series.

The BIAS measures the average tendency of the simulated
values to be larger or smaller than the observed ones. The
optimal value of BIAS is 0.0, with low-magnitude values in-
dicating accurate model simulation. Positive values indicate
overestimation, whereas negative values indicate underesti-
mation (Yapo et al., 1996).

BIAS(%)= 100

N∑
i=1

(Pi −Oi)

N∑
i=1

Oi

. (2)

Model BIAS is reported relative to the mean observation
magnitude (Eq. 2), in percentage (%).

3 Results

3.1 HEC-HMS model calibration using NARR
precipitation data

Upon implementing the model setup, we calibrated the hy-
drological model to assess its ability to reproduce the Hurri-
cane Irene event using the NARR gridded precipitation data
(Mesinger et al., 2006). The HEC-HMS model was run on a
2× 2 km standard hydrologic grid resolution (SHG) (Maid-
ment and Djokic, 2000) at hourly time steps. The simulated
flow hydrographs were calibrated against hourly river flow
observations to obtain optimal performance in terms of both
runoff volume and peak flow. The hydrological parameters
were modified to produce a best-fit model using a root mean
square error (RMSE) objective function within the HEC-
HMS model’s Nelder–Mead optimization method (Barati,
2011; Seyoum et al., 2013), aiming at maximizing the fit be-
tween simulated streamflow and observations at 15 US Ge-
ological Survey (USGS) gauging stations (Fig. 2). The cali-
bration was also carried out by visual and statistical compar-
ison to produce an accurate simulation of discharge at the
Hudson River gauging stations (Fig. 2). We also used the
HEC-HMS uncertainty function which, through a variant of
Latin hypercube sampling, varies sensitive model parame-
ters within a defined range, thereby producing an estimate
of best-fit parameters after multiple iterations (Mousavi et
al., 2012). For example, the hydrologic Muskingum routing
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Figure 5. Ensemble streamflow forecasts compared to observed streamflow in selected stations at lead times of 72, 48 and 24 h from the
observed peak flow; reported time is in GMT.
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parameters were modified to include a greater ratio of atten-
uation to translation of runoff in the sub-basins which sig-
nificantly improved the model results (Fig. 5). To assess and
evaluate the parameter uncertainties we performed a Monte
Carlo-based uncertainty analysis available in HEC-HMS 4.1
(Scharffenberg et al., 2015).

Table 1 lists the NARR accumulated precipitation for each
sub-basin of the Hudson River while the summary of the
model fit represented by the NSE and BIAS criteria is shown
in Fig. 4. The NARR hydrological model results (also re-
ferred to as the simulation of reference) showed reasonable
fit between model and observations in all the selected sub-
basins. The lowest NSE was 0.75 and certain sub-basins had
NSE values higher than 0.90 (Fig. 4). Amongst the 15 flow
stations examined in the study, 13 stations had a BIAS below
10 % while 2 stations had a BIAS higher than 10 %. It was
observed that the stations with a higher BIAS were located in
the upstream parts of the basin, notably the Hoosic River sub-
basin (USGS ID 01334500) (Fig. 4). Importantly, the hourly
hydrograph shape and timing of peaks accurately replicated
the observations as illustrated in Fig. 5. Overall, the refer-
ence simulation exhibited a representative fit to observations.
Thus, the developed calibrated framework showed promising
results for generating streamflow forecasts with a 96 h lead
time using ensemble member weather forecast forcing.

3.2 Ensemble river discharge retrospective forecast

We forced the HEC-HMS model with precipitation fields
from the GEFS-retrospective forecast ensemble members to
examine the variations in simulated discharge among the en-
semble members. More specifically, we fed the Hudson River
basin hydrological model with every single GEFS member of
the 21 available members. The resulting sets of streamflow
forecasts were then analyzed to better understand the uncer-
tainty of the streamflow forecasts that arises from the hy-
drologic framework’s response to uncertainties in the mete-
orological forcing. The spread of ensemble members is con-
sidered as a useful measure of forecast uncertainty (Pappen-
berger et al., 2005).

To assess the skill of the forecasts, we compared, at lead
times of 72, 48 and 24 h, observations with results of the in-
dividual ensemble members, the median of all members, the
ensemble control member (GEFSC00) and the NARR sim-
ulation of reference (Fig. 5). We chose to include the con-
trol member in these comparisons as a proxy for the single
deterministic models used when ensemble forecasts are not
considered. The hydrological parameters and baseflow con-
ditions calibrated in the NARR simulation of reference were
retained in all simulations. The 98th and 2nd percentiles of
accumulated precipitation from the 21 ensemble members at
each forecast are reported in Table 1.

In the reforecast issued 72 h prior to the event, the high
uncertainty in the NWP ensemble inputs translated to a high
uncertainty in the simulated streamflow when simulated by

the hydrological model. For instance, in station ID 01391500
(Saddle River at Lodi, NJ), there was a 20-fold spread in the
accumulated precipitation amongst the 21 ensemble mem-
bers. For the same station the peak flow ranged from base
flow (3 m3 s−1) to 242 m3 s−1 (exceeding the major flood
threshold) (Fig. 5). At the Hackensack River at New Mil-
ford the peak flow was ranging anywhere between 20 and
525 m3 s−1. The magnitude of spread in other stations was
similar (Fig. 5). At that point of the retrospective forecast, the
streamflow simulated using the control member (GEFSC00)
underestimated the observed flow in all stations except for
station ID 01375000 (Croton River on Hudson, NY) where
the flow was simulated correctly (Fig. 5). However, the
spread between the individual ensemble members remained
very high as reported above. In terms of estimated time of
peak, one notes that the GEFSC00 control member correctly
projected the peak time of the event in all stations with an
error of ± 3 h when compared with observations. However,
other individual members had an offset of up to 24 h between
simulated and observed peaks in certain stations (Fig. 5-a1,
-b1, -c1, -d1 and -e1). For instance, at station ID 01375000
(Croton River on Hudson, NY), one individual member was
projecting an estimated peak on the evening of 28 August
while another individual member was projecting it at noon
of the following day. In this particular station, the observed
peak was around the midnight of 28 August. This finding of-
fers an interesting perspective in terms of precisely extract-
ing hydrograph features as one may use the control mem-
ber at this stage of the forecasts to precisely project the time
of the peak with a temporal error of ± 3 h. In terms of sta-
tistical evaluation, Figs. 6 and 7 report the NSE and BIAS
(%) for selected stations. For station ID 01375000, the con-
trol member (GEFSC00) predicted the flow accurately with
a NSE of approximately 0.95, however the flow is underesti-
mated by about 20 % in the forecast issued 72 h prior to the
event. Overall, only seven ensemble members at this station
had a NSE above 0.70 while more than 60 % of the mem-
bers underestimated or overestimated the flow hydrograph by
more than 30 % (Fig. 7). Although uncertainties in baseflow
initial conditions and model hydrological parameters are not
addressed in this work, it was noted that uncertainties from
precipitation inputs have a substantial impact on the predic-
tion compared to remaining uncertainties in the initial condi-
tions and parameters of the calibrated hydrological model.

In the next reforecast, issued 48 h before the event, the
spread (or the uncertainty envelope) was substantially re-
duced, notably in the projected time of the peak (Fig. 5-a2,
-b2, -c2, -d2 and -e2). This is primarily due to the decrease
in accumulated precipitation ensemble spread (Table 1). The
magnitude of the peak ensemble spread was between 104
and 229 m3 s−1 for the Saddle River. The same river had a
spread on the order of 20-fold in the prior forecast. This im-
provement was observed at other stations as well. At 48 h
lead time, the control member systematically overestimated
the flow at all stations (Fig. 5-a2, -b2, -c2, -d2 and -e2), but
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Figure 6. Models’ performance represented by Nash–Sutcliffe efficiency (NSE) at lead times of 72, 48 and 24 h from the observed peak flow.
The metrics are showing the NARR model outputs, the median of ensemble members and the GEFS control member. The GEFS perturbed
members are shown in grey.

it consistently predicted the time of peak, as was the case
in the forecast issued 72 h before the event. The uncertainty
in the time of the peak also decreased, with most of the en-
semble members predicting the peaks within ± 3 h from the
observed ones. This suggests that the peak ensemble spread
should not be the only metric considered to quantify potential
uncertainty, it suggests that other features, such as the peak
timing and magnitude, should also be examined. The con-
trol member (GEFSC00), which predicted the flow correctly
for Croton River on Hudson (ID 01375000) 72 h before the
event, however, at 48 h lead time showed a marked overesti-
mation of the flow 65 %. This suggests that the accuracy of
the predictions also varies temporally and no single member
can be relied upon consistently as a perfect forecast. Over-
all, there was a significant improvement in NSE for most of

the ensemble members in the forecasts issued 48 h before the
event.

In the final reforecast considered, issued 24 h before the
event, the spread was further reduced with all the mem-
bers predicting the rising and the falling limbs of the hydro-
graph more accurately. The control member presented an al-
most perfect forecast for Hackensack River at New Milford
(Fig. 6). The peak ensemble spread was reduced by 57 %,
60 % and 48 % compared to the 72 h lead time predicted peak
ensemble spread at the Hackensack River, Saddle River and
Wallkill River stations, respectively. Also, the peaks were
predicted to occur within ± 3 h of the observed event peak in
all cases. The control member seemed to be consistent with
the observations in terms of the peak time at this stage of the
forecast and the uncertainties are less than that projected 48 h
before the event. At this stage of the forecast 75 % of the en-
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Figure 7. Models’ performance represented by BIAS (%) at lead times of 72, 48 and 24 h from the observed peak flow. The metrics are
showing the NARR model outputs, the median of ensemble members and the GEFS control member. The GEFS perturbed members are
shown in grey.

semble members had a NSE higher than 0.75 (Fig. 6). This is
consistent with findings in recent ensemble streamflow stud-
ies that used different modeling frameworks (Thielen et al.,
2009; Fan et al., 2014; Yang and Yang, 2014). The results
also suggest that the magnitude of spread between the ensem-
ble members depends significantly on the sub-basin drainage
area. For example, at station ID 01391500, Saddle River at
Lodi (140 km2) a peak discharge of 242 m3 s−1 corresponds
to a maximum accumulated precipitation of 206 mm. Thus,
there is peak flow of about 1 m3 s−1 for 1 mm of accumulated
precipitation. This ratio, however, increases for a basin with
a larger area. For example, at Wallkill River at Gardiner, NY
(ID 01371500, 1800 km2) there was a peak flow of approx-
imately 10 m3 s−1 for 1 mm of accumulated precipitation as
it propagates (non-linearly) through the drainage area, thus

there is a correlation between the spread in the precipitation
data and the area of the sub-basin.

To have an overall assessment of the forecast skill, we cal-
culated the range and average NSE and BIAS (%) across all
stations (Fig. 8) in the Hudson River basin for the different
reforecast ensemble members 24 h before the event. The fig-
ure depicts how a member that has a good NSE and BIAS at
one station can have a very poor performance in other parts
of the basin that may partly be due to the statistical down-
scaling of precipitation from 1◦ resolution to 2 km, and the
associated uncertainty in the spatial distribution of precipita-
tion. The median of all the members and the control member
showed good performance with an average NSE of 0.75 com-
pared to each of the members. The results show that there
is no “one size fits all” solution for selecting an ensemble
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Figure 8. Overall NSE and BIAS (%) across the stations for forecast
issued 24 h before Hurricane Irene.

member, noting that each sub-basin has its own distinct set
of characteristics manifested in local conditions, such as the
size of the basin and land use. This finding calls for further
work involving higher-resolution precipitation models to as-
sess the effect of basin size and meteorological forcing reso-
lutions.

3.2.1 Threshold exceedance persistence diagram

In addition to the statistical metrics and visual comparison of
stream-flow, an assessment of the forecasts skill was carried
out for Hurricane Irene using a threshold exceedance persis-
tence diagram at 6 h time intervals of the forecasts stream-
flow time series (Fig. 9). The exceedance diagram used in
this study is an adaptation of the operational European Flood
Alert System (Bartholmes et al., 2009; Thielen et al., 2009).
Such quantitative diagrams give an idea about the forecast
persistence and support operational flood management deci-
sions and human judgment. The major flood threshold for
each station was obtained from the NOAA National Weather
Service (2011). It is defined as the category of flood where
extensive inundation of structures and roads is expected,
which calls for significant evacuation of people and transfer
of property to higher elevations (NWS, 2012).

The major thresholds for observed and simulated dis-
charge were transformed into dichotomous time series of 1
(the major threshold is exceeded) and 0 (the major threshold
is not exceeded). The information of each cell in the matrix
diagram is the probability of exceeding the major flooding
value, calculated using all the ensemble members at a given
forecast. For instance, a probability of 100 % suggests that

all 21 ensemble members used in the work are projecting a
major flood. Figure 9 exhibits the exceedance diagram re-
sults at selected stations of the Hudson River basin in which
observations exceeded the major flood threshold during this
event. The results suggest that one may establish a highly
reliable streamflow forecast 48 h prior to the event. For in-
stance, the 72 h lead time reforecasts (issued on 26 August
2011, 00:00 GMT) for station ID 01381900 were projecting
a 52 % probability (11 members out of 21) of having a ma-
jor flood event 78 h out. However, the probability increased
to 100 % in the 27 August 2011, 00:00 GMT (48 h before
the event) reforecast for the same station. The average across
all stations for the day 3 (72 h before the event) reforecast
was showing a 60 % probability of having a major flood on
29 August 2011 (between 00:00 and 06:00 GMT), while the
day 2 (48 h before the event) reforecasts had a 99 % average
chance of exceeding the major flood threshold. This high-
lights the increase in reliability as the event approaches. The
diagram also suggests that the persistence of the event oc-
currence among subsequent forecasts is a good indicator to
trigger a major flood warning, especially when the propor-
tion of members above the threshold exceeds 71 % (15 or
more out of the 21 ensemble members). By contrast, in sta-
tion ID 0137500, both observations and flow ensemble mem-
bers did not exceed the major flood threshold (Fig. 9). This
is particularly important for the reliability and validation of
the operational forecast system. However, caution should be
practiced when interpreting the persistence exceeding dia-
grams as time series will have to be examined in parallel to
confirm any potential discrepancy between the models.

4 Summary and discussion

The first part of this work consisted of implementing a re-
gional scale hydrological modeling framework on the Hud-
son River basin using the HEC-HMS model (USACE, 2015)
forced with NARR gridded precipitation inputs (Mesinger
et al., 2006). The second part investigated the use of GEFS
(Hamill et al., 2013, 2015) ensemble inputs to retrospectively
forecast an extreme hydrological event, Hurricane Irene, with
a 96 h time horizon at hourly time steps. In total, 21 GEFS
ensemble members were tested on the Hudson River basin
with reforecasts issued 72, 48 and 24 h prior to the event.

In terms of assessment, we visually and statistically quan-
tified the results of the GEFS individual members, the de-
terministic forecasts represented by the control member
(GEFSC00) and the median of all members. We also used
the persistence exceedance diagram of established thresh-
olds to project the possibility of major floods based on all
the individual members. The comparison showed that ensem-
ble forecasts are advantageous in quantifying uncertainty of
forecasts lead time and raising reliability from an operational
perspective. This work did not address uncertainty in hydro-
logical initial conditions and model parameters, which were
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Figure 9. Color-coded threshold exceedance diagram for Hurricane Irene forecasts at 6 h intervals using the major flood threshold for each
USGS station. The flow values below the station ID are the major flood threshold for a given station. The x axis represents the 96 h forecast
horizon from the simulation date shown on the left column. The time period, in which the major event hydrological record exceeds the
equivalent alert threshold, is indicated using a dark red cell, while the cell values refer to the percentage of ensemble members that were
projecting a major flood. For instance, if the value is 100 then all 21 flow ensemble members are projecting a major event within a given time
interval, while 0 means none of the ensemble members are exceeding the major event threshold. The observed occurrence of the threshold is
exhibited at the last row for each station, the red color code indicates an observed flow higher than the major flood threshold, while the green
cell indicates flow below the major threshold. Reported time is in GMT; date format is mm/dd/yyyy.

optimized in the NARR-based calibration, but rather was fo-
cused on how dominant the precipitation inputs are on the re-
sults of the hydrological streamflow forecasts. The findings
of this work confirm that using ensemble streamflow predic-
tions has advantages over deterministic forecasts in terms of
better representing the uncertainty, particularly in an extreme
hydrologic event such as the one presented in this work. Fur-
thermore, while the general perception is that hydrological
uncertainty is reduced with lead time, there are no studies
that quantitatively characterize this aspect using the GEFS

retrospective data and in the event of an extreme flood event
such as Hurricane Irene.

The work shows that streamflow forecasts are highly de-
pendent on the meteorological inputs and reflect uncertain-
ties associated with these inputs. Clearly, the relatively small
area of the sub-basin and resolution of the weather model was
of importance for the spread overestimation due to the pre-
cipitation inputs. In this context, higher-resolution weather
models such as the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Molteni et al., 1996; Thiemig
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et al., 2015) or the Coupled Ocean-Atmosphere Mesoscale
Prediction System (COAMPS)® (Pullen et al., 2015) may be
of particular interest in smaller scale subcatchments in order
to provide higher accuracy. The operational GEFS ensem-
ble forecast data sets were upgraded to 0.5◦ resolution on 2
December 2015. More detailed weather model forcing may
lead to a reduction in the streamflow spread, and reduce the
uncertainty of the forecast.

The modeling of the Hudson River basin demonstrated
that a given streamflow ensemble member may produce
streamflow that is highly in agreement with observations, ac-
counting for uncertainty in precipitation and in the hydro-
logical model parameters. However, there is no “one size fits
all” solution for selecting an ensemble member, noting that
each sub-basin has its own distinct set of characteristics man-
ifested in local conditions such as the area of the drainage
basin and land use. Furthermore, caution should be exer-
cised in forecast models that only use the control member
from the weather models or the average ensemble member
as it may lead to considerable deviation in river discharge
forecasts from observations resulting in false warnings and
missed flooding events (Fig. 5).

The findings also suggest that higher confidence in the
river discharge forecasts may be attained as we approach a
major event by approximately 48 h. The outcomes of this
work provide interesting perspectives for future ensemble
postprocessing techniques and features extraction, notably
regarding the peak timing of an extreme hydrologic event
when combined with the major flood persistence diagram.

The operational framework presented in this work offers
an improvement over the available NOAA’s Advanced Hy-
drological Prediction System (AHPS) in this particular re-
gion (McEnery et al., 2005) and is operationally running
125 ensemble members including (in addition to GEFS) the
ECMWF, ECMWF-HRES, the Short-Range Ensemble Fore-
cast (SREF), the Canadian Meteorological Centre (CMC)
and the North American Mesoscale Forecast System (NAM).
The AHPS streamflow forecasts are at 6 h time intervals us-
ing one weather deterministic forecast as input and with a
lead time that is less than 60 h in this region (Adams, 2015).

The framework is highly flexible and directly handles
GRIB1, GRIB2 and NetCDF meteorological input formats.
This operational flexibility in the framework allows it to use
other sources of meteorological data instead of NARR, which
is not available in areas outside North America. Examples
of atmospheric reanalysis products that may be used include
the European Centre for Medium-Range Weather Forecast-
ing (ECMWF), National Centers for Environmental Predic-
tion (NCEP) and National Center for Atmospheric Research
(NCAR). As for framework validation, if applied to water-
sheds without gauging stations (or with only a few), it is pos-
sible to use remote-sensing river discharge data to calibrate
and validate the modeling outputs. Despite that fact that such
data have uncertainties, there have been many advancements
in this field and there is potential for future applications (e.g.,

the Surface Water and Ocean Topography (SWOT) satellite
mission; Saleh et al., 2012; Biancamaria et al., 2015). Thus,
this framework shows promise for operational streamflow
forecasting in other parts of the world.

The computational time required to run the Hudson River
basin for the 21 GEFS ensemble members was approxi-
mately 30 min. This includes processing the GRIB input files
and postprocessing of the ensemble outputs. The total time
required to run the entire 125 ensemble members is approxi-
mately 5.5 h; this includes preprocessing inputs and updating
the database and the Stevens Flood Advisory System (SFAS)
website. The forecasts are updated every 6 h, with a lead time
of 87 h, which is sufficient for issuing a flood warning.

The current work maybe potentially expanded to integrate
a hydrodynamic model, such as HEC-RAS (Brunner, 2002),
that has advantages in terms of simulating the water lev-
els and flood extents in addition to streamflow. Such hydro-
dynamic modeling requires flow boundary conditions that
can be obtained from the hydrologic forecasting model. This
modeling will also require detailed representation of rivers’
cross sections that may be obtained using lidar data at site-
specific locations; however, it is not always available at re-
gional scale (Saleh et al., 2011).

In terms of applications, the Hudson River basin regional
scale model may be used to continuously forecast the overall
variability of the water resources (Saleh et al., 2011; Pryet
et al., 2015; Saraiva Okello et al., 2015), predicting fate and
transport of water quality such as nitrate (Schoonover and
Lockaby, 2006; Wang et al., 2012; Bastola and Misra, 2015;
Schuetz et al., 2016) and climate change scenarios (Ducharne
et al., 2007, 2010; Graham et al., 2007; Quintana Seguí et al.,
2010; Habets et al., 2013). Moreover, socio-economic anal-
ysis may be used to weigh how such improved forecasts can
prevent loss of life and minimize the damage to property,
with the aid of effective communication and social media.

5 Data availability

All underlying research data used to construct the hydro-
logic model are publicly available and accessible online. The
sources of data used in this work are in the assets tab.
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