Articles | Volume 19, issue 12
https://doi.org/10.5194/hess-19-4831-2015
https://doi.org/10.5194/hess-19-4831-2015
Research article
 | 
18 Dec 2015
Research article |  | 18 Dec 2015

The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales

C. Draper and R. Reichle

Related authors

Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020,https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023,https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023,https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023,https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023,https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023,https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary

Cited articles

Bolten, J., Crow, W., Zhan, X., Jackson, T., and Reynolds, C.: Evaluating the utility of remotely-sensed soil moisture retrievals for operational agricultural drought monitoring, IEEE J. Sel. Top. Appl., 3, 57–66, https://doi.org/10.1109/JSTARS.2009.2037163, 2010.
Bosch, D., Lakshmi, V., Jackson, T., Jacobs, J.: Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiments of 2003, J. Hydrol., 323, 120–137, https://doi.org/10.1016/j.jhydrol.2005.08.024, 2006.
Cosh, M., Jackson, T., Starks, P., and Heathman, G.: Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation, J. Hydrol. 323, 168–177, https://doi.org/10.1016/j.jhydrol.2005.08.020, 2006.
Cosh, M., Jackson, T., Moran, M., and Bindlish, R.: Temporal persistence and stability of surface soil moisture in a semi-arid watershed, Remote Sens. Environ. 112, 304–313, https://doi.org/10.1016/j.rse.2007.07.001, 2008.
De Lannoy, G. and Reichle, R.: Global assimilation of multi-angle and multi-polarization SMOS brightness temperature observations into the GEOS-5 Catchment land surface model for soil moisture estimation, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-15-0037.1, in press, 2015.
Download
Short summary
A soil moisture assimilation experiment is evaluated separately at sub-seasonal, seasonal, and inter-annual timescales. In addition to previously reported improvements in sub-seasonal scale soil moisture, it is show that such an assimilation can also improve the model soil moisture at seasonal and inter-annual timescales, demonstrating the potential for near-surface soil moisture assimilation to improve model representation of important long-term events, such as droughts.