Articles | Volume 19, issue 10
Research article
29 Oct 2015
Research article |  | 29 Oct 2015

Process verification of a hydrological model using a temporal parameter sensitivity analysis

M. Pfannerstill, B. Guse, D. Reusser, and N. Fohrer

Related authors

Identifying the connective strength between model parameters and performance criteria
Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 21, 5663–5679,,, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
A hydrological framework for persistent pools along non-perennial rivers
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836,,, 2023
Short summary
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781,,, 2023
Short summary
Droughts can reduce the nitrogen retention capacity of catchments
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318,,, 2023
Short summary
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120,,, 2022
Short summary
Three hypotheses on changing river flood hazards
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033,,, 2022
Short summary

Cited articles

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: Mmodel development, J. Am. Water Resour. As., 1, 73–89,, 1998.
BGR: Bundesanstalt fuer Geowisschenschaften und Rohstoffe – Bodenuebersichtskarte im Maßstab 1 : 200.000, Verbreitung der Bodengesellschaften, 1999.
Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water. Resour. Res., 36, 3663–3674,, 2000.
Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Toward improved streamflow forecasts: Value of semidistributed modeling, Water. Resour. Res., 37, 2749–2759,, 2001.
Cibin, R., Sudheer, K. P., and Chaubey, I.: Sensitivity and identifiability of stream flow generation parameters of the SWAT model, Hydrol. Process., 24, 1133–1148,, 2010.
Short summary
To ensure reliable model results, hydrological processes have to be represented adequately in models. We present a framework that uses a temporal parameter sensitivity analysis and observed hydrological processes in the catchment to verify hydrological models. The framework is exemplarily applied to verify the groundwater structure of a hydrological model. The results show the appropriate simulation of all relevant hydrological processes in relation to processes observed in the catchment.