Articles | Volume 18, issue 2
https://doi.org/10.5194/hess-18-575-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-575-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events
F. Lobligeois
Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
V. Andréassian
Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
C. Perrin
Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
P. Tabary
Direction des Systèmes d'Observation – Météo France, Toulouse, France
C. Loumagne
Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
Related authors
W. R. van Esse, C. Perrin, M. J. Booij, D. C. M. Augustijn, F. Fenicia, D. Kavetski, and F. Lobligeois
Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, https://doi.org/10.5194/hess-17-4227-2013, 2013
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
EGUsphere, https://doi.org/10.5194/egusphere-2023-1424, https://doi.org/10.5194/egusphere-2023-1424, 2023
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible in the community. Thus, authors and readers can use the same tool to produce and reproduce the results, respectively.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
EGUsphere, https://doi.org/10.5194/egusphere-2023-775, https://doi.org/10.5194/egusphere-2023-775, 2023
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows, but show poor performance outside the range of the targeted streamflows and are less robust. We show that no a priori assumption on transformations must be taken as warranted.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
EGUsphere, https://doi.org/10.5194/egusphere-2023-569, https://doi.org/10.5194/egusphere-2023-569, 2023
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling frameworks tested.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, https://doi.org/10.5194/hess-22-4583-2018, 2018
Short summary
Short summary
The Kling and Gupta efficiency (KGE) is a score used in hydrology to evaluate flow simulation compared to observations. In order to force the evaluation on the low flows, some authors used the log-transformed flow to calculate the KGE. In this technical note, we show that this transformation should be avoided because it produced numerical flaws that lead to difficulties in the score value interpretation.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Geosci. Model Dev., 11, 1591–1605, https://doi.org/10.5194/gmd-11-1591-2018, https://doi.org/10.5194/gmd-11-1591-2018, 2018
Short summary
Short summary
Many rainfall–runoff models are based on stores. However, the differential equations that describe the stores' evolution are rarely presented in literature.
This represents an issue when the temporal resolution changes. In this work, we propose and evaluate a state-space version of a simple rainfall–runoff model within a robust resolution scheme. The results show that the proposed model performs equally well or slightly better than the original one and is independent of the temporal resolution.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Alban de Lavenne, Guillaume Thirel, Vazken Andréassian, Charles Perrin, and Maria-Helena Ramos
Proc. IAHS, 373, 87–94, https://doi.org/10.5194/piahs-373-87-2016, https://doi.org/10.5194/piahs-373-87-2016, 2016
Short summary
Short summary
Developing modelling tools that help to understand the spatial distribution of water resources is a key issue for better management. Ideally, hydrological models which discretise catchment space into sub-catchments should offer better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However we demonstrate that those model raise other issues related to the calibration strategy and to the identifiability of the parameters.
F. Bourgin, V. Andréassian, C. Perrin, and L. Oudin
Hydrol. Earth Syst. Sci., 19, 2535–2546, https://doi.org/10.5194/hess-19-2535-2015, https://doi.org/10.5194/hess-19-2535-2015, 2015
P. Nicolle, R. Pushpalatha, C. Perrin, D. François, D. Thiéry, T. Mathevet, M. Le Lay, F. Besson, J.-M. Soubeyroux, C. Viel, F. Regimbeau, V. Andréassian, P. Maugis, B. Augeard, and E. Morice
Hydrol. Earth Syst. Sci., 18, 2829–2857, https://doi.org/10.5194/hess-18-2829-2014, https://doi.org/10.5194/hess-18-2829-2014, 2014
L. Coron, V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx
Hydrol. Earth Syst. Sci., 18, 727–746, https://doi.org/10.5194/hess-18-727-2014, https://doi.org/10.5194/hess-18-727-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
W. R. van Esse, C. Perrin, M. J. Booij, D. C. M. Augustijn, F. Fenicia, D. Kavetski, and F. Lobligeois
Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, https://doi.org/10.5194/hess-17-4227-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Detection of slow changes in terrestrial water storage with GRACE and GRACE-FO satellite gravity missions
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Improving the quantification of climate change hazards by hydrological models: A simple approach for mimicking the impact of active vegetation on potential evapotranspiration
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
The influence of assimilating leaf area index in a land surface model on global water fluxes and storages
Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
The pantropical response of soil moisture to El Niño
HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach – first application on the Amazon
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates
Spatiotemporal assimilation–interpolation of discharge records through inverse streamflow routing
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
EGUsphere, https://doi.org/10.5194/egusphere-2022-1032, https://doi.org/10.5194/egusphere-2022-1032, 2022
Short summary
Short summary
Global hydrological models (GHMs) are essential tools to predict changes in water resources in a changing climate. Compared to satellite gravity observations, GHMs underestimate slow changes in terrestrial water storage occurring over several years to a few decades. GHMs might be improved by systematic calibration and validation with satellite gravity data, conveying more information on long time scales than traditional calibration/validation datasets focusing on surface hydrology.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2022-971, https://doi.org/10.5194/egusphere-2022-971, 2022
Short summary
Short summary
Root-zone soil moisture, important for ecosystems and agriculture, is now substantially modified by human activities and global warming. We studied how it changes in possible future climates (2021–2100). Based on the output of climate models, we can say that the Mediterranean, South Africa, parts of North and South America will become permanently drier, while Northern Africa and Southern Asia become wetter. This occurs even under mitigation scenarios, making climate adaptation imperative.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-230, https://doi.org/10.5194/hess-2022-230, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
GHMs are overestimating the reduction of renewable water resources in the future. Neglect of the vegetation response to the atmospheric CO2 concentration and climate change is one of the main reasons for this. We developed a simple approach for hydrological models, that allows them to mimic the impact of active vegetation on potential evapotranspiration (PET) under climate change. This will allow hydrological models to better estimate future renewable water resources under climate change.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Xinxuan Zhang, Viviana Maggioni, Azbina Rahman, Paul Houser, Yuan Xue, Timothy Sauer, Sujay Kumar, and David Mocko
Hydrol. Earth Syst. Sci., 24, 3775–3788, https://doi.org/10.5194/hess-24-3775-2020, https://doi.org/10.5194/hess-24-3775-2020, 2020
Short summary
Short summary
This study assesses the extent to which a land surface model can be optimized via the assimilation of leaf area index (LAI) observations at the global scale. The model performance is evaluated by the model-estimated LAI and five water flux/storage variables. Results show the LAI assimilation reduces errors in the model-estimated LAI. The LAI assimilation also improves the five water variables under wet conditions, but some of the model-estimated variables tend to be worse under dry conditions.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020, https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
Short summary
Global-scale hydrologic forecasts should account for attenuation through lakes and reservoirs. There is no consensus on the best approach to estimating this attenuation in large-spatial-scale hydrologic forecasts. This article investigates two existing parsimonious approaches to estimating reservoir outflows. We test each method at 60 reservoirs in the United States. We find that a method first developed in 2003 can provide a reasonable approximation of diurnal reservoir outflows.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
A. Sankarasubramanian, Dingbao Wang, Stacey Archfield, Meredith Reitz, Richard M. Vogel, Amirhossein Mazrooei, and Sudarshana Mukhopadhyay
Hydrol. Earth Syst. Sci., 24, 1975–1984, https://doi.org/10.5194/hess-24-1975-2020, https://doi.org/10.5194/hess-24-1975-2020, 2020
Short summary
Short summary
The Budyko framework which relies on the supply and demand concept could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response. This framework is extended with a few illustrative examples for quantifying the variability in land-surface fluxes for natural and human-altered watersheds. Potential for using observed and remotely sensed datasets in capturing this variability is also discussed.
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020, https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous. Averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) as the main drivers of ET may lead to biased estimates of energy and water fluxes from the land to the atmosphere. We show that this bias is largest in mountainous terrains, in regions with temperate climates and dry summers, and in landscapes where spatial variations in P and PET are inversely correlated.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Johannes Riegger
Hydrol. Earth Syst. Sci., 24, 1447–1465, https://doi.org/10.5194/hess-24-1447-2020, https://doi.org/10.5194/hess-24-1447-2020, 2020
Short summary
Short summary
The combined use of GRACE mass anomalies and observed river discharge for the first time allows us to quantify the water storage volumes drainable by gravity on global scales. Modelling of catchment and river network storages in a cascade with different dynamics reveals the time lag between total mass and runoff is caused by a non-zero river network storage. This allows catchment and river network storage volumes to be distinguished and is thus of great importance for water resources management.
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
Short summary
How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation.
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.
Colby K. Fisher, Ming Pan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 24, 293–305, https://doi.org/10.5194/hess-24-293-2020, https://doi.org/10.5194/hess-24-293-2020, 2020
Short summary
Short summary
Poorly monitored river flows in many regions of the world have been hindering our ability to accurately estimate global water usage. In this paper we present a method to derive continuous records of streamflow from a set of in situ gauges. Applying this method to the Ohio River basin, we found that we could reliably generate estimates of streamflow throughout the basin using only a small set of streamflow gauges, which can be useful for global river basins where we do not have good observations.
Frederik Kratzert, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, https://doi.org/10.5194/hess-23-5089-2019, 2019
Short summary
Short summary
A new approach for regional rainfall–runoff modeling using long short-term memory (LSTM)-based models is presented and benchmarked against a range of well-known hydrological models. The approach significantly outperforms regionally calibrated hydrological models but also basin-wise calibrated models. Furthermore, we propose an adaption of the LSTM that allows us to extract the learned catchment understanding of the model and show that it matches our hydrology expert knowledge.
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Short summary
Over the past decades, changes in land use and climate over Europe have impacted the average flow of water flowing through rivers and reservoirs (the so-called
water yield). We quantify these changes using a simple but widely tested modelling approach constrained by observations of lysimeters across Europe. Results show that the contribution of land use to changes in water yield are of the same order as changes in climate, showing that impacts of land use changes cannot be neglected.
Suyog Chaudhari, Yadu Pokhrel, Emilio Moran, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 23, 2841–2862, https://doi.org/10.5194/hess-23-2841-2019, https://doi.org/10.5194/hess-23-2841-2019, 2019
Short summary
Short summary
Comprehensive characterization of extreme drought events in the Amazon is provided with respect to their cause, type, spatial extent, and impact on different water stores. Basin-averaged trends in water storage indicate that the Amazon is getting wetter; however its southern and southeastern portions are getting drier. Water deficit is found to be 3-fold higher than the total water supplied during some drought years. Water deficit due to low precipitation events is absorbed by the groundwater.
Cited articles
Ajami, N. K., Gupta, H. V, Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112–135, https://doi.org/10.1016/j.jhydrol.2004.03.033, 2004.
Andréassian, V., Perrin, C., Michel, C., Usartsanchez, I., and Lavabre, J.: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models, J. Hydrol., 250, 206–223, https://doi.org/10.1016/S0022-1694(01)00437-1, 2001.
Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C., and Loumagne, C.: Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall–runoff models: A theoretical study using chimera watersheds, Water Resour. Res., 40, 1–9, https://doi.org/10.1029/2003WR002854, 2004.
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions "Crash tests for a standardized evaluation of hydrological models", Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009.
Apip, Sayama, T., Tachikawa, Y., and Takara, K.: Spatial lumping of a distributed rainfall-sediment-runoff model and its effective lumping scale, Hydrol. Process., 26, 855–871, https://doi.org/10.1002/hyp.8300, 2012.
Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216–230, https://doi.org/10.1016/S0022-1694(01)00611-4, 2002.
Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle, P.: Sensitivity of hydrological models to uncertainty in rainfall input, Hydrolog. Sci. J., 56, 397–410, https://doi.org/10.1080/02626667.2011.563742, 2011.
Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application, Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008.
Bell, V. A. and Moore, R. J.: The sensitivity of catchment runoff models to rainfall data at different spatial scales, Hydrol. Earth Syst. Sci., 4, 653–667, https://doi.org/10.5194/hess-4-653-2000, 2000.
Bentura, P. and Michel, C.: Flood routing in a wide channel with a quadratic lag-and-route method, Hydrolog. Sci. J., 42, 169–189, https://doi.org/10.1080/02626669709492018, 1997.
Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Berne, A., Delrieu, G., and Boudevillain, B.: Variability of the spatial structure of intense Mediterranean precipitation, Adv. Water Resour., 32, 1031–1042, https://doi.org/10.1016/j.advwatres.2008.11.008, 2009.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Beven, K.: The limits of splitting: Hydrology, Sci. Total Environ., 183, 89–97, https://doi.org/10.1016/0048-9697(95)04964-9, 1996.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Beven, K. and Hornberger, G. M.: Assessing the effect of spatial pattern of precipitation in modeling streamflow hydrographs, J. Am. Water Resour. Assoc., 18, 823–829, https://doi.org/10.1111/j.1752-1688.1982.tb00078.x, 1982.
Biggs, E. M. and Atkinson, P. M.: A comparison of gauge and radar precipitation data for simulating an extreme hydrological event in the Severn Uplands, UK, Hydrol. Process., 25, 795–810, https://doi.org/10.1002/hyp.7869 2011.
Bonnifait, L., Delrieu, G., Le Lay, M., Boudevillain, B., Masson, A., Belleudy, P., Gaume, E., and Shah, S.: Distributed hydrologic and hydraulic modelling with radar rainfall input: Reconstruction of the 8–9 September 2002 catastrophic flood event in the Gard region (France), Adv. Water Resour., 32, 1077–1089, https://doi.org/10.1016/j.advwatres.2009.03.007, 2009.
Borga, M.: Accuracy of radar rainfall estimates for streamflow simulation, J. Hydrol., 267, 26–39, https://doi.org/10.1016/S0022-1694(02)00137-3, 2002.
Boyle, D. P., Gupta, H. V, Koren, V., Zhang, Z., and Smith, M. B.: Toward improved streamflow forecasts: Value of semidistributed modeling, Water Resour., 37, 2749–2759, 2001.
Carpenter, T. and Georgakakos, K. P.: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales, J. Hydrol., 329, 174–185, https://doi.org/10.1016/j.jhydrol.2006.02.013, 2006.
Carpenter, T., Georgakakos, K. P., and Sperfslagea, J.: On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use, J. Hydrol., 253, 169–193, https://doi.org/10.1016/S0022-1694(01)00476-0, 2001.
Cole, S. J. and Moore, R. J.: Hydrological modelling using raingauge- and radar-based estimators of areal rainfall, J. Hydrol., 358, 159–181, https://doi.org/10.1016/j.jhydrol.2008.05.025, 2008.
Das, T., Bárdossy, A., Zehe, E., and He, Y.: Comparison of conceptual model performance using different representations of spatial variability, J. Hydrol., 356, 106–118, https://doi.org/10.1016/j.jhydrol.2008.04.008, 2008.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M., Du-Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005.
Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume, E., Nakakita, E., and Seed, A.: Weather radar and hydrology, Adv. Water Resour., 32, 969–974, https://doi.org/10.1016/j.advwatres.2009.03.006, 2009.
Dodov, B. and Foufoula-Georgiou, E.: Incorporating the spatio-temporal distribution of rainfall and basin geomorphology into nonlinear analyses of streamflow dynamics, Adv. Water Resour., 28, 711–728, https://doi.org/10.1016/j.advwatres.2004.12.013, 2005.
Editjano, Nascimento, N., Yang, X., Makhlouf, Z., and Michel, C.: GR3J: a daily watershed model with three free parameters, Hydrolog. Sci. J., 44, 263–277, https://doi.org/10.1080/02626669909492221, 1999.
Emmanuel, I., Andrieu, H., and Tabary, P.: Evaluation of the new French operational weather radar product for the field of urban hydrology, Atmos. Res., 103, 20–32, https://doi.org/10.1016/j.atmosres.2011.06.018, 2011.
Emmanuel, I., Andrieu, H., Leblois, E., and Flahaut, B.: Temporal and spatial variability of rainfall at the urban hydrological scale, J. Hydrol., 430–431, 162–172, https://doi.org/10.1016/j.jhydrol.2012.02.013, 2012.
Faures, J., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S.: Impact of small-scale spatial rainfall variability on runoff modeling, J. Hydrol., 173, 309–326, https://doi.org/10.1016/0022-1694(95)02704-S, 1995.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour. Res., 47, 1–13, https://doi.org/10.1029/2010WR010174, 2011.
Finnerty, B., Smith, M. B., Seo, D., Koren, V., and Moglen, G.: Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs, J. Hydrol., 203, 21–38, https://doi.org/10.1016/S0022-1694(97)00083-8, 1997.
Götzinger, J. and Bárdossy, A.: Comparison of four regionalisation methods for a distributed hydrological model, J. Hydrol., 333, 374–384, https://doi.org/10.1016/j.jhydrol.2006.09.008, 2007.
Gupta, H. V, Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Gupta, H. V., Perrin, C., Kumar, R., Blöschl, G., Clark, M., Montanari, A., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci. Discuss., 10, 9147–9189, https://doi.org/10.5194/hessd-10-9147-2013, 2013.
Henderson, F. M.: Open Channel Flow, Macmillan, Prentice Hall, New York, 1966.
Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J.: Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations, J. Hydrol., 394, 267–274, https://doi.org/10.1016/j.jhydrol.2010.03.032, 2010.
Kampf, S. K. and Burges, S. J.: A framework for classifying and comparing distributed hillslope and catchment hydrologic models, Water Resour. Res., 43, W05423, https://doi.org/10.1029/2006WR005370, 2007.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Klemeš, V.: Operational testing of hydrological simulation models/Vérification, en conditions réelles, des modèles de simulation hydrologique, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986.
Koren, V., Finnerty, B., Schaake, J., Smith, M. B., Seo, D., and Duan, Q.: Scale dependencies of hydrologic models to spatial variability of precipitation, J. Hydrol., 217, 285–302, https://doi.org/10.1016/S0022-1694(98)00231-5, 1999.
Koren, V., Reed, S., Smith, M. B., Zhang, Z., and Seo, D.-J.: Hydrology laboratory research modeling system (HL-RMS) of the US national weather service, J. Hydrol., 291, 297–318, https://doi.org/10.1016/j.jhydrol.2003.12.039, 2004.
Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., and Jain, S. C.: A Monte Carlo Study of Rainfall Sampling Effect on a Distributed Catchment Model, Water Resour. Res., 27, 119–128, https://doi.org/10.1029/90WR01977, 1991.
Krajewski, W. F., Villarini, G., and Smith, J. A.: RADAR – Rainfall Uncertainties, B. Am. Meteorol. Soc., 91, 87–94, https://doi.org/10.1175/2009BAMS2747.1, 2010.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 1–20, https://doi.org/10.1029/2012WR012195, 2013.
Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie d'amélioration des performances et du réalisme des modèles pluie-débit?, Ph.D. thesis, University of Pierre et Marie Curie, Paris, France, 2008.
Lerat, J.: Quels apports hydrologiques pour les modèles hydrauliques? Vers un modèle intégré de simulation des crues, Ph.D. thesis, University of Pierre et Marie Curie, Paris, France, 2009.
Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J. M., Ribstein, P., and Loumagne, C.: Do internal flow measurements improve the calibration of rainfall–runoff models?, Water Resour. Res., 48, W02511, https://doi.org/10.1029/2010WR010179, 2012.
Lindström, G., Johansso, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, 1997.
Liu, J., Chen, X., Wu, J., Zhang, X., Feng, D., and Xu, C.-Y.: Grid parameterization of a conceptual distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability, Hydrolog. Sci. J., 57, 282–297, https://doi.org/10.1080/02626667.2011.645823, 2012.
Mathevet, T., Michel, C., Andréassian, V., and Perrin, C.: A bounded version of the Nash-sutcliffe criterion for better model assessment on large sets of basins, IAHS Red Books Series, 307, 211–219, 2006.
Merz, R. and Blöschl, G.: A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria, Water Resour. Res., 45, W01405, https://doi.org/10.1029/2008WR007163, 2009.
Merz, R., Blöschl, G., and Parajka, J.: Spatio-temporal variability of event runoff coefficients, J. Hydrol., 331, 591–604, https://doi.org/10.1016/j.jhydrol.2006.06.008, 2006.
Merz, R., Parajka, J., and Blöschl, G.: Scale effects in conceptual hydrological modeling, Water Resour. Res., 45, W09405, https://doi.org/10.1029/2009WR007872, 2009.
Michaud, J. and Sorooshian, S.: Effect of rainfall-sampling errors on simulations of desert flash floods, Water Resour. Res., 30, 2765, https://doi.org/10.1029/94WR01273, 1994.
Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The characteristic time scale for basin hydrological response using radar data, J. Hydrol., 252, 85–99, https://doi.org/10.1016/S0022-1694(01)00451-6, 2001.
Morris, E. M. and Woolhiser, D. A.: Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs, Water Resour. Res., 16, 355–360, https://doi.org/10.1029/WR016i002p00355, 1980.
Naden, P. S.: Spatial variability in flood estimation for large catchments: the exploitation of channel network structure, Hydrolog. Sci. J., 37, 53–71, 1992.
Nicòtina, L., Alessi Celegon, E., Rinaldo, A., and Marani, M.: On the impact of rainfall patterns on the hydrologic response, Water Resour. Res., 44, W12401, https://doi.org/10.1029/2007WR006654, 2008.
Norbiato, D., Borga, M., Merz, R., Blöschl, G., and Carton, A.: Controls on event runoff coefficients in the eastern Italian Alps, J. Hydrol., 375, 312–325, https://doi.org/10.1016/j.jhydrol.2009.06.044, 2009.
Obled, C., Wendling, J., and Beven, K.: The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data, J. Hydrol., 159=, 305–333, https://doi.org/10.1016/0022-1694(94)90263-1, 1994.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Proc., 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.
Ogden, F. L. and Julien, P.: Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales, Water Resour. Res., 29, 2589, https://doi.org/10.1029/93WR00924, 1993.
Ogden, F. L. and Julien, P.: Runoff model sensitivity to radar rainfall resolution, J. Hydrol., 158, 1–18, https://doi.org/10.1016/0022-1694(94)90043-4, 1994.
Pechlivanidis, I. G., Mclntyre, N. R., and Wheater, H. S.: Calibration of the semi-distributed PDM rainfall–runoff model in the Upper Lee catchment, UK, J. Hydrol., 386, 198–209, https://doi.org/10.1016/j.jhydrol.2010.03.022, 2010.
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011.
Perrin, C., Andréassian, V., Rojas Serna, C., Mathevet, T., and Le Moine, N.: Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments, Water Resour. Res., 44, W08447, https://doi.org/10.1029/2007WR006579, 2008.
Pokhrel, P. and Gupta, H. V: On the ability to infer spatial catchment variability using streamflow hydrographs, Water Resour. Res., 47, W08534, https://doi.org/10.1029/2010WR009873, 2011.
Pokhrel, P., Yilmaz, K. K. and Gupta, H. V: Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures, J. Hydrol., 418-419, 49–60, https://doi.org/10.1016/j.jhydrol.2008.12.004, 2012.
Reed, S., Koren, V., Smith, M. B., Zhang, Z., MOREDA, F., Seo, D., and Dmipparticipants, a: Overall distributed model intercomparison project results, J. Hydrol., 298, 27–60, https://doi.org/10.1016/j.jhydrol.2004.03.031, 2004.
Refsgaard, J. C. and Knudsen, J.: Operational Validation and Intercomparison of Different Types of Hydrological Models, Water Resour. Res., 32, 2189–2202, https://doi.org/10.1029/96WR00896, 1996.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Saulnier, G. M. and Le Lay, M.: Sensitivity of flash-flood simulations on the volume, the intensity, and the localization of rainfall in the Cévennes-Vivarais region (France), Water Resour., 45, 1–9, https://doi.org/10.1029/2008WR006906, 2009.
Schaefli, B. and Gupta, H. V: Do Nash values have value?, Hydrol. Process., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Segond, M.-L., Wheater, H. S., and Onof, C.: The significance of spatial rainfall representation for flood runoff estimation: A numerical evaluation based on the Lee catchment, UK, J. Hydrol., 347, 116–131, https://doi.org/10.1016/j.jhydrol.2007.09.040, 2007.
Seibert, J.: On the need for benchmarks in hydrological modelling, Hydrol. Process., 15, 1063–1064, https://doi.org/10.1002/hyp.446, 2001.
Shah, S., Oconnell, P., and Hosking, J.: Modelling the effects of spatial variability in rainfall on catchment response, 2. Experiments with distributed and lumped models, J. Hydrol., 175, 89–111, https://doi.org/10.1016/S0022-1694(96)80007-2, 1996.
Singh, V. P.: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph, Hydrol. Process., 11, 1649–1669, https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1, 1997.
Smith, M. B., Koren, V., Zhang, Z., Reed, S., Pan, J., and MOREDA, F.: Runoff response to spatial variability in precipitation: an analysis of observed data, J. Hydrol., 298, 267–286, https://doi.org/10.1016/j.jhydrol.2004.03.039, 2004.
Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N., and Anderson, E. A.: Results of the DMIP 2 Oklahoma experiments, J. Hydrol., 418–419, 17–48, https://doi.org/10.1016/j.jhydrol.2011.08.056, 2012.
Sun, X., Mein, R., Keenan, T., and Elliott, J.: Flood estimation using radar and raingauge data, J. Hydrol., 239, 4–18, https://doi.org/10.1016/S0022-1694(00)00350-4, 2000.
Tabary, P., Dupuy, P., L'Henaff, G., Gueguen, C., Moulin, L., Laurantin, O., Merlier, C., and Soubeyroux, J.-M.: A 10-year (1997–2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results, in: Weather radar and Hydrology, IAHS Publ., 351, 255–260, 2012.
Tarolli, M., Borga, M., Zoccatelli, D., Bernhofer, C., Jatho, N., and Janabi, F.: Rainfall Space-Time Organization and Orographic Control on Flash Flood Response: The Weisseritz Event of August 13, 2002, J. Hydrol. Eng., 18, 183–193, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000569, 2013.
Tetzlaff, D. and Uhlenbrook, S.: Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data, Hydrol. Earth Syst. Sci., 9, 29–41, https://doi.org/10.5194/hess-9-29-2005, 2005.
Tramblay, Y., Bouvier, C., Ayral, P.-A., and Marchandise, A.: Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation, Nat. Hazards Earth Syst. Sci., 11, 157–170, https://doi.org/10.5194/nhess-11-157-2011, 2011.
Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J.-M., Teng, J., and Viney, N. R.: Conceptual rainfall-runoff model performance with different spatial rainfall inputs, J. Hydrometeorol., 12, 1100–1112, https://doi.org/10.1175/2011JHM1340.1, 2011.
Viglione, A., Chirico, G. B., Komma, J., Woods, R., Borga, M., and Blöschl, G.: Quantifying space-time dynamics of flood event types, J. Hydrol., 394, 213–229, https://doi.org/10.1016/j.jhydrol.2010.05.041, 2010.
Winchell, M., Gupta, H. V., and Sorooshian, S.: On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation, Water Resour. Res., 34, 2655–2670, https://doi.org/10.1029/98WR02009, 1998.
Woods, R. and Sivapalan, M.: A synthesis of space-time variability in storm response: Rainfall, runoff generation, and routing, Water Resour. Res., 35, 2469–2485, https://doi.org/10.1029/1999WR900014, 1999.
Yu, Z., Lu, Q., Zhu, J., Yang, C., Jun, Q., Yang, T., Chen, X., and Sudicky, E.: Spatial and Temporal Scale Effect in Simulating Hydrologic Processes in a Watershed, J. Hydrol. Eng., 1, 99–107, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000762, 2012.
Zhang, Z., Smith, M. B., Koren, V., Reed, S., Moreda, F., Kuzmin, V. and Anderson, R.: A study of the relationship between rainfall variability and the improvement of using a distributed model, IAHS-AISH Publ., 289, 188–196, 2004.
Zoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., and Blöschl, G.: Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response, Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, 2011.