Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5025-2014
https://doi.org/10.5194/hess-18-5025-2014
Research article
 | 
11 Dec 2014
Research article |  | 11 Dec 2014

A virtual water network of the Roman world

B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker

Related authors

Climate impact on the development of Pre-Classic Maya civilisation
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018,https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
A framework for modelling the complexities of food and water security under globalisation
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018,https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Creating a national urban flood dataset for China from news texts (2000–2022) at the county level
Shengnan Fu, David M. Schultz, Heng Lyu, Zhonghua Zheng, and Chi Zhang
Hydrol. Earth Syst. Sci., 29, 767–783, https://doi.org/10.5194/hess-29-767-2025,https://doi.org/10.5194/hess-29-767-2025, 2025
Short summary
Spatially explicit assessment of water stress and potential mitigating solutions in a large water-limited basin: the Yellow River basin in China
Weibin Zhang, Xining Zhao, Xuerui Gao, Wei Liang, Junyi Li, and Baoqing Zhang
Hydrol. Earth Syst. Sci., 29, 507–524, https://doi.org/10.5194/hess-29-507-2025,https://doi.org/10.5194/hess-29-507-2025, 2025
Short summary
A scalable and modular reservoir implementation for large-scale integrated hydrologic simulations
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025,https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
The interprovincial green water flow in China and its teleconnected effects on the social economy
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025,https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Modeling hydropower operations at the scale of a power grid: a demand-based approach
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024,https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary

Cited articles

Allan, J. A.: Virtual Water: A Strategic Resource Global Solutions to Regional Deficits, Ground Water, 36, 545–546, https://doi.org/10.1111/j.1745-6584.1998.tb02825.x, 1998.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO Rome, 300, 6541, 1998.
Barker, G.: Farming the Desert: Synthesis, UNESCO Publishing Department of Antiquities, Paris, France, 1996.
Barnaby, W.: Do nations go to war over water?, Nature, 458, 282–283, https://doi.org/10.1038/458282a, 2009.
van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Utrecht University, 2009.
Download
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
Share