Articles | Volume 18, issue 8
https://doi.org/10.5194/hess-18-3121-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-3121-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces
MINES ParisTech, PSL Research University, Geosciences Department, Paris, France
A. Mouhri
MINES ParisTech, PSL Research University, Geosciences Department, Paris, France
Sorbonne Universités, UPMC Univ Paris 06, UMR7619 – METIS, Paris, France
CNRS, UMR7619 – METIS, Paris, France
B. Labarthe
MINES ParisTech, PSL Research University, Geosciences Department, Paris, France
S. Biancamaria
CNRS, LEGOS, UMR5566 – CNRS-CNES-IRD-Université Toulouse III, Toulouse, France
A. Rivière
MINES ParisTech, PSL Research University, Geosciences Department, Paris, France
P. Weill
MINES ParisTech, PSL Research University, Geosciences Department, Paris, France
Related authors
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Cited articles
Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System, 1. History and philosophy of a physically based distributed modelling system, J. Hydrol., 87, 45–59, 1986.
Abu-El-Sha's, W. and Rihani, J.: Application of the high performance computing techniques of parflow simulator to model groundwater flow at Azraq basin, Water Resour. Manage., 21, 409–425, https://doi.org/10.1007/s11269-006-9023-5, 2007.
Aires, F., Prigent, C., Papa, F., and Cretaux, J.-F.: Downscaling of the inundation extent over the Niger delta using a combination of multi-wavelength and Modis retrievals, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-13-032.1, 2013.
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Moigne, P. L.: Global Evaluation of the ISBA-TRIP Continental Hydrological System, Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydometeorol., 11, 583–600, 2010.
Allen, J.: The classification of cross-stratified units, with notes on their origin, Sedimentology, 2, 93–114, https://doi.org/10.1111/j.1365-3091.1963.tb01204.x, 1963.
Allen, J.: On bed forms and palaeocurrents, Sedimentology, 6, 153–190, https://doi.org/10.1111/j.1365-3091.1966.tb01576.x, 1966.
Andersen, J., Refsgaard, J., and Jensen, K.: Distributed hydrological modelling of the Senegal River Basin – model construction and validation, J. Hydrol., 247, 200–214, 2001.
Anderson, M. P.: Heat as a Ground Water Tracer, Ground Water, 43, 951–968, https://doi.org/10.1111/j.1745-6584.2005.00052.x, 2005.
Anderson, M. P., Aiken, J. S., Webb, E. K., and Mickelson, D. M.: Sedimentology and hydrogeology of two braided stream deposits, Sediment. Geol., 129, 187–199, https://doi.org/10.1016/S0037-0738(99)00015-9, 1999.
Anderson, W. P., Storniolo, R. E., and Rice, J. S.: Bank thermal storage as a sink of temperature surges in urbanized streams, J. Hydrol., 409, 525–537, https://doi.org/10.1016/j.jhydrol.2011.08.059, 2011.
Andreadis, K., Clark, E., Lettermaier, D., and Alsdorf, D.: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model, Geophys. Res. Lett., 34, L10403, https://doi.org/10.1029/2007GL029721, 2007.
Andreadis, K., Schumann, G., and Pavelsky, T.: A simple global river bankfull width and depth database, Water Resour. Res., 49, 7164–7168, https://doi.org/10.1002/wrcr.20440, 2013.
Anibas, C., Fleckenstein, J., Volze, N., Buis, K., Verhoeven, R., Meire, P., and Batelaan, O.: Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange, Hydrol. Process., 23, 2165–2177, https://doi.org/10.1002/hyp.7289, 2009.
Anibas, C., Verbeiren, B., Buis, K., Chorman'ski, J., De Doncker, L., Okruszko, T., Meire, P., and Batelaan, O.: A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland, Hydrol. Earth Syst. Sci., 16, 2329–2346, https://doi.org/10.5194/hess-16-2329-2012, 2012.
Aral, M. and Gunduz, O.: Scale effects in large scale watershed modeling, in: International Conference on Water and Environment, edited by: Singh, V. and Yadava, R., Allied Publishers, India, 37–51, 2003.
Aral, M. and Gunduz, O.: Watershed Models, in: chap. Large-Scale Hybrid Watershed Modeling, Taylor & Francis, Kentucky, USA, 75–95, 2006.
Arnold, J., Srinivasan, R., Muttiah, R., and Allen, P.: Continental scale simulation of the hydrologic balance, J. Am. Water Resour. Assoc., 35, 1037–1051, 1999.
Arora, V. and Boer, G.: A variable velocity flow routing algorithm for GCMs, J. Geophys. Res., 104, 30965–30979, 1999.
Bardini, L., Boano, F., Cardenas, M., Revelli, R., and Ridolfi, L.: Nutrient cycling in bedform induced hyporheic zones, Geochim. Cosmochim. Acta, 84, 47–61, https://doi.org/10.1016/j.gca.2012.01.025, 2012.
Bauer, P., Gumbricht, T., and Kinzelbach, W.: A regional coupled surface water/groundwater model of the Okavango Delta, Botswana, Water Resour. Res., 42, W04403, https://doi.org/10.1029/2005WR004234, 2006.
Becker, M., Georgian, T., Ambrose, H., Siniscalchi, J., and Fredrick, K.: Estimating flow and flux of ground water discharge using water temperature and velocity, J. Hydrol., 296, 221–233, https://doi.org/10.1016/j.jhydrol.2004.03.025, 2004.
Bencala, K., Gooseff, M., and Kimball, B.: Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections, Water Resour. Res., 47, W00H03, https://doi.org/10.1029/2010WR010066, 2011.
Bendjoudi, H., Weng, P., Guérin, R., and Pastre, J.: Riparian wetlands of the middle reach of the Seine river (France): historical development, investigation and present hydrologic functioning. A case study, J. Hydrol., 263, 131–155, 2002.
Bertrand, G., Goldscheider, N., Gobat, J.-M., and Hunkeler, D.: Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems, Hydrogeol. J., 20, 5–25, https://doi.org/10.1007/s10040-011-0791-5, 2012.
Beven, K.: Changing ideas in hydrology. The case of physically-based model, J. Hydrol., 105, 157–172, 1989.
Beven, K., Smith, P. J., and Wood, A.: On the colour and spin of epistemic error (and what we might do about it), Hydrol. Earth Syst. Sci., 15, 3123–3133, https://doi.org/10.5194/hess-15-3123-2011, 2011.
Biancamaria, S., Andreadis, K., Durand, M., Clark, E., Rodriguez, E., Mognard, N., Alsdorf, D., Lettenmaier, D., and Oudin, Y.: Preliminary characterization of SWOT hydrology error budget and global capabilities, IEEE J. Sel. Top. Appl. Earth Observ. Rem. S., 3, 6–19, https://doi.org/10.1109/JSTARS.2009.2034614, 2010.
Biancamaria, S., Durand, M., Andreadis, K., Bates, P., Boone, A., Mognard, N., Rodr\'iguez, E., Alsdorf, D., Lettenmaier, D., and Clark, E.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381, 2011.
Billen, G. and Garnier, J.: Nitrogen transfers through the Seine drainage network: a budget based on the application of the 'Riverstrahler'model, Hydrobiologia, 410, 139–150, 2000.
Bixio, A., Gambolati, G., Paniconi, C., Putti, M., Shestopalov, V., Bublias, V., Bohuslavsky, A., Kasteltseva, N., and Rudenko, Y.: Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone, Environ. Geol., 42, 162–177, https://doi.org/10.1007/s00254-001-0486-7, 2002.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 251–290, 1995.
Boano, F., Camporeale, C., Revelli, R., and Ridolfi, L.: Sinuosity-driven hyporheic exchange in meandering rivers, Geophys. Res. Lett., 33, L18406, https://doi.org/10.1029/2006GL027630, 2006.
Boano, F., Revelli, R., and Ridolfi, L.: Quantifying the impact of groundwater discharge on the surface-subsurface exchange, Hydrol. Process., 23, 2108–2116, https://doi.org/10.1002/hyp.7278, 2009.
Boano, F., Camporeale, C., and Revelli, R.: A linear model for coupled surface-subsurface flow in meandering stream, Water Resour. Res., 46, W07535, https://doi.org/10.1029/2009WR008317, 2010a.
Boano, F., Demaria, A., Revelli, R., and Ridolfi, L.: Biogeochemical zonation due to intrameander hyporheic flow, Water Resour. Res., 46, W02511, https://doi.org/10.1029/2008WR007583, 2010b.
Bouwer, H.: Theory of seepage from open channels, in: vol. 5 of Advances in Hydroscience, Academic Press, New York, 1969.
Bridge, J. and Best, J.: Preservation of planar laminae due to migration of low-relief bed waves over aggrading upper-stage plane beds: comparison of experimental data with theory, Sedimentology, 44, 253–262, 1997.
Bridge, J. S.: Fluvial facies models: Recent developments, in: chap. Facies models revisited, Special Publication 84, SEPM, 85–170, 2006.
Bristow, C., S. and Best, J., L.: Braided rivers: perspectives and problems, Special Publications, Geological Society, London, 75, 1–11, https://doi.org/10.1144/GSL.SP.1993.075.01.01, 1993.
Brunke, M. and Gonser, T.: The ecological significance of exchange processes between rivers and groundwater, Freshwater Biol., 37, 1–33, https://doi.org/10.1046/j.1365-2427.1997.00143.x, 1997.
Brunner, P., Li, H., Kinzelbach, W., Li, W., and Dong, X.: Extracting phreatic evaporation from remotely sensed maps of evapotranspiration, Water Resour. Res., 44, W08428, https://doi.org/10.1029/2007WR006063, 2008.
Brunner, P., Cook, P., and Simmons, C.: Hydrogeologic controls on disconnection between surface water and groundwater, Water Resour. Res., 45, W01422, https://doi.org/10.1029/2008WR006953, 2009a.
Brunner, P., Simmons, C., and Cook, P.: Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater, J. Hydrol., 376, 159–169, https://doi.org/10.1016/j.jhydrol.2009.07.023, 2009b.
Brunner, P., Simmons, C., Cook, P., and Therrien, R.: Modeling Surface Water-Groundwater Interaction with MODFLOW: Some Considerations, Ground Water, 48, 174–180, https://doi.org/10.1111/j.1745-6584.2009.00644.x, 2010.
Brunner, P., Cook, P., and Simmons, C.: Disconnected Surface Water and Groundwater: From Theory to Practice, Ground Water, 49, 460–467, https://doi.org/10.1111/j.1745-6584.2010.00752.x, 2011.
Burkholder, B. K., Grant, G. E., Haggerty, R., Khangaonkar, T., and Wampler, P. J.: Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA, Hydrol. Process., 22, 941–953, https://doi.org/10.1002/hyp.6984, 2008.
Burt, T.: A third paradox in catchment hydrology and biogeochemistry: decoupling in the riparian zone, Hydrol. Process., 19, 2087–2089, https://doi.org/10.1002/hyp.5904, 2005.
Burt, T., Pinay, G., Matheson, F., Haycock, N., Butturini, A., Clement, J., Danielescu, S., Dowrick, D., Hefting, M., Hillbricht-Ilkowska, A., and Maitre, V.: Water table fluctuations in the riparian zone: comparative results from a pan-European experiment, J. Hydrol., 265, 129–148, 2002.
Calmant, S., Seyler, F., and Cretaux, J.-F.: Monitoring Continental Surface Waters by Satellite Altimetry, Surv. Geophys., 29, 247–269, 2008.
Calver, A.: Riverbed Permeabilities: Information from Pooled Data, Ground Water, 39, 546–553, https://doi.org/10.1111/j.1745-6584.2001.tb02343.x, 2001.
Cardenas, M.: The effect of river bend morphology on flow and timescales of surface water – groundwater exchange across pointbars, J. Hydrol., 362, 134–141, https://doi.org/10.1016/j.jhydrol.2008.08.018, 2008a.
Cardenas, M.: Surface water-groundwater interface geomorphology leads to scaling f residence times, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033753, 2008b.
Cardenas, M.: Stream–aquifer interactions and hyporheic exchange in gaining and losing sinuous streams, Water Resour. Res., 45, W06469, https://doi.org/10.1029/2008WR007651, 2009a.
Cardenas, M.: A model for lateral hyporheic flow based on valley slope and channel sinuosity, Water Resour. Res., 45, W01501, https://doi.org/10.1029/2008WR007442, 2009b.
Cardenas, M. and Wilson, J.: Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bedforms, Adv. Water Resour., 30, 301–313, https://doi.org/10.1016/j.advwatres.2006.06.009, 2007a.
Cardenas, M. and Wilson, J.: Dunes, turbulent eddies, and interfacial exchange with permeable sediments, Water Resour. Res., 43, W08412, https://doi.org/10.1029/2006WR005787, 2007b.
Cardenas, M. and Wilson, J.: Exchange across a sediment-water interface with ambient groundwater discharge, J. Hydrol., 346, 69–80, https://doi.org/10.1016/j.jhydrol.2007.08.019, 2007c.
Cardenas, M., Wilson, J., and Zlotnik, V.: Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange, Water Resour. Res., 40, W08307, https://doi.org/10.1029/2004WR003008, 2004.
Carleton, J. and Montas, H.: An analysis of performance models for free water surface wetlands, Water Res., 44, 3595–3606, https://doi.org/10.1016/j.watres.2010.04.008, 2010.
Carroll, R., Pohll, G., and Hershey, R.: An unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor, J. Hydrol., 373, 316–328, https://doi.org/10.1016/j.jhydrol.2009.05.006, 2009.
Chen, D. and MacQuarrie, K.: Numerical simulation of organic carbon, nitrate, and nitrogen isotope behavior during denitrification in a riparian zone, J. Hydrol., 293, 235–254, 2004.
Chen, X. and Chen, X.: Sensitivity analysis and determination of streambed leakance and aquifer hydraulic properties, J. Hydrol., 284, 270–284, 2003.
Chen, Y. and Durlofsky, L.: Adaptive local-global upscaling for general Flow scenarios in Heterogeneous formations, Trans. Porous Media, 62, 157–185, 2006.
Chung, I.-M., Kim, N.-W., Lee, J., and Sophocleous, M.: Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea, Hydrogeol. J., 18, 1253–1264, https://doi.org/10.1007/s10040-010-0593-1, 2010.
Conan, C., Bouraoui, F., Turpin, N., de Marsily, G., and Bidoglio, G.: Modeling Flow and Nitrate Fate at Catchment Scale in Brittany (France), J. Environ. Qual., 32, 2026–2032, 2003.
Conant, B.: Delineating and Quantifying Ground Water Discharge Zones Using Streambed Temperatures, Ground Water, 42, 243–257, https://doi.org/10.1111/j.1745-6584.2004.tb02671.x, 2004.
Constantz, J.: Heat as a tracer to determine streambed water exchanges, Water Resour. Res., 44, 1–20, https://doi.org/10.1029/2008WR006996, 2008.
Constantz, J., Stewart, A., Niswonger, R., and Sarma, L.: Analysis of temperature profiles for investigating stream losses beneath ephemeral channels, Water Resour. Res., 38-12, 1316, https://doi.org/10.1029/2001WR001221, 2002.
Constantz, J., Eddy-Miller, C., Wheeler, J., and Essaid, H.: Streambed exchanges along tributary streams in humid watersheds, Water Resour. Res., 49, 2197–2204, https://doi.org/10.1002/wrcr.20194, 2013.
Cretaux, J.-F., Berge-Nguyen, M., Leblanc, M., Rio, R. A. D., Delclaux, F., Mognard, N., Lion, C., Pandey, R.-K., Tweed, S., Calmant, S., and Maisongrande, P.: Flood mapping inferred from remote sensing data, Int. Water Technol. J., 1, 48–62, 2011.
Crispell, J. and Endreny, T.: Hyporheic exchange flow around constructed in-channel structures and implications for restoration design, Hydrol. Process., 23, 1158–1168, https://doi.org/10.1002/hyp.7230, 2009.
Curie, F., Ducharne, A., Sebilo, M., and Bendjoudi, H.: Denitrification in a hyporheic riparian zone controlled by river regulation in the Seine river basin (France), Hydrol. Process., 23, 655–664, https://doi.org/10.1002/hyp.7161, 2009.
Dahl, M., Nilsson, B., Langhoff, J., and Refsgaard, J.: Review of classification systems and new multi-scale typology of groundwater-surface water interaction, J. Hydrol., 344, 1–16, 2007.
Dahm, C., Grimm, N., Marmonier, P., Valett, H., and Vervier, P.: Nutrient dynamics at the interface between surface waters and groundwaters, Freshwater Biol., 40, 427–451, https://doi.org/10.1046/j.1365-2427.1998.00367.x, 1998.
Dahm, C., Baker, M., Moore, D., and Thibault, J.: Coupled biogeochemical and hydrological responses of streams and rivers to drought, Freshwater Biol., 48, 1219–1231, https://doi.org/10.1046/j.1365-2427.2003.01082.x, 2003.
Dalrymple, R., W.: Incised valleys in time and space: an introduction to the volume and an examination of the controls on valley formation and filling, chap. Incised valleys in time and space, pp. Special Publication 85, SEPM, 5–12, https://doi.org/10.2110/pec.06.85.0005, 2006.
Datry, T., Dole-Olivier, M., Marmonier, P., Claret, C., Perrin, J., Lafont, M., and Breil, P.: La zone hyporhéique, une composante à ne pas négliger dans l'état des lieux et la restauration des cours d'eau, Ingénieries – E A T, 54, 3–18, 2008.
David, C., Habets, F., Maidment, D., and Yang, Z.-L.: RAPID applied to the SIM-France model, Hydrol. Process., 25, 3412–3425, https://doi.org/10.1002/hyp.8070, 2011.
Decharme, B., Douville, H., Prigent, C., Papa, F., and Aires, F.: A new river flooding scheme for global climate applications: Off-line evaluation over South America, J. Geophys. Res., 113, D11110, https://doi.org/10.1029/2007JD009376, 2008.
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage, J. Hydometeorol., 11, 601–617, https://doi.org/10.1175/2010JHM1212.1, 2010.
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.: Global off-line evaluation of the ISBA-TRIP flood model, Clim. Dynam., 38, 1389–1412, https://doi.org/10.1007/s00382-011-1054-9, 2012.
Decharme, R. and Douville, H.: Global validation of the ISBA sub-grid Hydrology, Clim. Dynam., 29, 21–37, https://doi.org/10.1007/s00382-006-0216-7, 2007.
Deforet, T., Marmonier, P., Rieffel, D., Crini, N., Giraudoux, P., and Gilbert, D.: Do parafluvial zones have an impact in regulating river pollution? Spatial and temporal dynamics of nutrients, carbon, and bacteria in a large gravel bar of the Doubs River (France), Hydrobiologia, 623, 235–250, https://doi.org/10.1007/s10750-008-9661-0, 2009.
Delfs, J.-O., Blumensaat, F., Wang, W., Krebs, P., and Kolditz, O.: Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine, Environ. Earth. Sci., 65, 1439–1457, https://doi.org/10.1007/s12665-011-1285-4, 2012.
de Marsily, G., Ledoux, E., Levassor, A., Poitrinal, D., and Salem, A.: Modelling of large multilayered aquifer systems: Theory and applications, J. Hydrol., 36, 1–34, 1978.
Derx, J., Blaschke, A., and Blöschl, G.: Three-dimensional flow patterns at the river-aquifer interface – a case study at the Danube, Adv. Water Resour., 33, 1375–1387, https://doi.org/10.1016/j.advwatres.2010.04.013, 2010.
Diem, S., Renard, P., and Schirmer, M.: Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times, J. Hydrol., 510, 393–402, https://doi.org/10.1016/j.jhydrol.2013.12.049, 2014.
Discacciati, M., Miglio, E., and Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 57–74, 2002.
Dooge, J.: The hydrologic cycle as a closed system, Int. Assoc. Scient. Hydro. Bull., 13, 58–68, https://doi.org/10.1080/02626666809493568, 1968.
Doppler, T., Franssen, H.-J. H., Kaiser, H.-P., Kuhlman, U., and Stauffer, F.: Field evidence of a dynamic leakage coefficient for modelling river-aquifer interactions, J. Hydrol., 347, 177–187, https://doi.org/10.1016/j.jhydrol.2007.09.017, 2007.
Doussan, C., Poitevin, G., Ledoux, E., and Detay, M.: River bank filtration: modelling of the changes in water chemistry with emphasis on nitrogen species, J.f Contam. Hydrol., 25, 129–156, 1997.
Durand, M., Andreadis, K., Alsdorf, D., Lettenmaier, D., Moller, D., and Wilson, M.: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401, https://doi.org/10.1029/2008GL034150, 2008.
Ebel, B. and Loague, K.: Physics-based hydrologic-response simulation: Seeing through the fog of equifinality, Hydrol. Process., 20, 2887–2900, 2006.
Ebel, B., Mirus, B. B., Heppner, C. S., VanderKwaak, J. E., and Loague, K.: First-order exchange coefficient coupling for simulating surface water-groundwater interactions: parameter sensitivity and consistency with a physics-based approach, Hydrol. Process., 23, 1949–1959, https://doi.org/10.1002/hyp.7279, 2009.
Ebrahim, G., Hamonts, K., van Griensven, A., Jonoski, A., Dejonghe, W., and Mynett, A.: Effect of temporal resolution of water level and temperature inputson numerical simulation of groundwater-surface water flux exchange in a heavily modified urban river, Hydrol. Process., 27, 1634–1645, https://doi.org/10.1002/hyp.9310, 2013.
Ellis, P., Mackay, R., and Rivett, M.: Quantifying urban river-aquifer fluid exchange processes: A multi-scale problem, J. Contam. Hydrol., 91, 58–80, 2007.
Endreny, T., Lautz, L., and Siegel, D.: Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models, Water Resour. Res., 47, W02517, https://doi.org/10.1029/2009WR008631, 2011.
Engdahl, N., Volger, E., and Weissmann, G.: Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework, Water Resour. Res., 46, W01506, https://doi.org/10.1029/2009WR007903, 2010.
Engeler, I., Hendricks Franssen, H., Müller, R., and Stauffer, F.: The importance of coupled modelling of variably saturated groundwater flow-heat transport for assessing river-aquifer interactions, J. Hydrol., 397, 295–305, https://doi.org/10.1016/j.jhydrol.2010.12.007, 2011.
Etchevers, P., Golaz, C., and Habets, F.: Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994, J. Hydrol., 244, 60–85, 2001.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Fleckenstein, J., Niswonger., R., and Fogg, G.: River-Aquifer Interactions, Geologic Heterogeneity, and Low-Flow Management, Ground Water, 44, 837–852, https://doi.org/10.1111/j.1745-6584.2006.00190.x, 2006.
Fleckenstein, J., Krause, S., Hannah, D., and Boano, F.: Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics, Adv. Water Resour., 33, 1291–1295, https://doi.org/10.1016/j.advwatres.2010.09.011, 2010.
Flipo, N.: Modélisation des Hydrosystèmes Continentaux pour une Gestion Durable de la Ressource en Eau, Ph.D. thesis, http://tel.archives-ouvertes.fr/docs/00/87/94/49/PDF/flipo2013_hdr.pdf, Habilitation thesis, Université Pierre et Marie Curie, Paris VI, 2013.
Flipo, N., Even, S., Poulin, M., Théry, S., and Ledoux, E.: Modelling nitrate fluxes at the catchment scale using the integrated tool \textscCaWaQS, Sci. Total Environ., 375, 69–79, https://doi.org/10.1016/j.scitotenv.2006.12.016, 2007a.
Flipo, N., Jeannée, N., Poulin, M., Even, S., and Ledoux, E.: Assessment of nitrate pollution in the Grand Morin aquifers (France): combined use of geostatistics and physically-based modeling, Environ. Pollut., 146, 241–256, https://doi.org/10.1016/j.envpol.2006.03.056, 2007b.
Flipo, N., Monteil, C., Poulin, M., de Fouquet, C., and Krimissa, M.: Hybrid fitting of a hydrosystem model: long term insight into the Beauce aquifer functioning (France), Water Resour. Res., 48, W05509, https://doi.org/10.1029/2011WR011092, 2012.
Freeze, R.: Three-Dimensional, Transient, Saturated-Unsaturated Flow in a Groundwater Basin, Water Resour. Res., 7, 347–366, 1971.
Frei, S., Fleckenstein, J., Kollet, S., and Maxwell, R.: Patterns and dynamics of river-aquifer exchange with variably-saturated flow using a fully-coupled model, J. Hydrol., 375, 383–393, https://doi.org/10.1016/j.jhydrol.2009.06.038, 2009.
Frei, S., Lischeid, G., and Fleckenstein, J.: Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland – A modeling study, Adv. Water Resour., 33, 1388–1401, https://doi.org/10.1016/j.advwatres.2010.07.006, 2010.
Frei, S., Knorr, K., Peiffer, S., and Fleckenstein, J.: Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment, J. Geophys. Res., 117, G00N12, https://doi.org/10.1029/2012JG002012, 2012.
Furman, A.: Modeling Coupled Surface-Subsurface Flow Processes: A Review, Vadose Zone J., 7, 741–756, https://doi.org/10.2136/vzj2007.0065, 2008.
Galbiati, L., Bouraoui, F., Elorza, F., and Bidoglio, G.: Modeling diffuse pollution loading into a Mediterranean lagoon: Development and application of an integrated surface-subsurface model tool, Ecol. Model., 193, 4–18, https://doi.org/10.1016/j.ecolmodel.2005.07.036, 2006.
Gao, H., Birkett, C., and Lettenmaier, D.: Global monitoring of large reservoir storage from satellite remote sensing, Water Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063, 2012.
García-García, D., Ummenhofer, C., and Zlotnicki, V.: Australian water mass variations from GRACE data linked to Indo-Pacific climate variability, Remote Sens. Environ., 115, 2175–2183, https://doi.org/10.1016/j.rse.2011.04.007, 2011.
Gariglio, F. P., Tonina, D., and Luce, C. H.: Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence, Water Resour. Res., 49, 7185–7204, https://doi.org/10.1002/wrcr.20419, 2013.
Genereux, D. P., Leahy, S., Mitasova, H., Kennedy, C. D., and Corbett, D. R.: Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA, J. Hydrol., 358, 332–353, https://doi.org/10.1016/j.jhydrol.2008.06.017, 2008.
Getirana, A., Boone, A., Yamazaki, D., and Mognard, N.: Automatic parametrization of a flow routing scheme driven by radar altimetry data: evaluation in the Amazon basin, Water Resour. Res., 49, 614–629, https://doi.org/10.1002/wrcr.20077, 2013.
Gibling, M., R., Fielding, C., R., and Sinha, R.: Alluvial valleys and alluvial sequences: towards a geomorphic assessment, in: chap. From river to rock record: The preservation of fluvial sediments and their subsequent interpretation, SEPM Special Publication No. 97, SEPM, 423–447, 2011.
Gleeson, T. and Paszkowski, D.: Perceptions of scale in hydrology: what do you mean by regional scale?, Hydrolog. Sci. J., 59, 1–9, https://doi.org/10.1080/02626667.2013.797581, 2013.
Goderniaux, P., Brouyère, S., Fowler, H., Blenkinsop, S., Therrien, R., Orban, P., and Dassargues, A.: Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves, J. Hydrol., 373, 122–138, 2009.
Golaz-Cavazzi, C., Etchevers, P., Habets, F., Ledoux, E., and Noilhan, J.: Comparison of two hydrological simulations of the Rhône basin, Phys. Chem. Earth, 26, 461–466, 2001.
Gomez, E., Ledoux, E., Viennot, P., Mignolet, C., Beno\^t, M., Bornerand, C., Schott, C., Mary, B., Billen, G., Ducharne, A., and Brunstein, D.: Un outil de modélisation intégrée du transfert des nitrates sur un système hydrologique: Application au bassin de la Seine, La Houille Blanche, 3-2003, 38–45, 2003.
Gomez, J., Wilson, J., and Cardenas, M.: Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects, Water Resour. Res., 48, W09533, https://doi.org/10.1029/2012WR012180, 2012.
Gooseff, M., Anderson, J., Wondzell, S., LaNier, J., and Haggerty, R.: A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA, Hydrol. Process., 20, 2443–2457, https://doi.org/10.1002/hyp.6349, 2006.
Graillot, D., Paran, F., Bornette, G., Marmonier, P., Piscart, C., and Cadilhac, L.: Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges, SpringerPlus, 3, 68, https://doi.org/10.1186/2193-1801-3-68, 2014.
Gu, C., Hornberger, G., Herman, J., and Mills, A.: Influence of stream-groundwater interactions in the streambed sediments on NO3- flux to a low-relief coastal stream, Water Resour. Res., 44, W11432, https://doi.org/10.1029/2007WR006739, 2008.
Gu, C., Anderson, W., and Maggi, F.: Riparian biogeochemical hot moments induced by stream fluctuations, Water Resour. Res., 48, W09546, https://doi.org/10.1029/2011WR011720, 2012.
Gunduz, O. and Aral, M.: River networks and groundwater flow: a simultaneous solution of a coupled system, J. Hydrol., 301, 216–234, https://doi.org/10.1016/j.jhydrol.2004.06.034, 2005.
Habets, F., Noilhan, J., Golaz, C., Goutorbe, J., Lacarrère, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., and Vidal-Madjar, D.: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area Part I: Model and database, J. Hydrol., 217, 75–96, 1999.
Haitjema, H.: Comparing a three-dimensionnal and a Dupuit–Forchheimer solution for a circula recharge area in a confined aquifer, J. Hydrol., 91, 83–101, 1987.
Haitjema, H.: On the residence time distribution in idealized groundwatersheds, J. Hydrol., 172, 127–146, 1995.
Hancock, P., Boulton, A., and Humphreys, W.: Aquifers and hyporheic zones: Towards an ecological understanding of groundwater, Hydrogeol. J., 13, 98–111, https://doi.org/10.1007/s10040-004-0421-6, 2005.
Hanson, R., Schmid, W., Faunt, C., and Lockwood, B.: Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process, Ground Water, 48, 674–689, https://doi.org/10.1111/j.1745-6584.2010.00730.x, 2010.
Harbaugh, A., Banta, E., Hill, M., and McDonald, M.: MODFLOW-2000, the U.S. Geological Survey modular ground-water model: User guide to modularization concepts and the ground-water flow process, Tech. Rep. 00-92, USGS, Denver, Colorado, USA, 2000.
Harvey, A.: Effective timescales of coupling within fluvial systems, Geomorphology, 44, 175–201, 2002.
Harvey, J. and Bencala, K.: The effect of streambed topography on surface-subsurface water exchange in mountain catchments, Water Resour. Res., 29, 89–98, 1993.
Hatch, C., Fisher, A., Revenaugh, J., Constantz, J., and Ruehl, C.: Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42, W10410, https://doi.org/10.1029/2005WR004787, 2006.
Hatch, C., Fisher, A., Ruehl, C., and Stemler, G.: Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods, J. Hydrol., 389, 276–288, 2010.
Hayashi, M. and Rosenberry, D.: Effects of Ground Water Exchange on the Hydrology and Ecology of Surface Water, Ground Water, 40, 309–316, 2002.
Heeren, D. M., Fox, G. A., Fox, A. K., Storm, D. E., Miller, R. B., and Mittelstet, A. R.: Divergence and flow direction as indicators of subsurface heterogeneity and stage-dependent storage in alluvial floodplains, Hydrol. Process., 28, 1307–1317, https://doi.org/10.1002/hyp.9674, 2014.
Hefting, M., Clément, J., Dowrick, D., Cosandey, A., Bernal, S., Cimpian, C., Tatur, A., Burt, T., and Pinay, G.: Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient, Biogeochemistry, 67, 113–134, 2004.
Heinz, J., Kleineidam, S., Teutsch, G., and Aigner, T.: Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology, Sediment. Geol., 158, 1–23, https://doi.org/10.1016/S0037-0738(02)00239-7, 2003.
Henriksen, H., Troldborg, L., Hojberg, A., and Refsgaard, J.: Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model, J. Hydrol., 348, 224–240, 2008.
Hester, E. and Doyle, M.: In-stream geomorphic structures as drivers of hyporheic exchange, Water Resour. Res., 44, W03417, https://doi.org/10.1029/2006WR005810, 2008.
Hill, M., Cooley, R., and Pollock, D.: A Controlled Experiment in Ground Water Flow Model Calibration, Ground Water, 36, 520–535, 1998.
Hornung, J. and Aigner, T.: Reservoir and aquifer characterization of fluvial architectural elements: Stubensandstein, Upper Triassic, southwest Germany, Sediment. Geol., 129, 215–280, https://doi.org/10.1016/S0037-0738(99)00103-7, 1999.
Irvine, D., Brunner, P., Hendricks Franssen, H.-J., and Simmons, G.: Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams, J. Hydrol., 424–425, 16–23, https://doi.org/10.1016/j.jhydrol.2011.11.051, 2012.
Janssen, F., Cardenas, M., Sawyer, A., Dammrich, T., Krietsch, J., and de Beer, D.: A comparative experimental and multiphysics computational fluid dynamics study of coupled surface-subsurface flow in bed forms, Water Resour. Res., 48, W08514, https://doi.org/10.1029/2012WR011982, 2012.
Jencso, K., McGlynn, B., Gooseff, M., Bencala, K., and Wondzell, S.: Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources, Water Resour. Res., 46, W10524, https://doi.org/10.1029/2009WR008818, 2010.
Jensen, J. and Engesgaard, P.: Nonuniform Groundwater Discharge across a Streambed: Heat as a Tracer, Vadose Zone J., 10, 98–109, https://doi.org/10.2136/vzj2010.0005, 2011.
Jolly, I. and Rassam, D.: A review of modelling of groundwater-surface water interactions in arid/semi-arid floodplains, in: 18th World IMACS/MODSIM Congress, Cairns, Australia, 2009.
Kalbus, E., Schmidt, C., Molson, J. W., Reinstorf, F., and Schirmer, M.: Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge, Hydrol. Earth Syst. Sci., 13, 69–77, https://doi.org/10.5194/hess-13-69-2009, 2009.
Kasahara, T. and Hill, A.: Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada, Hydrol. Process., 20, 4287–4305, https://doi.org/10.1002/hyp.6174, 2006.
Kasahara, T. and Wondzell, S.: Geomorphic controls on hyporheic exchange flow in mountain streams, Water Resour. Res., 39, 1005, https://doi.org/10.1029/2002WR001386, 2003.
Käser, D., Binley, A., Heathwaite, A., and Krause, S.: Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence, Hydrol. Process., 23, 2138–2149, https://doi.org/10.1002/hyp.7317, 2009.
Käser, D., Binley, A., and Heathwaite, A.: On the importance of considering channel microforms in groundwater models of hyporheic exchange, River Res. Appl., 29, 528–535, https://doi.org/10.1002/rra.1618, 2013.
Käser, D., Graf, T., Cochand, F., McLaren, R., Therrien, R., and Brunner, P.: Channel Representation in Physically Based Models Coupling Groundwater and Surface Water: Pitfalls and How to Avoid Them, Ground Water, https://doi.org/10.1111/gwat.12143, in press, 2014.
Ke, K.-Y.: Application of an integrated surface water-groundwater model to multi-aquifers modeling in Choushui River alluvial fan, Taiwan, Hydrol. Process., 28, 1409–1421, https://doi.org/10.1002/hyp.9678, 2014.
Keery, J., Binley, A., Crook, N., and Smith, J.: Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series, J. Hydrol., 336, 1–16, https://doi.org/10.1016/j.jhydrol.2006.12.003, 2007.
Kikuchi, C., Ferré, T., and Welker, J.: Spatially telescoping measurements for improved characterization of ground water-surface water interactions, J. Hydrol., 446–447, 1–12, https://doi.org/10.1016/j.jhydrol.2012.04.002, 2012.
Kim, N., Chung, I., Won, Y., and Arnold, J.: Development and application of the integrated SWAT–MODFLOW model, J. Hydrol., 356, 1–16, https://doi.org/10.1016/j.jhydrol.2008.02.024, 2008.
Kjellin, J., Hallin, S., and Wörman, A.: Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure, Water Res., 41, 4710–4720, https://doi.org/10.1016/j.watres.2007.06.053, 2007.
Klemes, V.: Conceptualization and scale in hydrology, J. Hydrol., 65, 1–23, 1983.
Klingbeil, R., Kleineidam, S., Asprion, U., Aigner, T., and Teutsch, G.: Relating lithofacies to hydrofacies: outcrop-based hydrgeological characterisation of Quaternary gravel deposits, Sediment. Geol., 129, 299–310, https://doi.org/10.1016/S0037-0738(99)00067-6, 1999.
Koch, J., McKnight, D., and Neupauer, R.: Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model, Water Resour. Res., 47, W05530, https://doi.org/10.1029/2010WR009508, 2011.
Kolditz, O., Delfs, J., Bürger, C., Beinhorn, M., and Parkee, C.: Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach, J. Hydroinform., 10, 227–244, 2008.
Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U.-J., Kalbacher, T., Park, C.-H., Sauer, U., Schütze, C., Shao, H., Singh, A., Taron, J., Wang, W., and Watanabe, N.: A systematic benchmarking approach for geologic CO2 injection and storage, Environ. Earth. Sci., 67, 613–632, https://doi.org/10.1007/s12665-012-1656-5, 2012.
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945–958, 2006.
Kollet, S. J., Maxwell, R. M., Woodward, C., Smith, S., Vanderborght, J., Vereecken, H., and Simmer, C.: Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer, Water Resour. Res., 46, W04201, https://doi.org/10.1029/2009WR008730, 2010.
Koltermann, C. E. and Gorelick, S. M.: Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 32, 2617–2658, https://doi.org/10.1029/96WR00025, 1996.
Koussis, A., Akylas, E., and Mazi, K.: Response of sloping unconfined aquifer to stage changes in adjacent stream II. Applications, J. Hydrol., 338, 73–84, https://doi.org/10.1016/j.jhydrol.2007.02.030, 2007.
Krause, S. and Bronstert, A.: The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany, Hydrol. Process., 21, 169–184, https://doi.org/10.1002/hyp.6182, 2007.
Krause, S., Bronstert, A., and Zehe, E.: Groundwater-surface water interactions in a North German lowland floodplain – Implications for the river discharge dynamics and riparian water balance, J. Hydrol., 347, 404–417, https://doi.org/10.1016/j.jhydrol.2007.09.028, 2007.
Krause, S., Hannah, D., and Fleckenstein, J.: Hyporheic hydrology: interactions at the groundwater-surface water interface, Hydrol. Process., 23, 2103–2107, https://doi.org/10.1002/hyp.7366, 2009a.
Krause, S., Heathwaite, L., Binley, A., and Keenan, P.: Nitrate concentration changes at the groundwater–surface water interface of a small Cumbrian River, Hydrol. Process., 23, 2195–2211, https://doi.org/10.1002/hyp.7213, 2009b.
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A. L., and Wood, P. J.: Inter-disciplinary perspectives on processes in the hyporheic zone, Ecohydrology, 4, 481–499, https://doi.org/10.1002/eco.176, 2011.
Krause, S., Blume, T., and Cassidy, N. J.: Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients, Hydrol. Earth Syst. Sci., 16, 1775–1792, https://doi.org/10.5194/hess-16-1775-2012, 2012a.
Krause, S., Munz, M., Tecklenburg, C., and Binley, A.: The effect of groundwater forcing on hyporheic exchange: Reply to comment on "Munz M., Krause S., Tecklenburg C., Binley A., Reducing monitoring gaps at the aquifer-river interface by modelling groundwater-surfacewater exchange flow patterns, Hydrological Processes, https://doi.org/10.1002/hyp.8080", Hydrol. Process., 26, 1589–1592, https://doi.org/10.1002/hyp.9271, 2012b.
Kurtulus, B., Flipo, N., Goblet, P., Vilain, G., Tournebize, J., and Tallec, G.: Hydraulic head interpolation in an aquifer unit using \textscanfis and Ordinary Kriging, in: Studies in computational intelligence, Springer, 343, 265–273, https://doi.org/10.1007/978-3-642-20206-3_18, 2011.
LaBolle, E., Ahmed, A., and Fogg, G.: Review of the Integrated Groundwater and Surface-Water Model (IGSM), Ground Water, 41, 238–246, 2003.
Lautz, L. and Siegel, D.: Modeling surface and ground water mixing in the using MODFLOW and MT3D, Adv. Water Resour., 29, 1618–1633, https://doi.org/10.1016/j.advwatres.2005.12.003, 2006.
Lautz, L., Kranes, N., and Siegel, D.: Heat tracing of heterogeneous hyporheic exchange adjacent to in-stream geomorphic features, Hydrol. Process., 24, 3074–3086, https://doi.org/10.1002/hyp.7723, 2010.
Ledoux, E., Girard, G., de Marsily, G., Villeneuve, J., and Deschenes, J.: Unsaturated flow in hydrologic modeling – theory and practice, in: chap. Spatially distributed modeling: conceptual approach, coupling surface water and groundwater, NATO ASI Ser. CNorwell, Springer, Kluwer Academicy, Massachussetts, 435–454, 1989.
Ledoux, E., Gomez, E., Monget, J., Viavattene, C., Viennot, P., Ducharne, A., Benoit, M., Mignolet, C., Schott, C., and Mary, B.: Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain, Sci. Total Environ., 375, 33–47, 2007.
Leek, R., Wu, J., Wang, L., Hanrahan, T., Barber, M., and Qiu, H.: Heterogeneous characteristics of streambed saturated hydraulic conductivity of the Touchet River, south eastern Washington, USA, Hydrol. Process., 23, 1236–1246, https://doi.org/10.1002/hyp.7258, 2009.
Lemieux, J. and Sudicky, E.: Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape, Environ. Fluid Mech., 10, 91–102, 2010.
Lewandowski, J., Angermann, L., Nützmann, G., and Fleckenstein, J.: A heat pulse technique for the determination of small-scale flow directions and flow velocities in the streambed of sand-bed streams, Hydrol. Process., 25, 3244–3255, https://doi.org/10.1002/hyp.8062, 2011.
Li, Q., Unger, A., Sudicky, E., Kassenaar, D., Wexler, E., and Shikaze, S.: Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model, J. Hydrol., 357, 317–336, 2008.
Liang, D., Falconer, R., and Lin, B.: Coupling surface and subsurface flows in a depth averaged flood wave model, J. Hydrol., 337, 147–158, https://doi.org/10.1016/j.jhydrol.2007.01.045, 2007.
Liggett, J., Werner, A., and Simmons, C.: Influence of the first-order exchange coefficient on simulation of coupled surface-subsurface flow, J. Hydrol., 414-415, 503–515, https://doi.org/10.1016/j.jhydrol.2011.11.028, 2012.
Loague, K. and VanderKwaak, J.: Physics-based hydrologic response: platinium bridge, 1958 Edsel, or useful tool, Hydrol. Process., 18, 2949–2956, 2004.
Luce, C., Tonina, D., Gariglio, F., and Applebee, R.: Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series, Water Resour. Res., 49, 1–19, https://doi.org/10.1029/2012WR012380, 2013.
Macpherson, G. and Sophocleous, M.: Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas, J. Hydrol., 286, 271–299, 2004.
Maier, H. and Howard, K.: Influence of Oscillating Flow on Hyporheic Zone Development, Ground Water, 49, 830–844, https://doi.org/10.1111/j.1745-6584.2010.00794.x, 2011.
Malard, F., Tockner, K., Dole-Olivier, M.-J., and Ward, J. V.: A landscape perspective of surface-subsurface hydrological exchanges in river corridors, Freshwater Biol., 47, 621–640, 2002.
Marion, A., Packman, A., Zaramella, M., and Bottacin-Busolin, A.: Hyporheic flows in stratified beds, Water Resour. Res., 44, W09433, https://doi.org/10.1029/2007WR006079, 2008.
Marmonier, P., Archambaud, G., Belaidi, N., Bougon, N., Breil, P., Chauvet, E., Claret, C., Cornut, J., Datry, T., Dole-Olivier, M., Dumont, B., Flipo, N., Foulquier, A., Gérino, M., Guilpart, A., Julien, F., Maazouzi, C., Martin, D., Mermillod-Blondin, F., Montuelle, B., Namour, P., Navel, S., Ombredane, D., Pelte, T., Piscart, C., Pusch, M., Stroffek, S., Robertson, A., Sanchez-Pérez, J., Sauvage, S., Taleb, A., Wantzen, M., and Vervier, P.: The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications, Ann. Limnol. – Int. J. Limnol., 48, 253–266, 2012.
Marzadri, A., Tonina, D., Bellin, A., Vignoli, G., and Tubino, M.: Semianalytical analysis of hyporheic flow induced by alternate bars, Water Resour. Res., 46, W07531, https://doi.org/10.1029/2009WR008285, 2010.
Marzadri, A., Tonina, D., and Bellin, A.: A semianalytical three-dimensional process-based model for hyporheic nitrogen dynamics in gravel bed rivers, Water Resour. Res., 47, W11518, https://doi.org/10.1029/2011WR010583, 2011.
Massei, N., Laignel, B., Deloffre, J., Mesquita, J., Motelay, A., Lafite, R., and Durand, A.: Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950–2008, Int. J. Climatol., 30, 2146–2154, https://doi.org/10.1002/joc.2022, 2010.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Maxwell, R. and Miller, N.: Development of a Coupled Land Surface and Groundwater Model, J. Hydrometeorol., 6, 233–247, 2005.
McDonald, M. and Harbaugh, A.: MODFLOW, a modular three-dimensional finite-difference ground-water flow model, in: Book 6, chap A1, p Technique of Water Ressources Investigations of the US Geological Survey, USGS Federal Center, Denver, Colorado, p. 586, 1988.
McGuire, K. and McDonnell, J.: A review and evaluation of catchment transit time modeling, J. Hydrol., 330, 543–563, https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
Mehl, S. and Hill, M.: Developement and evaluation of a local grid refinement method forblock-centred finite-difference groundwater models using shared nodes, Adv. Water Resour., 25, 497–511, 2002.
Mehl, S. and Hill, M.: Grid-size dependence of Cauchy boundary conditon used to simulate stream–aquifer interactions, Adv. Water Resour., 33, 430–442, 2010.
Miall, A., D.: The geology of fluvial deposits, Springer Verlag, Berlin, Heidelberg, 1996.
Michailovsky, C., Milzow, C., and Bauer-Gottwein, P.: Assimilation of radar altimetry to a routing model of the Brahmaputra river, Water Resour. Res., 49, 4807–4816, https://doi.org/10.1002/wrcr.20345, 2013.
Miglio, E., Quarteroni, A., and Saleri, F.: Coupling of free surface and groundwater flows, Comput. Fluids, 32, 73–83, 2003.
Monteil, C.: Estimation de la contribution des principaux aquifères du bassin-versant de la Loire au fonctionnement hydrologique du fleuve à l'étiage, Ph.D. thesis, MINES-ParisTech, Paris, 2011.
Morel-Seytoux, J.: The turning factor in the Estimation of stream aquifer seepage, Ground Water, 42, 205–212, 2009.
Mouhri, A., Flipo, N., Rejiba, F., de Fouquet, C., Bodet, L., Goblet, P., Kurtulus, B., Ansart, P., Tallec, G., Durand, V., and Jost, A.: Designing a multi-scale sampling system of stream–aquifer interfaces in a sedimentary basin, J. Hydrol., 504, 194–206, https://doi.org/10.1016/j.jhydrol.2013.09.036, 2013.
Munz, M., Krause, S., Tecklenburg, C., and Binley, A.: Reducing monitoring gaps at the aquifer–river interface by modelling groundwater-surface water exchange flow patterns, Hydrol. Process., 25, 3547–3562, https://doi.org/10.1002/hyp.8080, 2011.
Mutiti, S. and Levy, J.: Using temperature modeling to investigate the temporal variability of riverbed hydraulic conductivity during storm events, J. Hydrol., 388, 321–334, 2010.
Nalbantis, I., Efstratiadis, A., Rozos, E., Kopsiafti, M., and Koutsoyiannis, D.: Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrol. Earth Syst. Sci., 15, 743–758, https://doi.org/10.5194/hess-15-743-2011, 2011.
Nanson, G. C. and Croke, J.: A genetic classification of floodplains, Geomorphology, 4, 459–486, https://doi.org/10.1016/0169-555X(92)90039-Q, 1992.
Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger, F.: A data assimilation approach to discharge estimation from space, Hydrol. Process., 23, 3641–3649, https://doi.org/10.1002/hyp.7518, 2009.
Nemeth, M. and Solo-Gabriele, H.: Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water, J. Hydrol., 274, 145–159, https://doi.org/10.1016/S0022-1694(02)00419-5, 2003.
Noto, L., Ivanov, V., Bras, R., and Vivoni, E.: Effects of initialization on response of a fully-distributed hydrologic model, J. Hydrol., 352, 107–125, https://doi.org/10.1016/j.jhydrol.2007.12.031, 2008.
O'Driscoll, M., Johnson, P., and Mallinson, D.: Geological controls and effects of floodplain asymmetry on river–groundwater interactions in the southeastern Coastal Plain, USA, Hydrogeol. J., 18, 1265–1279, https://doi.org/10.1007/s10040-010-0595-z, 2010.
Oeurng, C., Sauvage, S., and Sánchez-Pérez, J.-M.: Temporal variability of nitrate transport through hydrological response during flood events within a large agricultural catchment in south-west France, Sci. Total Environ., 409, 140–149, https://doi.org/10.1016/j.scitotenv.2010.09.006, 2010.
Oki, T. and Sud, Y.: Design of total runoff integrating pathways (TRIP). A global river channel network, Earth Interact., 2, 1–36, 1998.
O'Loughlin, F., Trigg, M., Schumann, G., and Bates, P.: Hydraulic characterization of the middle reach of the Congo River, Water Resour. Res., 49, 5059–5070, 2013.
Osman, Y. and Bruen, M.: Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLO, J. Hydrol., 264, 69–86, 2002.
Pan, M., Wood, E., Wójcik, R., and McCabe, M.: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation, Remote Sens. Environ., 112, 1282–1294, https://doi.org/10.1016/j.rse.2007.02.039, 2008.
Panday, S. and Huyakorn, P. S.: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow, Adv. Water Resour., 27, 361–382, https://doi.org/10.1016/j.advwatres.2004.02.016, 2004.
Paola, C. and Borgman, L.: Reconstructing random topography from preserved stratification, Sedimentology, 38, 553–565, 1991.
Park, Y.-J., Sudicky, E., Panday, S., and Matanga, G.: Implicit Subtime Stepping for Solving Nonlinear Flow Equations in an integrated Surface-Subsurface System, Vadose Zone J., 8, 825–836, https://doi.org/10.2136/vzj2009.0013, 2009.
Parkin, G., O'Donnell, G., Ewen, J., Bathurst, J., O'Connell, P., and Lavabre, J.: Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment, J. Hydrol., 175, 595–613, 1996.
Parliament Council of the European Union: Dir. 2000/60/EC, establishing a framework for community action in the field of water policy, http:///ec.europa.eu/environment/water/water-framework/ (last access: 10 August 2014), 2000.
Perkins, S. and Sophocleous, M.: Development of a Comprehensive Watershed Model Applied to Study Stream Yield under Drought Conditions, Ground Water, 37, 418–426, 1999.
Peterson, E. and Sickbert, T.: Stream water bypass through a meander neck, laterally extending the hyporheic zone, Hydrogeol. J., 14, 1443–1451, 2006.
Peyrard, D., Sauvage, S., Vervier, P., Sanchez-Perez, J., and Quintard, M.: A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river, Hydrol. Process., 22, 4257–4273, https://doi.org/10.1002/hyp.7035, 2008.
Peyrard, D., Delmotte, S., Sauvage, S., Namour, P., Gerino, M., Vervier, P., and Sanchez-Perez, J.: Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study, Phys. Chem. Earth, 36, 599–611, https://doi.org/10.1016/j.pce.2011.05.003, 2011.
Pinder, G. and Jones, J.: Determination of the groundwater component of peak discharge from the chemistry of total run-off, Water Resour. Res., 5, 438–445, 1969.
Polus, E., Flipo, N., de Fouquet, C., and Poulin, M.: Geostatistics for assessing the efficiency of distributed physically-based water quality model. Application to nitrates in the Seine River, Hydrol. Process., 25, 217–233, https://doi.org/10.1002/hyp.7838, 2011.
Poole, G. C., O'Daniel, S. J., Jones, K. L., Woessner, W. W., Bernhardt, E. S., Helton, A. M., Stanford, J. A., Boer, B. R., and Beechie, T. J.: Hydrologic spiralling: The role of multiple interactive flow paths in stream ecosystems, River Res. Appl., 24, 1018–1031, https://doi.org/10.1002/rra.1099, 2008.
Poole, G. C., Stanford, J. A., Frissell, C. A., and Running, S. W.: Three-dimensional mapping of geomorphic controls on flood-plain hydrology and connectivity from aerial photos, Geomorphology, 48, 329–347, https://doi.org/10.1016/S0169-555X(02)00078-8, 2002.
Pryet, A., Labarthe, B., Saleh, F., Akopian, M., and Flipo, N.: Quantification of stream–aquifer flow distribution at the regional scale with a distributed process-based model, Water Resour. Manage., accepted, 2014.
Qu, Y. and Duffy, C.: A semidiscrete finite volume formulation for multiprocess watershed simulation, Water Resour. Res., 43, W08419, https://doi.org/10.1029/2006WR005752, 2007.
Ramillien, G., Famiglietti, J., and Wahr, J.: Detection of continental hydrology and glaciology signals from GRACE: A review, Surv. Geophys., 29, 361–374, https://doi.org/10.1007/s10712-008-9048-9, 2008.
Ramillien, G., Seoane, L., Frappart, F., Biancale, R., Gratton, S., Vasseur, X., and Bourgogne, S.: Constrained Regional Recovery of Continental Water Mass Time-variations from GRACE-based Geopotential Anomalies over South America, Surv. Geophys., 33, 887–905, https://doi.org/10.1007/s10712-012-9177-z, 2012.
Ramireddygari, S., Sophocleous, M., Koelliker, J., Perkins, S., and Govindaraju, R.: Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA, J. Hydrol., 236, 223–246, 2000.
Rau, G., Andersen, M., McCallum, A., and Acworth, R.: Analytical methods that use natural heat as a tracer to quantify surface water-groundwater exchange, evaluated using field temperature records, Hydrogeol. J., 18, 1093–1110, 2010.
Refsgaard, J. and Knudsen, J.: Operational validation and intercomparison of different types of hydrological models, Water Resour. Res., 32, 2189–2202, 1996.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., and Troldborg, L.: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 36–50, https://doi.org/10.1016/j.advwatres.2011.04.006, 2012.
Renard, P.: Calculating equivalent permeability: A review, Adv. Water Resour., 20, 253–278, 1997.
Revelli, R., Boano, F., Camporeale, C., and Ridolfi, L.: Intra-meander hyporheic flow in alluvial rivers, Water Resour. Res., 44, W12428, https://doi.org/10.1029/2008WR007081, 2008.
Rivett, M., Buss, S., Morgan, P., Smith, J., and Bemment, C.: Nitrate attenuation in groundwater: A review of biogeochemical controlling processes, Water Res., 42, 4215–4232, https://doi.org/10.1016/j.watres.2008.07.020, 2008.
Rodríguez, E.: Surface Water and Ocean Topography Mission (SWOT) Project – Science Requirements Document, JPL, https://swot.jpl.nasa.gov/files/swot/SWOT_Science_Requirements_Document.pdf, last access: 10 August 2014.
Rosenberry, D. and Pitlick, J.: Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river, Hydrol. Process., 23, 3306–3318, https://doi.org/10.1002/hyp.7433, 2009.
Rosenberry, D., Sheibley, R., Cox, S., Simonds, F., and Naftz, D.: Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface, Water Resour. Res., 49, 2975–2986, https://doi.org/10.1002/wrcr.20198, 2013.
Rossman, N. and Zlotnik, V.: Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States, Hydrogeol. J., 21, 1173–1192, https://doi.org/10.1007/s10040-013-1010-3, 2013.
Rubin, Y., Lunt, I., and Bridge, J.: Spatial variability in river sediments and its link with river channel geometry, Water Resour. Res., 42, W06D16, https://doi.org/10.1029/2005WR004853, 2006.
Rühaak, W., Rath, V., Wolf, A., and Clauser, C.: 3D finite volume groundwater and heat transport modeling with non-orthogonal grids, using a coordinate transformation method, Adv. Water Resour., 31, 513–524, 2008.
Rushton, K.: Representation in regional models of saturated river-aquifer interaction for gaining/losing rivers, J. Hydrol., 334, 262–281, https://doi.org/10.1016/j.jhydrol.2006.10.008, 2007.
Rushton, K. and Tomlinson, L.: Possible mechanisms for leakage between aquifers and rivers, J. Hydrol., 40, 49–65, 1979.
Russell, G. and Miller, J.: Global River Runoff Calculated from a Global Atmospheric General Circulation Model, J. Hydrol., 117, 241–254, 1990.
Ryan, R. and Boufadel, M.: Influence of streambed hydraulic conductivity on solute exchange with the hyporheic zone, Environ. Geol., 51, 203–210, https://doi.org/10.1007/s00254-006-0319-9, 2006.
Ryan, R. and Boufadel, M.: Evaluation of streambed hydraulic conductivity heterogeneity in an urban watershed, Stoch. Environ. Res. Ris. A., 21, 309–316, https://doi.org/10.1007/s00477-006-0066-1, 2007.
Saenger, N., Kitanidis, P., and Street, R.: A numerical study of surface-subsurface exchange processes at a riffle-pool pair in the Lahn River, Germany, Water Resour. Res., 41, W12424, https://doi.org/10.1029/2004WR003875, 2005.
Sahoo, A., Pan, M., Troy, T., Vinukollu, R., Sheffield, J., and Wood, E.: Reconciling the global terrestrial water budget using satellite remote sensing, Remote Sens. Environ., 115, 1850–1865, https://doi.org/10.1016/j.rse.2011.03.009, 2011.
Saleh, F., Flipo, N., Habets, F., Ducharne, A., Oudin, L., Viennot, P., and Ledoux, E.: Modeling the impact of in-stream water level fluctuations on stream–aquifer interactions at the regional scale, J. Hydrol., 400, 490–500, https://doi.org/10.1016/j.jhydrol.2011.02.001, 2011.
Saleh, F., Ducharne, A., Flipo, N., Oudin, L., and Ledoux, E.: Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale, J. Hydrol., 476, 169–177, https://doi.org/10.1016/j.jhydrol.2011.02.001, 2013.
Salehin, M., Packman, A. I., and Paradis, M.: Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling, Water Resour. Res., 40, W11504, https://doi.org/10.1029/2003WR002567, 2004.
Sawyer, A. and Cardenas, M.: Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment, Water Resour. Res., 45, W08406, https://doi.org/10.1029/2008WR007632, 2009.
Schmidt, C., Bayer-Raich, M., and Schirmer, M.: Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale, Hydrol. Earth Syst. Sci., 10, 849–859, https://doi.org/10.5194/hess-10-849-2006, 2006.
Schmidt, C., Conant, B., Bayer-Raich, M., and Schirmer, M.: Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures, J. Hydrol., 347, 292–307, https://doi.org/10.1016/j.jhydrol.2007.08.022, 2007.
Schornberg, C., Schmidt, C., Kalbus, E., and Fleckenstein, J.: Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures – Implications for temperature-based water flux calculations, Adv. Water Resour., 33, 1309–1319, https://doi.org/10.1016/j.advwatres.2010.04.007, 2010.
Schumm, S., A.: River response to baselevel change: Implications for sequence stratigraphy, J. Geol., 101, 279–294, https://doi.org/10.1086/648221, 1993.
Scibek, J., Allen, D., Cannon, A., and Whitfield, P.: Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model, J. Hydrol., 333, 165–181, https://doi.org/10.1016/j.jhydrol.2006.08.005, 2007.
Sebok, E., Duque, C., Engesgaard, P., and Boegh, E.: Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel, Hydrol. Process., https://doi.org/10.1002/hyp.10170, in press, 2014.
Seitzinger, S., Styles, R., Boyer, E., Alexander, R., Billen, G., Howarth, R., Mayer, B., and Breemen, N. V.: Nitrogen retention in rivers: model development and application to watersheds in the northeastern u.s.a., Biogeochemistry, 57/58, 199–237, 2002.
Shope, C., Constantz, J., Cooper, C., Reeves, D., Pohll, G., and McKay, W.: Influence of a large fluvial island, streambed, and stream bank on surface water-groundwater fluxes and water table dynamics, Water Resour. Res., 48, W06512, https://doi.org/10.1029/2011WR011564, 2012.
Sophocleous, M.: Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-002-0204-x, 2002.
Spanoudaki, K., Stamou, A., and Nanou-Giannarou, A.: Development and verification of a 3-D integrated surface water-groundwater model, J. Hydrol., 375, 410–427, https://doi.org/10.1016/j.jhydrol.2009.06.041, 2009.
Stallman, R.: Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature, J. Geophys. Res., 70, 2821–2827, https://doi.org/10.1029/JZ070i012p02821, 1965.
Stanford, J. and Boulton, A.: Hydrology and the distribution of hyporheos: perspectives from a mesic river and a desert stream, J. N. Am. Benthol. Soc., 12, 79–83, 1993.
Stonedahl, S., Harvey, J., Wörman, A., Salehin, M., and Packman, A.: A multiscale model for integrating hyporheic exchange from ripples to meanders, Water Resour. Res., 46, W12539, https://doi.org/10.1029/2009WR008865, 2010.
Stonedahl, S., Harvey, J., Detty, J., Aubeneau, A., and Packman, A.: Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model, Water Resour. Res., 48, W10513, https://doi.org/10.1029/2011WR011582, 2012.
Storey, R. G., Howard, K., and Williams, D.: Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model, Water Resour. Res., 39-2, 1034, https://doi.org/10.1029/2002WR001367, 2003.
Sulis, M., Meyerhoff, S., Paniconi, C., Maxwell, R., Putti, M., and Kollet, S.: A comparison of two physics-based numerical models for simulating surface water-groundwater interactions, Adv. Water Resour., 33, 456–467, https://doi.org/10.1016/j.advwatres.2010.01.010, 2010.
Swanson, T. and Cardenas, M.: Ex-Stream: A MATLAB program for calculating fluid flux through sediment-water interfaces based on steady and transient temperature profiles, Comput. Geosci., 37, 1664–1669, https://doi.org/10.1016/j.cageo.2010.12.001, 2011.
Tapley, B., Bettadpur, S., Ries, J., Thompson, P., and Watkins., M.: GRACE measurements of mass variability in the Earth system, Science, 305, 503–505, 2004.
Therrien, R., McLaren, R., Sudicky, E., and Panday, S.: HydroGeoSphere: A Three-Dimensionnal Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute Transport, Tech. rep., Université Laval and University of Waterloo, 2010.
Thierion, C., Longuevergne, L., Habets, F., Ledoux, E., Ackerer, P., Majdalani, S., Leblois, E., Lecluse, S., Martin, E., Queguiner, S., and Viennot, P.: Assessing the water balance of the Upper Rhine Graben hydrosystem, J. Hydrol., 424-425, 68–83, https://doi.org/10.1016/j.jhydrol.2011.12.028, 2012.
Thouvenot-Korppoo, M., Billen, G., and Garnier, J.: Modelling benthic denitrification processes over a whole drainage network, J. Hydrol., 379, 239–250, https://doi.org/10.1016/j.jhydrol.2009.10.005, 2009.
Tonina, D. and Buffington, J. M.: Hyporheic exchange in gravel bed rivers with pool-riffe morphology: laboratory experiments and three-dimensional modelling, Water Resour. Res., 43, W01421, https://doi.org/10.1029/2005WR004328, 2007.
Tonina, D. and Buffington, J. M.: Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels, Water Resour. Res., 47, W08508, https://doi.org/10.1029/2010WR009140, 2011.
Tóth, J.: A Theory of Groundwater Motion in Small Drainage Basins in Central Alberta, Canada, J. Geophys. Res., 67, 4375–4387, 1962.
Tóth, J.: A Theoretical Analysis of Groundwater Flow in Small Drainage Basins, J. Geophys. Res., 68, 4795–4812, 1963.
Trauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J.: Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system, Water Resour. Res., 49, 1–17, https://doi.org/10.1002/wrcr.20442, 2013.
Turlan, T., Birgand, F., and Marmonier, P.: Comparative use of field and laboratory mesocosms for in-stream nitrate uptake measurement, Ann. Limnol. – Int. J. Limmol., 43, 41–51, https://doi.org/10.1051/limn:2007026, 2007.
Urquiza, J., N'Dri, D., Garon, A., and Delfour, M.: Coupling Stokes and Darcy equations, Appl. Numer. Math., 58, 525–538, https://doi.org/10.1016/j.apnum.2006.12.006, 2008.
van Balen, R., Kasse, C., and Moor, J. D.: Impact of groundwater flow on meandering; example from the Geul River, The Netherlands, Earth Surf. Proc. Land., 33, 2010–2028, https://doi.org/10.1002/esp.1651, 2008.
VanderKwaak, J. E. and Loague, K.: Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37, 999–1013, 2001.
Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges, Hydrol. Earth Syst. Sci., 16, 3889–3908, https://doi.org/10.5194/hess-16-3889-2012, 2012.
Vergnes, J.-P., Decharme, B., Alkama, R., Martin, E., Habets, F., and Douville, H.: A Simple Groundwater Scheme for Hydrological and Climate Applications: Description and Offline Evaluation over France, J. Hydometeorol., 13, 1149–1171, https://doi.org/10.1175/JHM-D-11-0149.1, 2012.
Vermeulen, P., te Stroet, C., and Heemink, A.: Limitations to upscaling of groundwater Flow models dominated by surface water interaction, Water Resour. Res., 42, W10406, https://doi.org/10.1029/2005WR004620, 2006.
Weill, S., Mouche, E., and Patin, J.: A generalized Richards equation for surface/subsurface flow modelling, J. Hydrol., 366, 9–20, 2009.
Weng, P., Sánchez-Pérez, J., Sauvage, S., Vervier, P., and Giraud, F.: Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France), Hydrol. Process., 17, 2375–2392, https://doi.org/10.1002/hyp.1248, 2003.
Werner, A., Gallagher, M., and Weeks, S.: Regional-scale, fully coupled modelling of stream–aquifer interaction in a tropical catchment, J. Hydrol., 328, 497–510, https://doi.org/10.1016/j.jhydrol.2005.12.034, 2006.
White, D. S.: Perspectives on Defining and Delineating Hyporheic Zones, J. N. Am. Benthol. Soc., 12, 61–69, 1993.
Whiting, P. and Pomeranets, M.: A numerical study of bank storage and its contribution to streamflow, J. Hydrol., 202, 121–136, 1997.
Winter, T.: Relation of streams, lakes, and wetlands to groundwater flow systems, Hydrogeol. J., 7, 28–45, 1998.
Woessner, W. W.: Stream and Fluvial Plain Ground Water Interactions: Rescaling Hydrogeologic Thought, Ground Water, 38, 423–429, https://doi.org/10.1111/j.1745-6584.2000.tb00228.x, 2000.
Wondzell, S. M. and Swanson, F. J.: Floods, channel change, and the hyporheic zone, Water Resour. Res., 35, 555–567, 1999.
Wondzell, S., LaNier, J., and Haggerty, R.: Evaluation of alternative groundwater flow models for simulating hyporheic exchange in a small mountain stream, J. Hydrol., 364, 142–151, https://doi.org/10.1016/j.jhydrol.2008.10.011, 2009.
Wood, E., Roundy, J., Troy, T., van Beek, L., Bierkens, M., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P., Kollet, S., Lehner, B., Lettenmaier, D., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Wroblicky, G., Campana, M., Valett, H., and Dahm, C.: Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream–aquifer systems, Water Resour. Res., 34-3, 317–328, https://doi.org/10.1029/97WR03285, 1998.
Yeh, P. and Eltahir, E.: Representation of Water Table Dynamics in a Land Surface Scheme. Part II: Subgrid Variability, J. Climate, 18, 1881–1901, 2005.
Yuan, D., Lin, B., and Falconer, R.: Simulating moving boundary using a linked groundwater and surface water flow model, J. Hydrol., 349, 524–535, https://doi.org/10.1016/j.jhydrol.2007.11.028, 2008.
Zaitchik, B., Rodell, M., and Reichle, R.: Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin, J. Hydrometeorol., 9, 535–548, https://doi.org/10.1175/2007JHM951.1, 2008.
Zhou, Y. and Li, W.: A review of regional groundwater flow modeling, Geosci. Front., 2, 205–214, https://doi.org/10.1016/j.gsf.2011.03.003, 2011.
Zlotnik, V., Cardenas, M., and Toundykov, D.: Effects of Multiscale Anisotropy on Basin and Hyporheic Groundwater Flow, Ground Water, 49, 576–583, https://doi.org/10.1111/j.1745-6584.2010.00775.x, 2011.