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Abstract. Coupled hydrological-hydrogeological models, is a crucial need to develop innovative methodologies for as-
emphasising the importance of the stream—aquifer interfacesessing stream—aquifer exchanges at the regional scale. After
are more and more used in hydrological sciences for pluriformulating the conductance model at the regional and inter-
disciplinary studies aiming at investigating environmental is- mediate scales, we address this challenging issue with the de-
sues. Based on an extensive literature review, stream-aquiferelopment of an iterative modelling methodology, which en-
interfaces are described at five different scales: local [10 cm-sures the consistency of stream—aquifer exchanges between
~ 10 m], intermediatef 10 m— 1 km], watershed [10 k& the intermediate and regional scales.
~ 1000 kn?], regional [10 000 krdA—~ 1 M km?] and conti- Finally, practical recommendations are provided for the
nental scaless 10 M kn¥]. This led us to develop the con- study of the interface using the innovative methodology MIM
cept of nested stream-aquifer interfaces, which extends théMeasurements—Interpolation—Modelling), which is graphi-
well-known vision of nested groundwater pathways towardscally developed, scaling in space the three pools of methods
the surface, where the mixing of low frequency processeseeded to fully understand stream—aquifer interfaces at vari-
and high frequency processes coupled with the complexityous scales. In the MIM space, stream—aquifer interfaces that
of geomorphological features and heterogeneities creates hyan be studied by a given approach are localised. The ef-
drological spiralling. This conceptual framework allows the ficiency of the method is demonstrated with two examples.
identification of a hierarchical order of the multi-scale con- The first one proposes an upscaling framework, structured
trol factors of stream—aquifer hydrological exchanges, fromaround river reaches ef 10—100 m, from the local to the wa-
the larger scale to the finer scale. The hyporheic corridortershed scale. The second example highlights the usefulness
which couples the river to its 3-D hyporheic zone, is then of space borne data to improve the assessment of stream—
identified as the key component for scaling hydrological pro-aquifer exchanges at the regional and continental scales. We
cesses occurring at the interface. The identification of the hyconclude that further developments in modelling and field
porheic corridor as the support of the hydrological processesneasurements have to be undertaken at the regional scale to
scaling is an important step for the development of regionalenable a proper modelling of stream—aquifer exchanges from
studies, which is one of the main concerns for water practi-the local to the continental scale.
tioners and resources managers.

In a second part, the modelling of the stream—aquifer in-
terface at various scales is investigated with the help of the
conductance model. Although the usage of the temperature
as a tracer of the flow is a robust method for the assess-
ment of stream—aquifer exchanges at the local scale, there
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1 Introduction et al, 2006, but until today the exact quantification of the in-
tensity of the removal due to various processes occurring at
The emergence of a systemic view of the hydrological cy-the stream—aquifer interface remains uncert&iip6 et al,
cle led to the concept of continental hydrosystdbogge 20073. Although certain control factors of biogeochemi-
1968 Kurtulus et al, 2011), which “is composed of storage cal processes occurring at the stream—aquifer interface are
components where water flows slowly (e.g. aquifers) andknown, such as water residence time, nitrate concentration or
conductive components, where large quantities of water floworganic matter contenCarleton and Monta201Q Dahm
relatively quickly (e.g. surface water)'F(ipo et al, 2012 et al, 1998 Hill et al., 1998 Kjellin et al., 2007, Peyrard
p. 1). This concept merges surface and ground waters intet al, 2011 Rivett et al, 2008 Weng et al.2003, as well as
the same hydrological system through the stream—aquifer inwater level fluctuationsBurt et al, 2002 Dahm et al. 1998
terface. Recentlyf-an et al.(2013 estimated that 22-32% Hefting et al, 2004 Turlan et al, 2007, numerical models
of the land surface is influenced by shallow groundwater. Asremain limited by their ability to simulate water pathways
a key transitional component characterised by a high spatioin the interface properlyBurt, 2005. Consequently, large-
temporal variability in terms of physical and biogeochemical scale biogeochemical models lack predictive abilities with
processesBrunke and Gonsed 997 Krause et al.20098, regard to climate change issues or the assessment of the im-
this interface requires further consideration for characterisplementation of environmental regulatory frameworks, such
ing the hydrogeological behaviour of basirdafashi and as the European Water Framework Directive (WFBar(ia-
Rosenberry 2002, and therefore continental hydrosystem ment Council of the European UnipR000.
functioning Saleh et al.2017). Although the number of papers concerning stream-aquifer
Water exchange dynamics at the stream—aquifer interinterfaces exponentially increased over the last 15 years
face are complex and mainly depend on geomorphological(Fleckenstein et 812010, they mostly focus on local scale
hydrogeological, and climatological factorSqphocleous issues, following a classic bottom-up scientific approach
2002 Winter, 1998. Recent ecohydrological publications, (Nalbantis et al.2011). The lack of models aiming at quanti-
dedicated to stream—aquifer interfaces, claim the recognitioriying stream—aquifer exchanges at large basins’ scale was al-
of the complexity of the multi-scale processes taking place aready alleged byleckenstein et a[2010 andKrause et al.
the interface Ellis et al, 2007 Hancock et al.2005 Poole  (2011). The current review quantitatively confirms that the
et al, 2008 Stonedahl et al2012). larger the scale (scale in the sense of model dimension),
A number of published papers address the problem of rethe less understood the interfaces. This is one of the ma-
active transport through the stream—aquifer interface. Thes@r concerns for large-scale river basin managers. Indeed,
papers imply sophisticated models, which represent the dythey have difficulties to fulfill the requirements of, for in-
namics of pollutants at the local scaRafdini et al, 2012 stance, the European WFD, especially for providing guide-
Chen and MacQuarrj004 Doussan et al1997 Gu et al, lines towards a good ecological status of both surface water
2008 Marzadri et al, 2011 Peyrard et a).2011) fairly well, bodies and subsurface water bodies. State-of-the-art coupled
taking into account the effect of local heterogeneities, micro-surface—subsurface models nowadays fail to integrate ecohy-
topography and of sharp redox gradients on the exchangedrological concepts based on functionalities of morpholog-
fluxes. These models are used to investigate complex proical units Bertrand et al.2012 Dahl et al, 2007, mostly
cesses, such as the effect of micro-topography on flow pathbecause they are not able yet to integrate the multi-scale na-
and associated geochemical fluxesef et al, 2012, or the  ture of the stream-aquifer interfaces into a holistic view of
potential effect of bank storage on denitrificatigBu( et al, the system.
2012, as well as the effect on the stream curvature to hy- Consequently, innovative methodologies for assessing
porheic biogeochemical zonatioBdgano et al.20100. At stream-aquifer exchanges at the regional and continental
the regional scale, coupled rainfall-runoff hydrological mod- scales need to be developed, which is a challenging issue for
els and biogeochemical models are able to simulate pollutantnodellers Fleckenstein et g1201Q Graillot et al, 2014).
transport and removal such as nitratBdllén and Garnier ~ The aim of this paper is to pave the way towards a multi-
200Q Oeurng et a].201Q Seitzinger et a)2002 Thouvenot-  scale modelling of the stream—aquifer interface, with the am-
Korppoo et al. 2009. These models (i) underestimate the bitious goal of being able to simulate the complexity of the
absolute water flux, flowing upwards and/or downwards,processes occurring at the local scale in larger scale mod-
through the interface, and (ii) poorly simulate pollutants re- els, i.e. at the regional scale for large basin decision makers,
moval due to water fluxes through the sharp redox gradient ofind also at the continental scale, which is the primary scale
the hyporheic zone. This is due to their tautological nature,of interest for the assessment of the effect of climate change
which does not integrate the proper physical processes, andn hydrosystems. In other words, this paper aims at ratio-
also to their discretisation which does not account for sub-nalising the modelling of stream—aquifer interfaces within a
cell heterogeneities. Few applications considered the potenconsistent framework that fully accounts for the multi-scale
tial reversal of flow at the interface and its impact on nitrate nature of the stream—aquifer exchange procedgasfonier
removal at the catchment scaféghan et al.2003 Galbiati
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et al, 2012. This is a necessary primary step before assesshydrosystem functioning. Indeed, the stream-aquifer inter-
ing hydrological impacts on geochemical fluxes. face is now conceptualised as a filter through which water
Following the attempt oMouhri et al. (2013, who ra-  flows many times over various spatial (from centimetres to
tionalised the design of a stream-aquifer interface samplingilometres) and temporal scales (from seconds to months)
system, we first define the various scales of interest. Baseliefore reaching the seddtry et al, 2008. One of the
on a literature review, we include the hydrologic spiralling main challenges is to understand the role of the stream—
concept ofPoole et al(2008 — which denotes the complex- aquifer interfaces in the hydro(geo)logical functioning of
ity of water pathways in heterogeneous alluvial plains — intobasins Hayashi and Rosenberr002. The multi-scale na-
the nested groundwater pathways visionTath (1963 to ture of the problem at hand imposes the definition of the
formulate the concept of nested stream—aquifer interfacesscales of interest.
This concept then allows us to identify stream—aquifer in- The five commonly recognised scales (in this context scale
terfaces as a key transitional component of continental hytefers to the size of the studied objects) are the local, the
drosystems (SecR). We also introduce a hierarchical or- reach, the catchment, the regional and the continental scales
der of the multi-scale controlling factors of stream—aquifer (Bléschl and Sivapalgri995 Dahl et al, 2007 Gleeson and
hydrological exchanges, from the larger scale to the finerPaszkowski2013, being defined as:
scale. The stream network is finally identified as the key
component for scaling hydrological processes occurring at — Local scale (or the experimental site scale) [10cm-
the interface. In SecB, the paper focuses on the stream— ~10m]: this scale concerns the riverbed or the hy-
aquifer interface modelling at various scales, with up-to-date ~ Porheic zone (HZ, see Se@2for more details).
methodologies. After describing the modelling approaches at
the two extreme spatial scales, we emphasise which hydro-
logical parameters and variables have to be up and down-
scaled around the river and also for which models. Finally,
integrating the telescopic approachKikuchi et al. (2012
with the nested stream—aquifer interface concept, we develop
the MIM (Measurements—Interpolation—Modelling) method-
ological framework for the design of multi-scale studies of
stream-aquifer exchanges based on a more holistic view of
the hydrosystem (Sect). MIM is a valuable tool to define
strategies for combini_ng fi(_ald measurements and modelling Regional scale [10 000 k#a~ 1 M km?] or [~ 100 km—
approaches more easily. lee_n the usage of the MIM method- 1000 km]: this is the scale of water resources manage-
ology, we show that the.scalmg of processes _from the local ment, and the one for which the least is known about
to the watershed scale is structured aro_und river reaches of stream—aquifer exchange dynamics. For a conceptual
~10-100m. We also analyse the question of how to model 55y sis of the stream—aquifer interfaces, the watershed
gtream—aqwfer exchanges at the.contlnental spale, and inves-  and the regional scales can be merged into a single cat-
tigate the usage of re_mote sensing data, which should im- egory referred to as the regional scaléoghri et al,
prove global hydrological budgets. We conclude that further 2013. Merging these two scales is consistent with the
developments in model!ing and field measurements have to fact that a regional basin is a collection of smaller wa-
be performed at the regional scale to enable the proper mod- 4o sheds. The distinction between the two categories is

e:-IImg olf streiam—aqwfer exchanges from the local to the con- only necessary to conceptualise the scaling of processes
tinental scale. as discussed in the final section of this paper.

— Intermediate or reach scale-[LO m—- 1km]: it con-
cerns the river reach, a pond or a small lake.

— Catchment—watershed scale [10%my 1000 kn?] or
[~ 1km—-10km]: this scale connects the stream net-
work to its surface watershed and more broadly to the
hydrosystem. This is the scale from which surface-
ground water exchanges are linked to the hydrological
cycle and the hydrogeological processes.

— Continental scale 3 10Mkm?] or [~ 1000 km-—

2 The concept of nested stream—aquifer interfaces ~ 10000 km]: this scale is a collection of regional scale

basins. The difference with the regional scale is that

2.1 Historical developments of the nested there is a broader range of hydro-climatic conditions,
stream-—aquifer interface concept which imposes accounting for climatic circulations.

Stream—aquifer interfaces have only been intensively sur- From a conceptual point of view, stream-aquifer ex-
veyed for two decades$(eckenstein et §l2006 Marmonier ~ changes are driven by two main factors: the hydraulic gradi-
et al, 2012. Its study by the ecohydrological community ent and the geological structure. The hydraulic gradient de-
led to a re-conceptualisation of its nature from the river be-fines the water pathwayg\{inter, 1998, whereas the geolog-
ing seen as an impervious drain that collects the effectivdcal structure defines the conductive properties of the stream—
rainfall and transfers it to the ocean, towards a more subtlequifer interface \(Vhite, 1993 Dahm. et al. 2003. These
view that integrates more spatio-temporal processes in théwo factors are fundamental for hydrogeologists, who derive
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Figure 1. Nested stream—aquifer interfacéa) watershed—basin scal) intermediate-reach scale in an alluvial pl&gic), cross section of
the stream-aquifer interfacil) meandered reach scafe) longitudinal river-HZ exchange§) water column—sediment scale. Inspired by
Stonedahl et a(2010.

subsurface flow velocities and transfer times from those fac-on the observation that the two main hydrosystem compo-
tors. The timescale to be considered also varies dependingents are the surface and groundwater components, which
on the studied object (HZ itself or a sedimentary basin func-are connected by nested interfaces (Higleading to pat-
tioning) Harvey, 2002. Estimating the stream—aquifer ex- terns in residence time over the scal@aidenas2008H.
changes at a sedimentary basin scale then requires the comtg8tream—aquifer interfaces consist of alluvial plain at the re-
nation of various processes with different characteristic timeggional and watershed scales (Fita and b), while within
or periods covering a wide range of temporal orders of mag-the alluvial plain, they consist of riparian zone at the reach
nitude Bldschl and Sivapalari995 Cardenas2008h Flipo scale (Fig.1d). Within the riparian zone, they consist of the
et al, 2012 Massei et al.2010: hour—day for river pro- hyporheic zone at the local scale (Fir), and so on, un-
cesses, year—decade for effective rainfall, decade—century fdil the water column—benthos interface within the river it-
subsurface transit time. self (Fig. 1f). The concept of nested stream-aquifer inter-
Moubhri et al. (2013 proposed a multi-scale framework faces includes the hydrologic spiralling conceptRdole
to study stream—aquifer interfaces. Their approach is basedt al. (2008 into the nested groundwater pathways vision
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of Toth (1963, recently revisited to account for multi-scale b. a perched HZ is formed below the streambed due
anisotropy Zlotnik et al, 2011). Before further develop- to the infiltration of stream water; in this particu-
ing the multi-scale framework, the various descriptions of lar case, the porous medium below the streambed
stream-aquifer interfaces are outlined from the local to the is either very thick or its conductive properties are
continental scale. A classification by order of importance of so poor that the surface water may not reach the
heterogeneity controls on stream—aquifer water exchanges is aquifer unit.

proposed in Secg.6.

2.2 The stream—aquifer interface at the local scale — the Hydro-sedimentary processes generate heterogeneous,
hyporheic zone usually layered, streambe#igtch et al. 2010 Sawyer and
Cardenas2009. In situ measurements revealed that the
At the local scale (plot, river cross section), the stream-streambed permeabilities range over several order of mag-
aquifer interface consists of a hyporheic zone (HZ, B, nitude both vertically and horizontally_éek et al, 2009
which corresponds to an ecotone, whose extent varies dyRyan and Boufadel2007 Sawyer and Cardenag009
namically in space and time. This ecotone is at the interfaceSebok et al.2014. These heterogeneities favour horizon-
between two more uniform, yet contrasted ecological sys+al flow paths rather than vertical flow patHddrion et al,
tems Brunke and Gonsed997): the river and the aquifer. 2008 Ryan and Boufadel2006, leading to a stratifica-
In a broad sense, the HZ is “the saturated transition zone betion of chemical concentration in the streamb&y#n and
tween surface water and groundwater bodies that derives itBoufade) 2006. Overall, the heterogeneities modify both
specific physical (e.g. water temperature) and biogeochemithe penetration depth and the residence time of stream—
cal (e.g. steep chemical gradients) characteristics from activaquifer exchangesClardenas et gl.2004 Salehin et al.
mixing of surface and groundwater to provide a habitat and2004 Sawyer and Cardena®009. The common hypoth-
refugia for obligate and facultative specie&réuse et al.  esis of an homogeneous bed therefore generates errors on
2009a p. 2103).White (1993 also indicates that the HZ is  the assessment of stream—aquifer exchar@asienas et al.
located beneath the streambed and in the stream banks tha004 Frei et al, 201Q Kalbus et al. 2009 Irvine et al,
contain infiltrated stream water. Furthermokéalard et al. 2012, which are difficult to estimate for real case studies
(2002 identified five generic HZ configurations, that depend due to the fact that small scale heterogeneities are difficult to
on the structure of the subsurface medium, and especially oassess.
the location of the impervious substratum: Coupled to the structural heterogeneities, the micro-
] _ . _ topography of the streambed modulates the exchanges longi-
1. NoHZ:the stream_flows directly on the IMPErvious Sub- tudinally (Fig.1f), due to the occurrence of advective pump-
stratum. A pergnmal lateral HZ can appear in a zone Ofing (Cardenas and Wilsor2007a b; Endreny et al.2011,
S|gn|f|c:_;1nt longitudinal curvature of the stream, for in- Janssen et al2012 Kaser et al.2013 Krause et al.2012h
stance in the case of meanders (S2&.1). Munz et al, 2011 Sawyer and Cardena009 Stonedahl

2. No aquifer unit: a HZ can appear due to the infiltration €t al, 2010.
of the stream water towards the substratum or through
the stream banks. In the former case, the substratum i8.3 The stream—aquifer interfaces at the intermediate
located near the streambed sediments. scale — the hyporheic corridor

3. Existence of a HZ in a connected stream-aquifer syS-; the intermediate scale, the stream—aquifer interface con-
tem: the HZ is created by advective water from both thegigts of 4 complex mosaic of surface and subsurface flow
stream and the aquifer unit. The impervious substratumyaihs of variable length, depth, residence time, and direc-
is located beneath the aquifer unit. tion, composing the hydrological spiralling concepfafole

et al. (2008. These flow paths are controlled by the geo-

metrical shapes and the hydraulic properties of the structural

heterogeneities. Confronted with such complexiiyunke

would not be saturated if the streambed were impervi-2nd Gonser(1997 and Stanford and Boultor(1993 de-

ous. In this configuration, two subcategories are to be/€!0Ped the concept of “hyporheic corridor”, which consid-
found: ers not only the river, but also its extension as a continuum

(Bencala et a)2011 Malard et al, 2002 in the form of allu-

a. the vertical infiltration of stream water towards the vial flow paths maintaining biodiversity patterns and ecosys-
top of the aquifer unit generates a zone of mixing tem metabolism. The hyporheic corridor extends the 2-D hy-
waters at the top of the aquifer unit, far enough be- porheic zone (previous section) to a dynamical 3-D system,
low the streambed to be disconnected from it; which links the actual hydro-sedimentary behaviour of the

river to its mid-term and long-term history by the means of

4. Existence of a HZ in a disconnected stream-aquifer
system: a distinct porous medium lies in between the
streambed and the aquifer unit. This porous medium
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the sediment heterogeneities within the alluvial plain and thethe river and the sediment®évelli et al, 2008. The ef-

associated water pathways. fect of successive meanders on water pathways and travel
times was also simulated in an homogeneous alluvial aquifer
2.3.1 Morphological shaping related to the (Cardenas20093, which can help restoration projects in-
hydro-sedimentary river dynamics volving channel modificationg3omez et al.2012. The sin-

uosity of the stream depends on its functioning and the char-

At the local scale, the hyporheic exchanges are describedcteristics of its alluvial plain.
by 2-D water pathways across the heterogeneous streambedAlthough the stream morphological heterogeneities are
and river banks. However, at the reach scale, rivers developf primary importance for the quantification of the water
a complex geometry, such as meander belts, which transfluxes in the hyporheic corridorK@sahara and Wondzell
forms the vertical 2-D understanding of hydrological pro- 2003 Lautz and SiegeR006 Tonina and Buffington2011;
cesses (Figlc) into a more complicated 3-D system involv- Wondzell et al. 2009, the understanding of the stream-—
ing lateral water pathways (Figd). aquifer interactions also relies on a proper characterisation

At the reach scale, hyporheic exchanges therefore developf the physical flow properties of alluvial plains and their
in various geomorphological structures, such as stream cumvarious geomorphological unitdfiderson et a).1999.
vature (Fig.1d), as well as in-stream pool and riffle se-
guences and sediment bars (Fig). Each of these structures 2.3.2 Hydrofacies related to the alluvial plain

significantly affects stream-aquifer exchang&ofiedahl architecture
et al, 2010 involving a specific transfer timeCardenas
2008h. Alluvial plains are the result of the sedimentary infilling of

As stated byRubin et al.(2006, there is “a hierarchy valleys cut into the bedrock. In Quaternary coastal settings,
of different bedform sizes in rivers”, consisting of ripples, cutting and filling respond strongly to base-level fluctuations
dunes, and compound bars. These forms are related, througlriven by glacioeustatic sea-level chang8shumm 1993
river morphological characteristics such as width, cross secbalrymple 2006. For upstream alluvial valleys beyond the
tion, and slope, to hydro-sedimentary processes taking placafluence of sea-level fluctuations, cutting and filling reflect
in the river and forming strata setBridge and Best1997, complex interactions between climate, tectonics, sediment
Paola and Borgmari991; Rubin et al, 2006. supply and river drainage chang&lgling et al, 2017). Sed-

Due to the longitudinal water head decrease along the flowiment heterogeneity within the alluvial plains is produced
pool and riffle sequences are submitted, from upstream tdoy the transport and depositional processes that have oper-
downstream, to a head gradient, which involves water down-ated in different palaeogeomorphic settings within the flu-
welling upstream riffles and water upwelling at the riffle vial system. This results in a complex stacking of lithofacies,
tail (Crispell and Endreny2009 Frei et al, 2010 Gooseff ~ bounded by erosional and depositional surfaces. These litho-
et al, 2006 Harvey and Bencald 993 Gariglio et al, 2013 facies are composed of sediments ranging over a broad scale
Kasahara and Hil200G Maier and Howard2011 Marzadri  of grain size and sorting, and can be described in terms of hy-
et al, 2011, Saenger et 31.2005 Tonina and Buffington  draulic parameters (e.g. conductivity), defining a hydrofacies
2007. Due to the sequence, stream-aquifer exchanges see(Anderson et a).1999 Hornung and AignerL 999 Klingbeil
to increase with the amplitude of the streambed oscillationsget al, 1999 Heinz et al, 2003 Fleckenstein et 312006.
until a threshold is reachediauth et al.2013. Also, com-  Sediment heterogeneity can thus produce sharp contrasts in
bined streambed oscillating frequencies may increase the inkydraulic conductivity of several orders of magnitutiédll
tensity of the exchanges in a complex wa¢aéer et al.  1996. Different scales of sediment heterogeneity are nested
2013. Bedform-induced hyporheic exchanges can be viewedwithin an alluvial plain Koltermann and Gorelick1996):
as longitudinally 2-D vertical processes. Similar 2-D hori- grain segregation in bedload and turbulent fluctuations of the
zontal processes also occur in single or alternating unit barflow produce heterogeneous cross-stratification within bed-
(Burkholder et al. 2008 Cardenas2009a Deforet et al, forms at the centimetre scalAllen, 1963 1966. Sand and
2009 Derx et al, 2010 Marzadri et al. 201Q Shope et al.  gravel bar internal structures reflect the distribution of the
2012 or bedform discontinuitiesHester and Doylg2008. sediment load in the water column, the succession of dif-

The development of a hyporheic zone inside a mean<ferent flow stages, and the morphodynamic interactions with
der belt was recently simulated to estimate the water pathether bars and cross-bar chann&sdge 2006. Their sizes,
ways involved in such a hyporheic flolB@ano et al.2006 highly variable but proportional to the channel size, range be-
Revelli et al, 2008 Cardenas20083. The numerical results tween several tens to several hundreds of metres. At the kilo-
of Cardenag20083 prove that the shape of the meander is metre scale, fine overbank deposits and abandoned channels
responsible for the flow path length and the residence timdilled with high organic content clays produce sharp litholog-
distribution within the point bar. Only few exchanges and ical contrasts with the coarser channelised facies.
low discharges occur in the core of the meander, while the The nature of sediment heterogeneity is closely linked
neck is characterised by intense water exchanges betwedn the functioning of the river channel and its associated
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floodplain, controlled by hydro-climatic, geologic and geo- and regional. These nested flow systems are gravity driven
morphologic conditions at the regional scadafson and from uphill to downhill. The piezometric surface of the
Croke 1992. The degree of heterogeneity at the regional groundwater near the alluvial plain usually flattens and be-
scale between coarse channelised facies and less permealsiemes highly correlated to the soil surface topografijtf,
floodplain deposits mainly depends on the ratios betweerl962. It remains to locate the lowest piezometric level in the
the rate of lateral migration of the river channel, the rate downhill alluvial plain, where the hyporheic corridor devel-
of vertical accretion by overbank deposits, the avulsive be-ops. The complex piezometric head distribution of the hy-
haviour of the fluvial system, and the degree of confine-porheic corridor constitutes the boundary conditions for the
ment of the floodplaingristow and Best1993 Miall, 1996. exchanges between the alluvial plain and the underlying re-
The substratum on which the channel migrates (containinggional aquifer system. In this configuration, the river is not
the hyporheic zone), is thus composed of sediments reprealways representative of the lowest piezometric head in the
sentative either of an alluvial plain contemporaneous withhyporheic corridor. For instanc€urie et al.(2009 report a
present hydroclimatic conditions, or of relict floodplain el- case study in which alluvial ground waters and stream wa-
ements formed under prior river flow regimeBrgnke and ters were converging to a zone parallel to the stream, which
Gonser 1997 Nanson and Croke 992 Woessner2000). acts as a drainage pathway inside the alluvial plain. In this
The streambed heterogeneities, coupled with the longituspecific case, the drainage pathway is the lowest piezometric
dinal variation of the bed, impact the dynamics of the stream-head. It thence controls the exchanges between the regional
aquifer exchanges by creating complex flow patBal¢hin  aquifer and the alluvial one.
et al, 2004 as flow recirculationCardenas et a12004). In Moreover, longitudinal changes in the width and in the
the case of a meandering channel, sediment deposition odepth of the alluvial plain along the hyporheic corridor mod-
the inner meander bank results in the formation of a per-ify the piezometric head gradient of the hyporheic corri-
meable point-bar, the texture and architecture of which re-dor at the kilometre scaleMalard et al, 2002 Woessner
flects the flow characteristics and the sediment size distribu2000, which also influences the exchanges between the al-
tion within the water column. On the outer eroded bank, theluvial plain and the regional aquifer spatially. In addition to
sediment is composed of older deposits, the composition ofthe complex behaviour of nested flow syste@istnik et al.
which eventually reflects the past history of construction of (2011) prove that small-scale anisotropy prevents or ampli-
the alluvial plain. This specific configuration creates asym-fies the flow patterns due to large-scale aquifer anisotropy.
metrical stream—aquifer interactions between the two river These complex interactions between, on the one side, the
banks QO’'Driscoll et al, 2010, and, depending on the outer river network and the hyporheic corridor, and on the other
bank sediment heterogeneities, can generate preferential flogide, the hyporheic corridor and the regional aquifer system,
paths in the alluvial plainReterson and Sickbe2006. contribute to the riparian turnover mentionedlsncso et al.
The spatial distribution of porosity and transmissivity, as- (2010. It characterises the fact that alluvial aquifers behave
sociated with sediment heterogeneities, impacts the dynamas a buffering zone between low frequency processes occur-
ics of the stream—aquifer exchanges by creating flow recirting at the regional scale and high frequency processes oc-
culations both vertically across the streambed and horizoneurring in the river network. The flow patterns resulting from
tally across the channel banks. Along with the sediment hetthis complex interaction can be evaluated by water transit
erogeneities, the geomorphological structures of the alluviatime (Haitjema 1995 McGuire and McDonne][2006 or us-
plain can also create preferential pathways, which can havéng tracers lacpherson and Sophocleq@®04).
a significant impact on stream-aquifer exchangesn@ng
2004 Fleckenstein et 312006 Krause et al.2007 Poole 2.5 The stream-aquifer interface at the continental
et al, 2002 2008 Storey et al. 2003 van Balen et a. scale — the closure of the continental hydrological
2008 Weng et al. 2003 Woessner2000. Overall, the pref- cycle
erential flow paths lead to a spatially and temporally com-
plex piezometric head distribution in the alluvial plain, es- At the continental scale, the complex dynamics of stream—
pecially during transitional event as flood®endjoudi et al. aquifer exchanges might have consequences on the proper
2002 Heeren et a).2014 Koch et al, 2011, Wondzell and  closure of the hydrological cycle, which partly consists in as-
Swanson1999 Wroblicky et al, 1998, when bank storage sessing groundwater and surface water pathways and travel
occurs Whiting and Pomeranet$997). time. Currently, a large range of satellite data allows the
remote observation of the continental hydrological cycle,
2.4 The stream—aquifer interfaces at the regional scale  temporarily from the seasonal to the decennial scale, and
— buffering effect of alluvial plains spatially from the sub-kilometreBfunner et al. 2008 to
the continental scaleGarcia-Garcia et al2011). Even if
The pioneering work of 6th (1963 showed that topography, satellites cannot measure the stream—aquifer exchanges di-
geology and climate are major control factors of hierarchi-rectly, they provide valuable ancillary data, especially for ob-
cally nested groundwater flow systems: local, intermediatetaining information on temporal and spatial low frequency
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variabilities. They might also be a source of information cru- (2013, who estimate that rivers with a bank full width of
cial for ungauged or poorly gauged large basins, as for ex100 m have drainage area ranging from 1050 to 50 000 km
ample the Congo RiverQ(Loughlin et al, 2013 or other  Although the database contains errors (reported errors on
big monsoon rivers. river width range from 8 to 62 %), it provides the order of
For example, total water storage (e.g. surface water andnagnitude of minimum drainage area that will be sampled
ground water) variations can be estimated from the Gravby SWOT. Given the two swaths and its 21 day orbit, the
ity Recovery and Climate Experiment (GRACE) mission, instrument will observe almost all continental surfaces in be-
launched in 2002Tapley et al. 2004. Examples of space tween 78 S and 78N, allowing the sampling of all drainage
borne based hydrological studies can be founBamillien areas above 50000 Kmn
et al.(2008, who provide an extensive review of large-scale  More information on the usage of these satellite data is
hydrological use of the first years of GRACE data. Thesegiven within the MIM framework in Sect.2
data have coarse spatial (300—400 km) and temporal (from
10 days to 1 month) resolution®Ré&millien et al, 2012, 2.6 A multi-scale issue structured around the river
but cover all continental surfaces, making their use partic- network
ularly suitable at continental or large river basin scales. Yet,
as GRACE data correspond to changes in total water storagé\s developed in Sec®.3, the hyporheic corridor, closely re-
they have to be coupled with ancillary information to distin- lated to the river network, is identified as being the location
guish between surface water and ground water variations. where flow paths mix at all scales. Consequently, it is the
For the specific stream—aquifer exchanges, satellite oblocation of hydrological processes scaling.
servations of water extents and water elevations might be Near-river groundwater flow paths are mainly controlled
the most straightforward data to use. Current nadir altime-by regional flow paths in aquifer systemklidlard et al,
ter satellites provide estimates of surface elevation (but noR002. Indeed, the groundwater component of a hydrosystem
water depth) above a given reference datum of big watercontrols the regional flows towards the alluvial plains and the
bodies crossed by the satellite ground traCklmant et a].  rivers. Such flow paths define the total amount of water that
2008, the instrument footprint being around 1km. These flows in the stream—aquifer interfac€drdenas and Wilsen
measurements have a repeatability depending on the sate*007h Frei et al, 2009 Kalbus et al.2009 Rushton 2007,
lite orbit, which typically ranges from 10 to 35 days. Recent Storey et al.2003. This is not a new concept, as the river
attempts have also demonstrated the possibility to estimataetwork corresponds to drains collecting regional groundwa-
water storage variations by combining multi-sensor measureter (Fig. 1a), which sustain the network during low flow pe-
ments. Optical or radar images are used to compute watetiod (Ellis et al, 2007, Pinder and Jone4969 Téth, 1963.
extent Cretaux et al.2011) and can be combined with a dig- These large-scale structural heterogeneities can also generate
ital elevation model (DEM) or with water elevation measure- local conditions that favour local re-infiltration of river water
ments from nadir altimeters to derive storage changes antbwards the aquifer systenB¢ano et al.2010a Cardenas
fluxes (Neal et al, 2009 Gao et al. 2012. Yet, satellites 20093 Cardenas2009h Fleckenstein et gl.200§. These
providing water surface extents and the ones measuring ware-infiltrations (Fig.1b and c¢) can even constitute the main
ter elevations do not have the same repeatability and spatiakcharge of some peculiar local aquifer systems, as for in-
coverage, introducing errors in water storage variation estistance some alluvial plainKfause and Bronstert2007
mates and limiting assessment of stream-aquifer exchangdérause et al.2007).
at the continental scale. In a second instance, the spatial distribution of the
To overcome this last issue, a new space borne mission, thetreambed permeabilities controls the dynamics of stream—
Surface Water and Ocean Topography (SWOT) mission, isaquifer exchanges within the alluvial plain, and therefore
currently being developed by NASA, CNES (French Spatialthe near-river piezometric head distributio@ajver, 2001
Agency), CSA (Canadian Space Agency) and UKSA (UK Fleckenstein et 312006 Frei et al, 2009 Genereux et al.
Space Agency), for a planned launch in 2019. SWOT will 2008 Hester and Doyle2008 Kalbus et al. 2009 Kaser
provide maps of distributed water elevations, water extentset al, 2009 Rosenberry and Pitlick009. Finally, the lon-
and water slopes on two swaths of 50 km each. It will en-gitudinal morphology of the river and the topography of the
able the observation of rivers wider than 100 m and surfaceiverbed, consisting of a pluri-metric succession of pools and
areas larger than 250 m250 m Rodriguez2014). Accura- riffles (Fig. 1e), also impact the stream—aquifer exchanges
cies on water elevation and water slope will be around 10 cm(Crispell and Endreny2009 Frei et al, 2010 Gooseff et al.
and 1cmkntl, respectively, after averaging over 1km 2006 Harvey and Bencalal993 Kasahara and Hill2006
water area Rodriguez 2014. From these requirements, Kaser et al. 2013 Maier and Howard 2011, Tonina and
Biancamaria et al(2010 estimated that SWOT should be Buffington 2007, until a threshold of streambed amplitudes
able to provide useful information to compute discharge foris reached Trauth et al. 2013. Likewise, the depth of the
river reaches with drainage areas above 70 000 Kimis pre-  alluvial aquifer Koch et al, 2011, Marzadri et al. 201Q
liminary assessment was recently refineddmgdreadis et al.  Whiting and Pomeranetsl997), and the river hydraulic
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regime Cardenas and Wilser2007a Munz et al, 2017%; long periods of time (a few decadeslipo et al, 2012. This
Saenger et 31.2005 influence stream—aquifer exchanges. is due to the large number of elements required to simulate
Ultimately a very fine scale process ¢m—dm), due to the such hydrosystem&unduz and Aral2009, which imposes
in-stream nonhydrostatic flow induced by bedform micro- the usage of heavily parallelised codes for simulating these
topography (Figlf), increases the absolute value of the total systems with such a spatio-temporal resolution. Recently,

stream-aquifer exchangeSdrdenas and Wilsqr2007a b;
Endreny et a].2011 Janssen et al2012 Kaser et al.2013
Krause et a].2012h Sawyer and Cardeng®009 Stonedahl
etal, 2010.

a proof of concept has been publisheddnflet et al.(2010),
who have simulated a 1000 Enbasin with a high spatio-
temporal resolution.

It is thus important to study the stream—aquifer exchanges-2 Models for simulating stream-aquifer interface

from the dual perspective of regional and local exchanges;
the former being controlled by regional recharge and struc-
tural heterogeneities, the latter by the longitudinal distribu-
tion of streambed heterogeneities and the river morpholog)fi
(Schmidt et al.2006. These two types of control factors may
also generate water loops within the stream-aquifer inter-
faces, the hyporheic corridor being the location where these
processes merg®gole et al.2008.

3 Modelling stream—aquifer exchanges

A literature review of process-based modelling of stream—
aquifer interfaces’ functioning is presented in Tablevhich
synthesises 51 references. The majority of these focus on the
local scale (25), while only four consider the regional and
continental scales. The remaining mostly focus on the local—
intermediate (11) and intermediate scales (11).

3.1 Overview of coupled surface—subsurface
hydrological models

Many hydrosystem models have been developed, in partic-
ular coupled surface—subsurface hydro(geo)logical models
(Loague and VanderKwaaR004), with no special empha-
sis on stream-aquifer interfaces.

During the 1970s and 1980s, the first sedimentary basin
distributed physically-based models (DPBMs) were devel-
oped based on the finite differences numerical scheme
(Abbott et al, 1986 Freeze 1971 Harbaugh et a.200Q
Ledoux et al. 1989 de Marsily et al. 1978 McDonald and
Harbaugh 1988 Parkin et al. 1996 Perkins and Sopho-
cleous 1999 Refsgaard and Knudseh996. In this type
of approach, the hydrosystem is divided into compartments,
which exchange through interfaces.

Since the late 1990s, new models based on finite ele-
ment numerical schemes have been developedd et al,
2002 Goderniaux et a).2009 Kolditz et al, 2008 Kollet
and Maxwel] 2006 Li et al.,, 2008 Panday and Huyakoyrn
2004 Therrien et al.201Q VanderKwaak and Loagyu200%;

Weill et al, 2009. These models allow the simulation of
the pressure head in 3-D instead of the former pseudo 3-D
modelling of the piezometric head. However, it is not yet
possible to straightforwardly simulate large hydrosystems
(> 10000 kn?) with a high spatio-temporal resolution for

www.hydrol-earth-syst-sci.net/18/3121/2014/

Surface water—groundwater exchanges, mostly through the
soil or the stream-aquifer interface, are simulated with two
ifferent models Ebel et al, 2009 Kollet and Maxwel)
2006 LaBolle et al, 2003 Furman 2008:

A conductance model or first-order exchange coefficient
(Rushton and TomlinsqriL979, for which the inter-
face is described with a water conductivity value. The
exchanged water flux is then calculated as the prod-
uct of the conductivity by the difference of piezomet-
ric heads between the aquifer and the surface water
body. Depending on the model, the difference of pres-
sures can also be used. This model implicitly formu-
lates the hypothesis of a vertical water flux between
surface water and groundwater, whatever the mesh
size. This is the most common model for simulating
stream—-aquifer exchanges. There are diverse conduc-
tance formulations, especially in the case of discon-
nected aquifers and strean@gman and Bruer2002).

The conductance model usually assumes an equivalent
homogeneous riverbed for the definition of the con-
ductance value, which can imply estimation errors in
the exchanged water fluxes compared to a more re-
alistic heterogeneous riverbed. However, if the model
is appropriately calibrated with regard to the connec-
tion/disconnection status, this assumption leads to slight
estimation errorslfvine et al, 2012. Another potential
drawback of the conductance model is that the conduc-
tance coefficient depends on the temperature because it
implicitly integrates the fluid viscositydoppler et al.
2007 Engeler et al.2011). Moreover, the validity of

the first-order law is critical in the case of a flood when
water expends in the flood plaiD¢ppler et al. 2007,
Engeler et a].2011).

Continuity of pressures and fluxes at the interface. This
boundary condition requires an iterative or a sequential
computation, although the iterative one is more precise
(Sulis et al, 2010. Sometimes the iterative process also
leads to a discontinuity of the tangential component of
the water velocity at the interface with the streambed
(Discacciati et al.2002 Miglio et al., 2003 Urquiza

et al, 2008. This is not a problem, as this discontinu-
ity can be interpreted as representative of the streambed
load. It should also be noted that the validity of this
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Table 1.Physically based modelling of stream—aquifer exchanges.

Ref Exch Spec Resolution Scale CS
Ax At
Brunner et al(2009a b) K 2-DVLAT [1-100lmx [<0.09m perm loc-int S
Brunner et al(2010 K 2-DV LAT [1-10]m x [0.1-1Qm perm loc-int S
Cardenas et a(2004 K 3-D 0.25mx 0.25mx 0.04 m perm loc S
Cardenas and Wilsof2007hc) P 2-DVLON 0.01mx 0.01 m* perm loc S
Cardenag20093 P 2-DH NS (80 mx 45m) perm loc S
Chen and Che(2003 K 3-D [3-6] M x [3—-6] M x [6.7—7.6]m min loc-int R
Derx et al.(2010 K 3-D [5-100] mx [5—100] mx [5—-40] cm 30min int R
Diem et al.(20149 K 3-D [1-10]mx [1-10] mx [1-10]m adapt int R
Discacciati et al(2002 P 3-D [0.5-5] mx [0.5-5] mx [0.3-1.5] m* perm loc S
Doppler et al(2007) K 2-DH [1-50] mx [1-50]m 1d int R
Ebel et al.(2009 K 3-D [1-20] mx [1-20] mx [0.05-0.25]m adapt loc-int R
Engeler et al(2011) K 3-D [1-50] mx [1-50] mx [1.6—40]m 900s int R
Fleckenstein et a(2006 K 3-D 200 mx 100 mx [5—40] m 3h int R
Frei et al.(2009 P 3-D 20mx 50mx 0.5m min int S
Frei et al.(2010 K 3-D 0.1mx 0.1mx0.1m adapt loc S
Gooseff et al(2006 K 2-DVLON 0.20mx [0.3-0.5]m perm loc S
Hester and Doyl€2008 K 2-DVLON 3mx[0.1-0.25]m perm loc S
Irvine et al.(2012 K 3-D 0.5mx [0.5-2.6] mx [0.03—0.7] m perm loc S
Janssen et af2012 P 2-DVLON 2mmx 2mm perm loc L
Kalbus et al(2009 K 2-DVLON 1mx[0.05-0.2]m perm loc S
Kasahara and Wondz€R003 K 3-D [0.3-0.5] mx [0.3—0.5] mx [0.15-0.3] m perm loc-int R
Kasahara and Hil2006 K 3-D [0.6—3.5] mx [0.2-0.5]mx 0.15m perm loc R
Kaser et al(2013 P 2-DVLON 0.78cmx [0.78-100]cm perm loc S
Koch et al.(2011) K 3-D NS (1.7 kmx 200 mx 0.5m) 1h int R
Krause and Bronste(2007) K 2-DH [25-50] mx [25-50] m 1lh int R
Krause et al(2007) K 2-DH [25—-250] mx [25—250] m 1h int-reg R
Lautz and Siegg|2006 K 3-D 0.5mx 0.5mx [0.6-2] m perm loc-int R
Maier and Howard2011) K 2-DH [1-7]mx [1-5]m x [0.1-10] m perm loc-int R
Marzadri et al(2010 K 3-D [0.19-1.88] mx [0.06—0.5] mx [0.1]m perm loc-int S
Marzadri et al(2011) K 3-D NS (16.9mx 2.6 mx 1.6 m) perm loc S
Miglio et al. (2003 P 3-D [0.2-0.5]mx [0.2 x 0.5] mx [0.05-0.15]n™* 600s loc S
Moubhri et al.(2013 P 2-DV [0.01-0.1]mx [0.01x 0.1] m min loc R
Munz et al.(2011) K 3-D 0.5mx 0.5mx [0.1-2.48]m 1F loc R
Osman and Brue(2002 K 2-DV LAT NS (360mx 21 m) perm loc S
Peyrard et al(2008 P 2-DH [10—40] mx [10-40]m adapt int R
Pryet et al(2014 K 2-DH 1kmx 1km 1d reg R
Revelli et al.(2008 K 2-DH NS ([0.22—4.4] kmx [0.19-3.8] km) perm int S
Rushton(2007) K 2-DVLAT 20mx0.2m perm loc-int S
Saenger et a(2005 K V LON 0.1mx0.02m perm loc R
Saleh et al(2011)) K 2-DH [1-4]kmx [1-4]km x [-]m 1j reg R
Sawyer and Carden&2009 P 2-DV LON 0.01 mx 0.005 nf perm loc L
Storey et al(2003 K 3-D [1-8] mx [1-8] m x [0.25-0.42] m perm loc R
Sulis et al(2010 K,P 3-D [1-80] mx [1-80] mx [0.0125-0.5]m adapt loc-int S
Tonina and Buffingtorf2007) P 3-D 0.03mx 0.03mx 0.03m perm loc L
Trauth et al(2013 P 3-D 0.2mx0.2mx 0.1m perm loc S
Urquiza et al(2008 P 2-DVLON 1mx1m perm loc S
Vergnes et al(2012 K 2-DH 0.5°x0.5° 1d reg R
Vergnes and Decharn{@012 K 2-DH 0.5 x0.5° 1d con R
Wondzell et al(2009 K 3-D [0.125-2] mx [0.125-2] mx [0.16-0.4] m perm loc R

Exch (stream-aquifer exchanges’ model): K: conductance model; P: Pressure continuity; V: vertical; LAT: lateral; LON: longitudinal; H: horizontal.
Resolution: NS: not specified (total extension between parenth&sis)i; size not specified in the paper.
Spec (Specificitieshx (spatial);Ar (temporal): perm: steady state; adapt: adaptive time step.

Scale: loc: local; int: intermediate; reg: regional; con: continental.
CS (Case Study): S: synthetical; L: lab experiment; R: real.
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approach relies on the knowledge of structural hetero- These models have the advantage of calculating spatio-

geneities constitutive of the stream—aquifer interface. temporal stream—aquifer exchanges with the capability
) ) of accounting for the heterogeneities under transient hy-
Recent numerical developments allow for solving the cou- drodynamical and thermal conditions.
pled surface and subsurface equations with a matrical system . )
(Gunduz and Aral2005 Liang et al, 2007 Peyrard et aJ. The two approaches provide estimates of the conductance

2008 Qu and Duffy 2007 Spanoudaki et 312009 Yuan coefficient that best represents the stream—aquifer interface
et al, 2008. This method can be used whatever the selectedt the local scale.

stream—aquifer interface model. Its main drawback is that it3_4 The conductance model at the regional scale

is computationally demanding and usually requires a paral-

lelised model in order to simulate a real hydrosystem. Although the usage of DPBM covers a broad range of spa-

From a conceptual point of view, the conductance modelijg| scales, only 18 publications among 1&3igo, 2013
allows us to better understand the hydrological processes 0Gsgncern large river basins-(10 000 kn?) (Abu-El-Sha’s and
curring at the stream-—aquifer interfadee{fs et al, 2012 Rihani 2007 Andersen et al.2001 Arnold et al, 1999
Ebel et al, 2009 Liggett et al, 2012 Nemeth and Solo-  Bayer et al.2006 Carroll et al, 2009 Etchevers et al2001;
Gabrielg 2003 and is equivalent to the continuity one in the Golaz-Cavazzi et 312001 Gomez et al.2003 Habets et al.
case of a highly conductive interface. Moreover, it has the1999 Hanson et al.201Q Henriksen et al.2008 Kolditz
advantage of simplifying the definition of structural hetero- gt al, 2012 Ledoux et al. 2007 Lemieux and Sudicky
geneities in models. While the conductance model is able t®01q Monteil, 2011 Park et al. 2009 Saleh et al.2011:
simulate connected or disconnected systelBmar{ner etal.  gcibek et al.2007). In addition to these publications, many
20093, Brunner et al(2010 showed that the conductance yegional-scale models were developed with MODFLOW in
model remains appropriate for disconnecting streams, bufhe United States and China for integrated water manage-
only if an unsaturated flow formulation is chosen. Other- ment purposesRossman and Zlotnjk2013 Zhou and Lj
wise the model leads to estimation errors for disconnectingzon). Except forMonteil (2011 and Pryet et al.(2014),
systems. none of these explicitly focus on distributed stream—aquifer
exchanged water flux. Moreover, among DPBMs dedicated
to stream—aquifer exchanges, oMynteil (2011 andPryet

The study of heat propagation is a powerful tool for assess-et al. (2014 performed distributed estimations of stream—

ing stream—aquifer exchangen@erson 2005 Constantz aquifer exchanges at the regional scale. These applications

2008 Mouhri et al, 2013 based on the temperature used exgluswgly gse.the conductance model, for which the longi-
R tudinal distribution of the conductance along the stream net-
as a tracer of the flow. Coupled with in situ measurements

two methods, based on heat transport governing equationél\,/Ork has to be calibrated(yet e_t aI,._2014). :
The conductance model historically assumes vertical

are used to quantify stream-aquifer exchangaxderson fluxes at the stream—aquifer interfad&rduse et al.2012a

2009: Rushton and Tomlinsqri979 Sophocleous2002. The hy-

1. Analytical models Stallman 1965 Anderson 2005 pothesis of vertical fluxes is discussed Byshton(2007)
are widely used to invert temperature measurementdased on numerical experiments that showed its limit. In-
solving the 1-D heat transport equation analytically deed, at the regional scale, stream-aquifer exchanges seem
under simplifying assumptions (sinusoidal or steadyt© be more controlled by the horizontal permeability of the
boundary conditions and homogeneity of hydraulic and@duifer unit than by the equivalent vertical permeabilities of
thermal properties)Anibas et al, 2009 2012 Becker ~ both the riverbed and the aquifer unit. Recently, this for-
et al, 2004 Hatch et al.2006 Jensen and Engesgaard mulation of the conductance model proved to be suitable
2011 Keery et al, 2007 Lautz et al, 201Q Luce et al, for the calibration of a regional modelling of stream—aquifer
2013 Rau et al, 201Q Schmidt et al.2007 Swanson ~ €xchangesRryet et al. 2014. As formulated byRushton
and Cardena011). EZOO)D, Pryet et al.(2014 calibrated a correction factor

Feor):

Q = Fcor X Kh x W x (Hriv - HK), (1)

3.3 Temperature as a tracer of the flow — the local scale

2. Numerical models which couple water flow equations
in porous media with the heat transport equation in
2-D or 3-D. These models are divided into two cate- where Q [m3s~1] is the stream—aquifer fluxt, and Hy
gories based on the numerical scheme: finite difference$¢m] are the hydraulic heads in the river and the calculated
(Anderson et a).2011 Anibas et al. 2009 Constantz  piezometric head, respectively, alim] the mesh size. The
et al, 2002 2013 Constantz 2008 Ebrahim et al. expressionfgor x Kn x W represents the conductance coef-
2013 Lewandowski et a)2011 Mutiti and Levy, 201Q ficient, Ky [ms~1] is the aquifer horizontal permeability and
Ruhaak et a).2008 Schornberg et gl2010 or finite Fcor [-] an adjustable, lumped parameter called correction
elements Kalbus et al. 2009 Moubhri et al, 2013. factor.
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This model defines the conductance parameter at the re3.5 Conceptual requirements at the continental scale
gional scale based on regional properties of the aquifer sys-
tem. Even if it does not allow a proper simulation of water Russelland Mille(1990 achieved the first global distributed
fluxes for disconnecting systenBr(inner et al.2009ab), it  runoff calculation based on & 4 5° grid mesh coupled with
allows the simulation of disconnected systems using a maxi@ land surface model (LSM) and an atmospheric global cir-
mum infiltrated flux Pryet et al.2014 Saleh et al.2011). In- culation model (AGCM). It appears that even at this scale the
deed, stream—aquifer disconnection does not necessarily oiver networks play an important role in the circulation mod-
cur when the water table is beneath the clogging layer repre€ls and water transfer time. Since then, few models have been
senting the streambed (as expressed in MODFLBWhner ~ developed to simulate the main river basins in the AGCMs
et al. 2010, but when the pressure gradient in the unsatu-With a grid mesh of~ 1° x 1°, which roughly corresponds
rated zone is negligible leading to a minimum pressure affo @ 100kmx 100 km resolution @ki and Sud 1998. ge-
the streambed interface and a constant stream to aquifer fluggraphical information systems (GISs) were used to derive
(Brunner et al. 20093. To improve the assessment of the the river networks from DEMsG@ki and Sud1998. Jointly
water flux through the unsaturated zone, which develops beRRMs (river routing models) have been developed with sim-
low the streambed in the case of a disconnected system, thele transfer approaches, assuming either a steady uniform
maximal stream to aquifer flux could be defined as a func-water velocity at the global scale or a variable water veloc-
tion of both the streambed properties and the underlying reity based on simple geomorphological laws and the Manning
gional aquifer properties. This implies to better understandformula (Arora and Boer1999.
the implications of heterogeneity and clogging processes in Decharme and Douvill€2007) implemented the approach
the streambed on disconnectidrnner et al.2011). with a constant in-river water velocity (assumed to be

To provide accurate estimates, the conductance model h&&5ms*) within the LSM, today referred to as SURFEX
to be constrained by the piezometric head below the rivedMasson etaj2013. Step by step, the description of stream—
and the surface water elevation. Former applications used aquifer exchanges was improved by:
fixed water level throughout the simulation perio&rold

et al, 1999 Chung et al.201Q Flipo et al, 2007h Gomez — The introduction of a variable in-river water velocity

et al, 2003 Ke, 2014 Kim et al, 2008 Monteil, 2011 (Decharme et 32009
Perkins and Sophocleaus999 Ramireddygari et al200Q — Atransfer time delay due to the stream—aquifer interface
Thierion et al, 2012. Saleh et al(2011) showed that this (Decharme et al2012.

methodology not only leads to biased assessments of stream— o ] .
aquifer exchanges, but also to biased estimates of the near- — The explicit simulation with a DPBM of the world-

river piezometric head distributions. In additiddiem et al. wide largest aquifer systems coupled with the ex-
(2014 recently showed that groundwater residence times are  Plicit simulation of the river networks draining surface
also strongly affected by the estimation of in-stream longi- basins larger than 50 000-100 000%ivergnes and

tudinal water level distributions. These results are due to the ~ Decharme2012).
fact that stream—aquifer exchange rates adapt very quickly to
changes in surface water levelso{ssis et al.2007 Maier

and Howard2011 Rosenberry et 312013.

— The explicit simulation of stream—aquifer exchanges
based on the conductance model on & 6&.9.5° grid

. . ; mesh Yergnes et aJ.2012 Vergnes and Decharme
Consequently, the simulation of variable surface water lev- 2012 in agreement with the continental scale transfer

els is of primary importance for the estimation of distributed time delay of 30 days introduced tyecharme et al.
stream-aquifer exchanges along the stream network at the (2012.

regional scaleFryet et al. 2014 Saleh et a].2011). Saleh

et al.(2013 recommend the usage of local 1-D Saint-Venant As expected given the numerical experimentsMzxwell

based hydraulic models to build rating curves for every celland Miller (2005, accounting for groundwater kinetics im-

of a coarser regional mode$éleh et a].2011) that uses sim-  proves the global hydrological mass balané@e¢harme

pler in-stream water routing models as RAPDayid et al, etal, 2010 Alkama et al, 201Q Yeh and Eltahir2005. Al-

2011). Such models are then coupled with the conductancehough the explicit simulation of stream—aquifer exchanges

model to simulate stream—aquifer exchanges at the regionakith the conductance model slightly improves the mod-

scale along thousands of kilometres of river networks with aels’ performances in terms of spatio-temporal discharge and

1km spatial discretisation (see for instaiiget et al.2014  real evapotranspiration assessmensrgnes et al.2012

for such an application along 3250 km of the Paris basin riverVergnes and Decharme012, the global calibration of

network). the conductance parameter has to take into account the
multi-scale structure of the stream—aquifer interfaces. This
means that a better assessment, not only of simple DEM-
derived river networks, but also of the transfer time in the
stream-aquifer interfaces is required, as well as the sub grid
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definition of dendritic river networks. Coupled with proper 3. Downscale the regional piezometric head distribution.
scaling procedures (see next section) these approaches seem , )
to be less computationally demanding than the one proposed 4- Run the intermediate model.
by Wood et al.(201]) and slightly less overparameterised, 5 ypscale the conductance parameter at the regional
which should make it possible to better solve the estimation scale.
of stream—aquifer exchanges at the continental scale.

The final objective of the procedure is to equalise the
3.6 Up- and downscaling stream—aquifer exchanges stream—agquifer exchanges estimated at both the regional and

, . the intermediate scales. A prerequisite for the application of
At the regional scale, most of the hydrogeological modelsns jterative procedure is the definition of the conductance
are limited in taking into account local processes such a%harameter at the intermediate scale.

the effect of near-river pumping, or storage in the hyporheic

zone, because they require a very fine spatial discretisatiorg 6.1 The conductance model at the intermediate scale
which can be incompatible with the resolution of the model

or, which drastically decreases the efficiency of the model.To scale the conductance model at the regional scale prop-
Also, the use of regional models for solving local issues, aserly, the correction factotor in Eq. (1), must be defined at

well as the reverse, leads to equifinality probleBsven the intermediate scale analytically. The conductance model
1989 Beven et al.2011; Ebel and Loague2006 Klemes historically assumes vertical fluxes at the stream—aquifer in-
1983 Polus et al. 2011, boundary condition inconsisten- terface Krause et al.2012a Rushton and Tomlinsqri979

cies (Noto et al, 2008, or computational burdenddlly and  Sophocleous2002, so that it seems to be a proper frame-
Rassam2009. The use of local models for solving regional work for determining up- and downscaling properties of
issues entails the same effeddsdl and Gunduz2003 2006 stream-adquifer interfaceB@ano et al.2009 Engdahl et al.
Wondzell et al. 2009. Therefore, alternative ways of mod- 2010. However, this hypothesis becomes less valid for a
elling are needed to simulate the behaviour of stream-aquifecoarse grid meshMehl and Hill, 2010 Rushton 2007). In
interfaces at the regional scale propekiygfner et al.2006), such a caseBrunner et al(2010 point out that the calcu-
especially as, for a given reach of river, the direction of lated piezometric head at the stream—aquifer interface does
stream—-aquifer exchanges can vary longitudinglgricala  not represent the piezometric head in the hyporheic zone, but
et al, 2011). The concept of nested stream—aquifer interfacethe near-stream aquifer piezometric head (BjgThis is due

led to the identification of the river network, and by exten- to the fact that state variables are discrete values associated
sion the hyporheic corridor, as the location where to scalewith an area by an averaging over the cell (finite differences
models for the accurate simulation of hydrological processesnd finite volumes), or over the surface around the node (fi-
(Sect.2.6). On the one hand, regional surface—subsurfacenite elements). Stream—aquifer exchanges are then calculated
models allow the simulation of the hyporheic corridor and across a surface, which encompasses the river. As a conse-
the regional aquifer. On the other hand, intermediate-scalguence, the averaging induces uncertainties in the assessment
models permit the simulation of hydrological spiralling. It of head below the river. The conductance parameter hence
therefore seems relevant to explicitly simulate the alluvialis scale dependenV¢rmeulen et a).2006. Morel-Seytoux
plains in a regional model, either with an explicit layer in (2009 proposed to relate the exchange flux to the near-river
pseudo 3-D models as MODFLOW, or with specific parame-piezometric headic, (Eq. 2), for which it can be assumed

ters for 3-D models based on Richards equations (Sef)t.  that the distance/, from the river is long enough to reach

In this way, regional and intermediate models can be configthe validity domain of the Dupuit—Forchheimer approxima-
ured in a nested setup, allowing the identification of modeltion. Using the mass conservation between the local flux at
parameters using the regional model for large-scale geologithe interface and the regional fluMorel-Seytoux2009 ex-

cal heterogeneities and the intermediate-scale model for thpresses the flux as follows:

smaller alluvial plain heterogeneities. This setup is in agree-

ment with the nested heterogeneities definedRigfsgaard ¢ — r,w - 1

et al. (2012. The coupling between a regional-scale model aRokes [ (2ak; — ksb) esb+ ksbeag) + %aq
and an intermediate-scale model of the alluvial plain requires « (v — o) @)
ensuring the conservation of the mass between the two mod- A

els. An iterative procedure is developed to achieve this ob
jective (Fig.2). At each iterationj, the procedure consists
of:

Wherek; andksp, [ms~1] are the horizontal aquifer perme-
ability and vertical streambed permeability, respectively;
andegp [m] are the aquifer and streambed thicknesegls;]
1. Run the regional model. is the aquifer anisotropy factoRy, [m] is the river width;w
the intermediate mesh size.
2. Define the boundary conditions of the intermediate Citing Bouwer (1969 and Haitiema (1987, Morel-
model with the outputs of the regional model. Seytoux (2009 indicates thad ranges between twice the
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Regional variables
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Figure 2. Iterative modelling framework for coupling regional and intermediate scales. r and i indices are related to regional and intermediate
scales, respectively. Capital letters represent regional parameters and variables, while lowercase letters refer to interme@ist¢henes.
regional mesh divided in x € subdomainsQ, being a regional cell. In the same wayis the intermediate model domain divided iR wj
subdomainsy; being an intermediate celfcor is the conductance correcting factor to upscale fattte horizontal permeability on which

Keqis basedsSy andV; are the cross section and volumestf, andV denotes the head gradient.

thickness of the underlying aquifer unit and ten times thewhich is a source of uncertainties for the assessment of
river width. This formulation thus refers to the intermediate stream—-aquifer exchangdsdser et al.2014).
scale, where the cell sizes have to be adaptetand to the
averaging of the piezometric head to ensure that the cell head-6-2 Downscaling the piezometric head
valueh, corresponds téc.

Assuming thatic ~ hj, which can be substituted in Eq.
(2), the correcting factor becomes dependent on the mes
size,w:

The downscaling procedure is adapted frabmen and
purlofsky (2006 andMehl and Hill (2003. Assuming that
the regional discharge is homogeneously distributed along
the regional cells border, the intermediate piezometric head
1 can be linearly interpolated based on the local properties of

Jeor(w) = —,  (3) . . _—
avakab [(2ak,~ — kep) esp+ ksbeaq] + %2) the cell coupled with the regional gradient:

wheref denotes the mathematical scaling function ofitihe 7, =h1+
cell size, which linksd andw. Under simplifying assump-

tions, f may be a linear functiorBouwer, 1969 Haitjema where X denotes the coordinate of the regional mesh, and
1987). A proper simulation of stream-aquifer exchangesx the one of the intermediate on&eq [m s1] is the re-
therefore implies an adaptive mesh to scale the river cellgjional equivalent permeabilityeq, the equivalent perme-
to the river network from small upstream tributaries to large ability of the n intermediate cells betweeki; andx,,. H,
downstream rivers. The mesh can be derived from a DEM[m] is the regional piezometric head at poikt,, and &,

Keg x, — X
A" L (Hy—Hi), X1 < %, < X2, (4)
keanZ—Xl
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Figure 3. Scaling effects on averaged near-river piezometric heads.

[m] the intermediate piezometric heads at poipt Assum-  river and piezometric heads of thth cell at thejth iteration.
ing thath1 = Hi, the local piezometric head at point be-  The equivalent permeability can be updated as follows:

comes a function of regional heads. However, due to the as- :

sumptions, the downscaling procedure becomes less accurate fu{dS

when the dimensional difference between regional and intery ¢ ¢ ¢, gJit = Sr @)

. Ly . eq,r —
mediate mesh grid is hi > w). .
Vi

whereS, and V; are the cross section and volume of ttie
regional cell, andv denotes the gradient.

The study of the evolution of both.or and permeabilities
nder various hydrological conditions should be very infor-
mative concerning the feasibility of the conductance param-
eter scaling laws.

3.6.3 Upscaling the conductance at the regional scale

While methodologies for the upscaling of permeability distri-
butions already exisRenard 1997, it remains unclear how
to upscale the conductance parameter. In order to study thﬁ
scaling effects oFor (see Eql) an iterative modelling pro-
cedure is proposed (Fig). At iteration j, the consistency of
fluxes between scales is defined as follows:

ol =) q. (5) 4 The MIM methodology: from concepts to practice

i€y
The methodology oMouhri et al.(2013 is hereby graphi-
: ) } cally developed, scaling in space the three pools of methods
the regional stream—aquifer flow resulting from the up- (measurements—interpolation-modelling) needed to fully un-
scaling of iterationj andg; the intermediate stream—aquifer derstand stream-aquifer interfaces at various scales. The out-
flow at iteration;. For| Q¢ T* — 0{| <€, the procedure con-  come is the MIM methodological tool, which localises in
vergesg being the convergence criterion. Otherwise, new re-space the type of stream-aquifer interface that can be studied

gional conductance values are calculated using Bg. ( by a given approach (see the five scales of interest in4=ig.
local, intermediate (or reach), watershed, regional and conti-
Zie&?r qi

nental scales). From Fid, it clearly appears that a better
K'e/q,r' W (Hriv,r - Hr*"/)

wherei denotes the intermediate celR; a regional cell,
j+1
r

J+1
VS €92, Feorr = (6) understanding of the functioning of nested stream-aquifer

interfaces relies on the combination of models, in situ net-
. works, space borne data and interpolation techniques. MIM
where2 is the regional mesif, therth regional cellKdqr  has the ability to clearly display the representativeness of a
[m3s~1] the estimated equivalent permeability of tt cell  specific research within a holistic framework dedicated to the
at iterationj, W [m] the mesh sizeHy,, and H;"’ [m] the study of nested stream-aquifer interactions at all scales. It is
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Figure 4. MIM methodological space. Axis in logarithmic scale.

a valuable tool for the definition of combined field measure-instance using FO-DTS — Fibre Optic Distributed Thermal
ments and modelling approaches. It permits the determinaSensors), local in situ data become the basis of a broader
tion of the dimension of the objects that need to be studiedsurface—subsurface modelling at the watershed scale. The up-
to scale processes. This is illustrated in Sdct, where the  scaling is hence structured around stream cross sections of
size of a river reach relevant for testing up- and downscaling~ 1-10 m with a representative reach length in the order of
strategies is identified. Space borne data coupled with modelsagnitude of 10-100 m (Fid). The next experiment, aim-
can also be displayed in the MIM space (Sdc®), without  ing at determining the upscaling law for the conductance co-
identifying methodologies to scale processes from the waterefficient at the watershed scale, will thus be designed based
shed to the regional and continental scales (Se8)L on the specificities of a river stretch at this scale (i.e. the study
of ariffle-pool sequence). In this specific case, the spatial ra-
tionale behind the new experiment is an outcome of the MIM
analysis, which defines the size of the objects to be studied.
Identifying the size of the objects of interest also provides

. . . guidance for the determination of a relevant mesh size, which
Figure5 displays the types of stream—aquifer interfaces that:

i . ) return imposes locations where interpolations need to be
can be studied by the multi-scale sampling system develoloeé]erformed.
by Mouhri et al. (2013, based on LOcal MOnitoring Sta-

tions (LOMOS) distributed along a 6 km-river network cov-

ering a 40km watershed. As illustrated in Fig, a sin- 4.2 Space borne approaches: regional and continental

gle LOMOS allows the monitoring, based on water pres- scales

sure and temperature measurements, of stream cross sections

ranging from 0.1~ 10m. LOMOS data are used with cou- Current and future satellite data are used to observe the conti-
pled thermo-hydro models to determine the properties of thenental water cycle and better constrain LSM (S8@&). They
aquifer units and the river bedsl6uhri et al, 2013, which are thus located at the continental and regional scales on the
can be used to assess the value of the conductance at the waeasurement axis of the MIM space (Fi&). Downscaling
tershed scaleMehl and Hill, 2002 Morel-Seytoux 2009 methods are also being developed to refine current coarse
Vermeulen et a).2006 Rushton 2007). Assuming that it  optical imagery into finer resolution products, or to average
is possible to distribute multiple LOMOS data, and the as-data over a spatial object (for instance a river reach) to im-
sociated conductance values, along a stream network (foprove their accuracyA(res et al, 2013. These methods are

4.1 Coupled in situ modelling approaches: from local to
watershed scale
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In Situ:
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Figure 5. Localisation of two approaches in the MIM methodological space. In yellow: upscaling methodology from the local to the water-
shed scale based on LOMOS coupled with DPBM. In blue: regional to continental scales covered by satellite data coupled to assimilation
frameworks. Axis in logarithmic scale. data assim: data assimilation.

indicated on the interpolation axis in Fi§. Measurements 4.3 Further challenges

and interpolated data can both be used in data assimilation

frameworks. Albeit being a breakthrough in terms of surface cover-
Some attempts have been undertaken to force or assimpge, SWOT requirements impose restrictions on observable

late satellite-based observations of different components oftream-aquifer interfaces, which can be visualised in the

the water cycle to improve LSM water budget and river rout- MIM space (Fig.5). As SWOT will provide information for

ing schemes: over the Mississippi BasiBaitchik et al, ~ basins on average larger than 50 00FKiBect.2.5), it ap-

2008, the Arkansas River BasinPén et al. 2008, the
Amazon Basin Getirana et a). 2013, the Brahmaputra
River (Michailovsky et al, 2013, and over 10 large river
basins widely spread in latitud&ghoo et a).2011). Fur-
ther, Andreadis et al.(2007), Durand et al.(2008 and

pears in the MIM space that SWOT applications do not com-
pletely overlap other methodologies as the one previously
proposed to scale processes between the local and the wa-
tershed scales. To overcome this issue, a projected airborne
campaign, called AirSWOT, with a main payload similar to

Biancamaria et al(2011) have developed different assimi- the one of SWOT, but with a higher spatial resolution (met-
lation schemes to correct hydrodynamic model parametersic), will (i) help to determine whether regular airborne cam-
and variables using virtual SWOT observations. They havePaigns can provide a valuable tool to connect the watershed
shown the potential of this new kind of spatially distributed Scale to the regional/continental one with the help of multi-

data set to better constrain hydraulic models.

scale modelling tools (see Se8t6) and (ii) make it possible

As stream—aquifer exchanges are very responsive to into design new in situ monitoring stations derived from the

river water level fluctuationsOiem et al, 2014 Koussis
et al, 2007 Maier and Howargd2011; Saleh et a].2011), the

LOMOS defined byMouhri et al.(2013 but dedicated to the
watershed/regional scale, which means for river cross sec-

assimilation of space borne data and data products in numefons larger than a few decametres, with a water depth of a

ical models, like the ones used Byyet et al(2014), Saleh
et al. (2011 and Vergnes and Decharm@012 (Fig. 5),

few metres.

should enable a better understanding of stream—aquifer in-

teraction at very large scale.
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