Articles | Volume 29, issue 12
https://doi.org/10.5194/hess-29-2521-2025
https://doi.org/10.5194/hess-29-2521-2025
Review article
 | 
17 Jun 2025
Review article |  | 17 Jun 2025

Machine learning in stream and river water temperature modeling: a review and metrics for evaluation

Claudia Rebecca Corona and Terri Sue Hogue

Related authors

Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021,https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018,https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin
P. Vahmani and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4791–4806, https://doi.org/10.5194/hess-18-4791-2014,https://doi.org/10.5194/hess-18-4791-2014, 2014
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014,https://doi.org/10.5194/hess-18-4601-2014, 2014
A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling
S. R. Lopez, T. S. Hogue, and E. D. Stein
Hydrol. Earth Syst. Sci., 17, 3077–3094, https://doi.org/10.5194/hess-17-3077-2013,https://doi.org/10.5194/hess-17-3077-2013, 2013

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
How seasonal hydroclimate variability drives the triple oxygen and hydrogen isotope composition of small lake systems in semiarid environments
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025,https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Learning from a large-scale calibration effort of multiple lake temperature models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025,https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
The influence of permafrost and other environmental factors on stream thermal sensitivity across Yukon, Canada
Andras J. Szeitz and Sean K. Carey
Hydrol. Earth Syst. Sci., 29, 1083–1101, https://doi.org/10.5194/hess-29-1083-2025,https://doi.org/10.5194/hess-29-1083-2025, 2025
Short summary
Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci., 29, 733–752, https://doi.org/10.5194/hess-29-733-2025,https://doi.org/10.5194/hess-29-733-2025, 2025
Short summary
Modeling Lake Titicaca's water balance: the dominant roles of precipitation and evaporation
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025,https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary

Cited articles

Abdi, R., Rust, A., and Hogue, T. S.: Development of a multilayer deep neural network model for predicting hourly river water temperature from meteorological data, Front. Environ. Sci., 9, 738322, https://doi.org/10.3389/fenvs.2021.738322, 2021. 
Acito, F.: Predictive analytics with KNIME: Analytics for citizen data scientists, Springer Nature Switzerland, Cham, https://doi.org/10.1007/978-3-031-45630-5, 2023. 
Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J., Bilodeau, L., Robichaud, É., Thiémonge, N., and Bobée, B.: Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada), Hydrol. Process., 21, 21–34, https://doi.org/10.1002/hyp.6353, 2007. 
Akaike, H., Petrov, B. N., and Csaki, F.: Information theory and an extension of the maximum likelihood principle, Second international symposium on information theory, Akademiai Kiado, Budapest, Hungary, 2–8 September 1971, 267–281, https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15, 1973. 
Download
Short summary
Stream water temperature (SWT) is a key indicator of water quality with implications for public use and health, ecosystem function, and aquatic life survival. Advances in modeling have helped improve our understanding of SWT dynamics, but challenges remain. Recently, machine learning (ML) has been used in SWT modeling, but questions remain about how the use of ML improves insight into SWT causes and effects. This work reviews ML-SWT modeling studies (and metrics) and considers future directions.
Share