Supplement of Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025 https://doi.org/10.5194/hess-29-2521-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Machine learning in stream and river water temperature modeling: a review and metrics for evaluation

Claudia Rebecca Corona and Terri Sue Hogue

Correspondence to: Claudia Rebecca Corona (claudia.corona@mines.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Spatial/temporal data and parameters used by SWT studies, as reported. SWT = stream water temperature, ET = Evapotranspiration, PPT = Precipitation, AT = air temperature, DO = dissolved oxygen, DOY = day-of-year.

#	Reference	Time period Considered	Region	SWT Temporal Resolution	Spatial Scale	Hydrometeorological Parameters (partial list)	Evaluation Metrics Used
1	Foreman et al., 2001	1953–1999, May to October	Fraser, Thompson River, Canada	Hourly	Local/ Watershed	SWT	Slope, <i>R</i> ² , RMSE (called RMSD), standard error
2	Risley et al., 2003	1999, June to September	west Oregon (U.S)	Hourly	Regional	SWT, riparian shade, elevation, % forested	R^2 , RMSE
3	Sivri et al., 2007	2001–2002	Province of Rize, NE Turkey	Daily	Local / Watershed	Daily SWT, monthly mean AT, PPT, water quality parameters (DO, ph, etc.)	R ² , Sum of Squares Error (SSE)
4	Tao et al., 2008	1986–2003	Yellow River, China	Daily	Local / Watershed	AT, water level, channel storage, discharge	R^2
5	Chenard and Caissie, 2008	10 years: 1992–2002	Miramichi River, Canada	Daily	Local / Watershed	Hourly water level, Daily AT, Hourly SWT	RMSE, PBIAS, R^2
6	Sahoo et al., 2009	1997–2003 (varied by station)	Lake Tahoe watershed	Daily	Regional	AT, short-wave radiation	Mean error (E), <i>r</i> , RMSE. MSE for training error.
7	St-Hilaire et al., 2012	5 years: 1993–1998,	Moisie River, Quebec, Canada	Daily	Local / Watershed	AT, stream discharge	RMSE, relative bias (RB), NSE (called NTD)
8	Hong and Bhamidimarri, 2012	Dec 2001– April 2002	Waikato River, New Zealand	10-min interval	Local / Watershed	AT, barometric pressure, wind direction/speed, solar radiation, SWT, humidity, water level	RMSE, MSE
9	Grbic et al., 2013	5 years: 1993–1998	Drava river, Croatia	Daily	Local / Watershed	SWT, Daily mean AT, Daily mean discharge	NSE (called NSC), RMSE, MAE
10	Hebert et al., 2014	9 years: 1998–2007, April– October	Miramichi River, Canada	Hourly	Local / Watershed	AT, SWT, daily mean discharge	RMSE, R ² , PBIAS
11	DeWeber and Wagner, 2014	19 years, 1980–2010: May– October	Eastern US	Daily	Regional	AT, landform attributes, and forested land cover	RMSE, NSE, RMSE/SD, PBIAS
12	Cole et al., 2014	99 years: 1913–2012 (varied by station)	Delaware river	Daily	Local / Watershed	AT, wind speed, solar radiation, barometric pressure, dew point temp., relative humidity, sky cover, daily PPT	RMSE, NSE, PBIAS, Willmott index of agreement (d)
13	Hadzima- Nyarko et al. 2014	19 years: 1991–2010	Drava river, Croatia.	Daily	Local / Watershed	Daily mean AT, SWT	RMSE, normalized RMSE %, r, NSE, NSE-A: adjusted coefficient of efficiency
14	Piotrowski et al., 2015	17 years: 11/01/1990– 10/31/2000	Tarnowska, Spurasl, Biana Rivers, Poland	Daily	Local / Watershed	AT, sun declination	MSE
15	Rabi et al., 2015	19 years: 1991–2010	Drava river, Croatia.	Daily	Local / Watershed	Daily mean AT data, Daily SWT data	RMSE, RMSE %, r, NSE, NSE-A

16	Jeong et al., 2016	18 years: 1991–2009	Soyang river, South Korea	Hourly	Local / Watershed	Hourly air temp., hourly SWT, hourly rainfall, wind speed, wind direction	RMSE, NSE (called NASH), r, d
17	Kwak et al., 2016	3 years: 2011–2014, Summer	Fourche River, Quebec, Canada	Hourly data aggregated to Daily	Local / Watershed	SWT, AT, solar radiation, relative humidity, wind speed	RMSE, PBIAS, NSE
18	Laanaya et al., 2017	10 years: 2005–2015, (varied by station)	Sainte- Marguerite River, Canada	Hourly data aggregated to Daily	Local / Watershed	SWT, AT and stream discharge	RMSE, PBIAS, NSE (called NSC)
19	Liu et al., 2018	7 years: 2007 2014	Eel River, Coastal CA	Daily	Regional	AT, SWT	NSE, R ² , RMSE (for ANN model)
20	Voza and Vukovic, 2018	10 years: 2005–2015	Morava River, Serbia	Monthly	Regional	SWT, water quality param. (DO, pH, etc.)	R ² , Spearman's <i>rho</i>
21	Temizyurek and Dadaser-Celik, 2018	12 years: 1995–2007	Kizilirmak river, Turkey	Monthly	Local / Watershed	AT, wind speed, relative humidity, SWTs	R^2 , RMSE
22	Graf et al., 2019	39 years: 1984–2013	Warta River, Poland	Daily	Regional	AT, SWT	R ² , RMSE, MAE
23	Zhu, Heddam, Nyarko et al., 2019	32 years: 1984–2016, (varies by station)	Drava River, Croatia; Dischmaback, Mentue, Rhone rivers, Switzerland	Daily	Local / Watershed	AT, discharge, and components of the Gregorian calendar	r d, RMSE, MAE
24	Zhu, Heddam, Wu et al., 2019	16 years: 2001–2017 (varies by station)	Cedar River (WA), Fanno Creek (OR), Irondequoit Creek (NY)	Daily	Local / Watershed	AT, discharge, and DOY	r, d, RMSE, MAE
25	Zhu, Hadzima- Nyarko, Gao et al., 2019	26 years: 1991–2017 (varies by station)	Drava river, Croatia.	Daily	Local / Watershed	Daily SWT, AT	r, d, RMSE, MAE
26	Zhu, Nyarko, Hadzima- Nyarko et al., 2019	26 years: 1991–2017 (varies by station)	Drava river, Croatia; 3 rivers in Switzerland; 3 rivers in U.S.	Daily	Local / Watershed	AT, discharge, DOY	r, d, RMSE, MAE
27	Zhu and Heddam, 2019	16 years: 2001–2017 (varies by station)	Cedar (WA), Fanno (OR), Irondequoit Creek (NY)	Daily	Local / Watershed	AT, discharge, DOY	r, d, RMSE, MAE
28	Lu and Ma, 2020	May–July 2019	Tualatin River, Oregon, U.S.	Hourly	Local / Watershed	AT, SWT, water quality parameters (DO, ph, etc.)	MAE, RMSE, MAPE, RMSPE, U1, U2
29	Qiu et al., 2020	28 years: 1977–1987, 1993–2011	Yangtze River, China	Daily	Regional	AT, discharge, DOY	MAE, RMSE, NSE, R ²
30	Krishnaraj & Deka, 2020	12 years: 2005–2017	Ganga River Basin, India	Monthly	Local / Watershed	20 parameters see Table 1, includes: SWT	Spearman's rho
31	Rahmani et al., 2020	4 years: 2010–2014	118 basins in CONUS, no	Daily	Point- scale	SWT, discharge	RMSE, median RMSE, PBIAS,

			dams		across CONUS		NSE
32	Feigl et al., 2021	1977–2015 (varied by station)	Ten Austrian catchments	Daily	Regional	Daily mean/max/min AT, runoff, PPT, and global radiation.	MSE, MAE, RMSE
33	Piotrowski et al., 2021	46 years: 1971–2017	3 from NW U.S., 2 from Poland	Daily	Local / Watershed	AT and discharge	MSE, NSE (called NSC), AIC, BIC
34	Abdi et al., 2021	June 10–July 18, 2016	Los Angeles river, CA, U.S.	Hourly	Local / Watershed	AT, relative humidity, wind speed, barometric pressure	MAE, RMSE, R ²
35	Graf and Aghelpour, 2021	20 years: 11/ 1989– 11/2009	Warta River, Poland	Daily	Regional	Time lag in SWT	R ² , RMSE, Normalized RMSE, MAE, NSE (called NS).
36	Rajesh and Rehana, 2021	1989-2014	Tunga-Bhadra river, Shimoga Station, India	Daily, also monthly, seasonal	Local/ Watershed	AT (avg./max/min), SWT	R ² , MSE, RMSE, RSR, NSE, MAE, KGE
37	Rahmani et al., 2021	6 years: 2010-2016	455 stations across the CONUS, includes dams	Daily	Point- scale across CONUS	Mean daily discharge, SWT, meteorologic forcing data (min and max daily AT, precip., Solar radiation, vapour pressure and day length), and various watershed attributes	RMSE, bias, unbiased RMSE (ubRMSE), <i>r</i> , and NSE
38	Heddam, Kim et al., 2022	53 years: 1961–2014	Orda river, many stations, Poland	Daily	Regional	AT, DOY	RMSE, MAE, NSE, r
39	Jiang et al., 2022	3 years: 2015–2018	Jinsha River Basin	Daily	Regional	Daily avg./max/min AT, dew temp., discharge, DOY, wind speed, PPT.	RMSE, R ² , NSE
40	Sadler et al., 2022	34 years: 1980–2014	CONUS	Daily	Point- scale across CONUS	Daylight, PPT, short- wave radiation, snow- water equivalent, AT, vapor pressure	NSE, t-scores of the NSEs
41	Weierbach et al., 2022	40 years: 1980–2020	Mid-Atlantic, Pacific NW catchments	Monthly	Regional	AT, solar radiation, discharge, month of year, drainage area and dam info	RMSE, MAE, NSE, PBIAS
42	Zanoni et al., 2022	20 years: 1994–2014	Adige river, NE Italy	Daily	Regional	SWT, and other water quality parameters (As, Cl, DO, etc.)	PBIAS, NSE, RMSE, KGE
43	Heddam, Ptak et al., 2022	27 years: 1987 - 2014	Kaczawa, Krzna, Orla, Wieprz, Nida, stations Poland	Daily	Regional	SWT, mean AT, DOY	RMSE, MAE, NSE, R ²
44	Hani et al., 2023	2020, 2021: Summer months	Sainte- Marguerite River, Canada	Hourly	Local	Discharge, AT, SWT,	Mean, Median, SD, RMSE, r-RMSE, NSE, PBIAS, r- Bias
45	Khosravi et al., 2023	21 years: 2006–2022	Delaware River, New Jersey, U.S.	Varied due to different duration	Local / Watershed	SWT, discharge, water level, DO, turbidity, pH, specific conductance	RMSE, R ² , NSE (for loss function)

46	Topp et al., 2023	42 years: 1980–2022	Delaware River Basin (DRB), U.S.	Daily	Regional	AT, PPT, shortwave radiation, potential ET, stream width, slope, elevation	RMSE, NSE, bias
47	Rehana and Rajesh, 2023	37 years: 1980–2017 (varies by station)	India: 7 catchments	Monthly	Regional	Monthly min. and max AT, SWT	NSE, KGE, RSR, RMSE, MAE.
48	Siegel et al., 2023	33 years: 1990 - 2023	Pacific Northwest	Daily	Regional	SWT, Daily mean AT, daily modeled snow- pack data SWE, daily discharge	RMSE, MAE
49	Wade et al., 2023	4 years: 2016–2020	CONUS	Monthly	Point- scale, CONUS	23 variables, includes: AT, monthly PPT, discharge	RMSE normalized, R^2
50	Souaissi et al., 2023	15 years, 1960s–2023: May–Oct.	24 river temp. stations, Switzerland	Monthly	Regional	14 variables include: catchment area, mean elevation, stream length, max annual AT, summer PPT	r, R ² , BIAS, RMSE, RRMSE: area, mean, etc.
51	Drainas et al., 2023	1–41 years, 1980–2021 (varied by station)	16 headwater streams, Bavaria, Germany	Daily	Regional	AT, DOY, discharge, water level and sunshine per day	RMSE, r, PBIAS
52	Rozos, 2023	1992–2014 (varied by station)	Arno River, Sieve River (Italy), Bakas River (Greece)	Daily, Hourly	Local / Watershed	Mean Areal Daily rainfall, ET, discharge, average annual rainfall/PPT	MSE, PBIAS
53	Rahmani et al., 2023	6 years: 2010–2016	CONUS, (GAGES-II)	Daily	CONUS	33 attributes including AT, SWT, DOY, etc.	PBIAS, NSE, KGE, RMSE (loss function, error minimization)
54	Zwart, Oliver, et al. 2023	36 years: 1985-2021	Delaware River Basin, upper	Daily	Regional	5 drivers: grid MET daily min and max AT, daily average downward shortwave radiation, NWIS daily avg. reservoirs release rate, observations of yesterday's max SWT	RMSE, BIAS, Continuous Ranked Probability Score (CRPS)
55	Zwart, Diaz, et al., 2023	38 years: 1982-2020	Delaware River Basin, upper	Daily	Regional	Sub-daily observations of SWT, gridMET daily min AT, relative humidity, daily mean downward shortwave radiation, wind speed, daily max AT, daily accumulated PPT	RMSE, BIAS, Continuous Ranked Probability Score (CRPS)
56	He et al., 2024	40 years: 1980–2020	Delaware River (NJ), Houston River (Texas)	Daily	Regional	Discharge, SWT, AT	RMSE, NSE
57	Majerska et al., 2024	10 years: 2012–2022, June to September	Fuglebekken stream, Svalbard, Norway	Daily	Local/ Watershed	SWT, water level, ground temperature, radiation	KGE

5 Table S2. Data analysis techniques and/or ML algorithms used by studies. Reported training/calibration/validation included directly from studies.

#	Reference	Data Analysis Technique OR ML Algorithms Used	Training (Zhu et al. 2019 studies label it as "calibration"), validation, testing
1	Foreman et al., 2001	Linear regression and neural networks (NNs)	4 years, 1995–1998, training, 21 years, 1953–1994 validation
2	Risley et al., 2003	Feed-forward NN, three sets of NN models	33 % training, 67 % testing. Six of 148 streams randomly removed, used for validation.
3	Sivri et al., 2007	Multi-Layer Perceptron (MLPNN)	2001: training, 2002: testing
4	Tao et al., 2008	Back-propagation Neural network (BPNN)	14 years, 1986–1999, training, 4 years, 2000–2003, testing
5	Chenard and Caissie, 2008	MLPNNs models w/ variety of input parameters: 4 predict mean daily SWT and 4 predicted max daily SWT	Training: 5 years, Testing: 2 years, Validation: 4 years
6	Sahoo et al., 2009	NN, statistical model (multiple regression analysis (MRA), and chaotic non-linear dynamic algorithms (CNDA).	Training, validation: 3 years, 1999–2001 Testing: 1 year, 2002
7	St-Hilaire et al., 2012	K-nearest neighbor (K-nn)	"The relatively small sample size precluded us from performing a split sample validation".
8	Hong and Bhamidimarri, 2012	Two DNFLMS modes: (1) online one-pass clustering, extended Kalman filtering algorithm (mode 1); and (2) extended Kalman filtering with BP algorithm trained to MSE.	Training 2.5 months, testing 1.5 months
9	Grbic et al., 2013	Combination of Gaussian process regression (GPR) models	Training: 4 years, 1993–1996 Testing: 2 years, 1997–1998
10	Hebert et al., 2014	NN	Training: 4 years, 1998–2002 Validation: 5 years, 2003–2007
11	DeWeber and Wagner, 2014	Four variations of FFNN models	90 % training, 10 % validation, 2010 used as testing year
12	Cole et al., 2014	Generalized Least Squares w/ cosine (GLScos), AutoRegressive Integrated Moving Average (ARIMA), NN	Training: 4 years, 2008–2011, tested: 1 year, 2012
13	Hadzima- Nyarko et al. 2014	MLPNN and a radial basis function network (RBFNN)	80 % training, 20 % testing
14	Piotrowski et al., 2015	MLPNN, product-unit NN, wavelet NN, adaptive- network-based fuzzy inference systems (ANFIS) and K-nn	Two sites training/validation/testing: 41/24/35, 40/30/30
15	Rabi et al., 2015	Six different MLPNNs	80 % training, 20 % testing
16	Jeong et al., 2016	FFNN	Not Available
17	Kwak et al., 2016	(a) Deterministic model CEQUEAU; (b) ARMAX (AutoRegressive-Moving Average with eXogenous terms) stochastic model; and (c) NARX (Nonlinear AutoRegressive model w/ eXogenous input).	75 % of data for training/calibration and 25 % of data for validation
18	Laanaya et al., 2017	Generalized Additive Model (GAM), Logistic Model (LM), Residuals regression model (RRM), and Linear regression model (LRM)	Not explicitly stated
19	Liu et al., 2018	Integrated model of NN and VIC (not ML)	1.5 – 5 years (calibration), 0.75 – 2 years (validation)

20	Voza and	MLPNN	Not explicitly stated
	Vukovic, 2018		1 3
21	Temizyurek and Dadaser- Celik, 2018	NN	50 % training, 25 % testing, and 25 % used as holdout
22	Graf et al., 2019	Wavelet Transform (WT) and NN hybrid model, using 4 mother wavelets: Daubechies, Symlet, discrete Meyer, and Haar. Tested against MLPNN.	Stations used for: Training (4 of 9), testing (3 of 9), validation (2 of 9)
23	Zhu, Heddam, Nyarko et al., 2019	4 ML models: (MLPNN) and (ANFIS) – w/ fuzzy c-mean clustering (ANFIS_FC), ANFIS w/ grid partition (ANFIS_GP), and ANFIS w/ subtractive clustering method (ANFIS_SC),	Varied by station: Training data: 6–20 years, ~ 67–73 %, Validation data: 3–10 years, 27–33 %
24	Zhu, Heddam, Wu et al., 2019	Extreme learning machine (ELM), MLPNN and MLR models.	Training data: 8–11 years, ~70–75 %, Validation data: 3–4 years, ~20–25 %
25	Zhu, Hadzima- Nyarko, Gao et al., 2019	Hybrid models combining WT and NN (WTNN) and WT with ANFIS (WTANFIS), NN, ANFIS	Calibration/training: Botovo, 1991–2008, ~17 years (~70% train.). Donji 1993–2008, 15 years (~68% train.). Validation: 2009–2016, 7 years for Botovo (~30% val.), Donji (~32% val.)
26	Zhu, Nyarko, Hadzima- Nyarko et al., 2019	(FFNN), (GPR), and (DT) models	Varied by station: training data: 6–20 years, ~ 67–73 %, validation: 3–10 years, ~ 27–33 %
27	Zhu and Heddam, 2019	Optimally pruned extreme learning machine (OPELM) and RBFNN	Training data: 8–11 years, ~ 70–75 %, Validation data: 3–4 years, ~ 20–25 %
28	Lu and Ma, 2020	Extreme gradient boosting (XGBoost) and random forest (RF)	Training/testing: 9:1 ratio
29	Qiu et al., 2020	BP_PSO model variations, based on BPNN (back propagation NN) optimized by PSO (particle swarm optimization) algorithm.	Cuntan: 13/17 years = 76.5 % (training), 4/17 years = 24.5 % (testing), Datong: 7/9 years = 78 % (training), 2/9 years = 22 % testing
30	Krishnaraj and Deka, 2020	k-means cluster analysis (CA), principal component analysis (PCA) and correlation	Not explicitly stated
31	Rahmani et al., 2020	LSTM	4 years, 67 %, training 2 years, 33 % testing
32	Feigl et al., 2021	Step-wise linear regression, RF, XGBoost, FFNNs, 2 (RNNs): LSTM and recurrent gated unit (GRU)	60 % training, 20 % validation, 20 % testing
33	Piotrowski et al., 2021	MLPNNs, PUNN, extended logistic regression and air2stream (not ML)	67 % training, 33 % validation
34	Abdi et al., 2021	Four models: single-layer (SLR), multilayer linear regression (MLR) and SLR and MLR-NN	80 % training, validation, and 20 % testing
35	Graf and Aghelpour, 2021	Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA). Autoregressive Integrated Moving Average (ARIMA), ANFIS, Radial Basis Function (RBF) and Group Method of Data Handling (GMDH).	75 % training, 25 % testing
36	Rajesh and Rehana, 2021	ML models - Ridge regression (RR), K-nn, Random forest, and SVR	Not explicitly stated, cross-validation mentioned.
37	Rahmani et al., 2021	LSTM models	Training: 10/01/2010 - 09/30/2014 (~67%) Testing: 10/01/2014 - 09/30/2016 (~33%)
38	Heddam, Ptak et al., 2022	K-nn, least square support vector machine (LSSVM), generalized regression (GRNN), cascade correlation artificial (CCNN), relevance vector machine (RVM), and locally weighted polynomials regression (LWPR).	70 % training, 30 % testing

39	Jiang et al., 2022	Decision trees (DT), RF, gradient boosting (GB), adaptive boosting (AB), SVR, MLPNN	60 % training, 40% testing
40			Years splits (Training/validation/testing): Exp. A, (25/4/4), Exp. B, (25/4/4), Exp. C, (2/4/4), Exp. D performance testing (31, 1, 1)
41	Weierbach et al., 2022 SVR and XGBoost		70 % training, 30 % testing
42	Zanoni et al., 2022	RF and FFNN, linear regression model	70 % training, 30 % testing
43	Heddam, Kim et al., 2022	Bat algorithm optimized extreme learning machines ELM (Bat-ELM), (MLPNN), (CART) and (MLR).	70 % training, 30 % validation
44	Hani et al., 2023	Multivariate adaptive splines regression (MARS), generalized additive model (GAM), support vector machine (SVM), and (RF)	Not explicitly stated
45	Khosravi et al., 2023	LSTM	Roughly 70 % training, 30 % validation, not explicitly stated
46	Topp et al., 2023	Process-guided deep learning (PGDL): Recurrent graph convolution network (RGCN), temporal convolution graph model (Graph WaveNet)	Two scenarios: Temp. shift 10/5/25 Drought 25/5/10
47	Rehana and Rajesh, 2023	LSTM, integrated w/k-NN bootstrap resampling (k-NN+LSTM), WT-LSTM. Air2stream (not ML)	~77–89 % training, ~11–23 % testing (in years): 18/4; 10/3; 24/3; 8/2; 11/2; 24/3; 11/3.
48	Siegel et al., 2023	Generalized Additive Model (GAM)	leave-one-year-out cross validation; leave-one-region-out cross-validation
49	Wade, Kelleher & Hannah, 2023	RF	80 % training, 20 % testing
50	Souaissi et al., 2023	RF, XGBoost, w/ non-parametric MARS and GAM.	Not explicitly stated
51	Drainas et al., 2023	NN	90 % training, 10 % testing
52	Rozos, 2023	RNN w/ LSTM, K-nn w/ Bluecat	70 % training, 30 % testing
53	Rahmani et al., 2023	LSTM, SN-TEMP (process-based model)	67 % training (4 years), 33 % testing (2 years)
54	Zwart, Oliver, et al. 2023	LSTM	Varied, not explicitly stated
55	Zwart, Diaz, et al., 2023	LSTM, RGCN	Year splits (Training/validation/testing): 1982-2020 / 2019 / 04-2021 to 09-2022
56	He et al., 2024	LSTM+GNN	67 % training, 33 % validation
57	Majerska et al., 2024	GPR	Five-fold cross-validation; unclear % training vs % testing/validation