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Abstract. As climate change continues to affect stream and
river (henceforth stream) systems worldwide, stream water
temperature (SWT) is an increasingly important indicator of
distribution patterns and mortality rates among fish, amphib-
ians, and macroinvertebrates. Technological advances tracing
back to the mid-20th century have improved our ability to
measure SWT at varying spatial and temporal resolutions for
the fundamental goal of better understanding stream function
and ensuring ecosystem health. Despite significant advances,
there continue to be numerous stream reaches, stream seg-
ments, and entire catchments that are difficult to access for a
myriad of reasons, including but not limited to physical lim-
itations. Moreover, there are noted access issues, financial
constraints, and temporal and spatial inconsistencies or fail-
ures with in situ instrumentation. Over the last few decades
and in response to these limitations, statistical methods and
physically based computer models have been steadily em-
ployed to examine SWT dynamics and controls. Most re-
cently, the use of artificial intelligence, specifically machine
learning (ML) algorithms, has garnered significant attention
and utility in hydrologic sciences, specifically as a novel tool
to learn undiscovered patterns from complex data and try to
fill data streams and knowledge gaps. Our review found that
in the recent 5 years (2020–2024), more studies using ML for
SWT were published than in the previous 20 years (2000–
2019), totaling 57. The aim of this work is threefold: first, to
provide a concise review of the use of ML algorithms in SWT
modeling and prediction; second, to review ML performance
evaluation metrics as they pertain to SWT modeling and pre-
diction to find the commonly used metrics and suggest guide-
lines for easier comparison of ML performance across SWT
studies; and, third, to examine how ML use in SWT model-

ing has enhanced our understanding of spatial and temporal
patterns of SWT and examine where progress is still needed.

1 Introduction

Water temperature in a stream or river plays a vital role in
nature and society, regulating dissolved oxygen concentra-
tions (Poole and Berman, 2001), biochemical oxygen de-
mand rates, and chemical toxicities (Cairns et al., 1975; Pa-
tra et al., 2015). Additionally, SWT is an important indicator
of cumulative anthropogenic impacts on lotic environments
(Risley et al., 2010). Observations of SWT changes over time
can reveal the effects of streamflow regulation, riparian al-
teration (Johnson and Jones, 2000), and large-scale climate
change (Barbarossa et al., 2021) on local ecosystems. From
an ecological standpoint, SWT strongly influences (Ward,
1998) the health, survival, and distribution of freshwater fish
(Ulaski et al., 2023; Wild et al., 2023), amphibians (Rogers
et al., 2020), and macroinvertebrates (Wallace and Webster,
1996). As climate change progresses, SWT will be an in-
creasingly critical proxy for ecosystem health and function
both locally and nationally.

1.1 SWT modeling in the 21st century

Technological advances since the turn of the 20th century
have improved our ability to measure SWT in an affordable
and dependable manner at varying spatial and temporal res-
olutions (Benyahya et al., 2007; Dugdale et al., 2017). De-
spite significant advances in the last 100 years, many stream
reaches, stream segments, and entire catchments remain dif-
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ficult to access for a myriad of reasons (Ouellet et al., 2020),
including but not limited to the following: physical limita-
tions, i.e., streams may be in private property, remote, or
dangerous-to-access areas; financial constraints, i.e., access
may be limited by monetary resources or lack thereof; and
temporal limitations such as uncertainties and inconsisten-
cies in the continuity of measurements or unforeseen equip-
ment loss or failure (Webb et al., 2015; Isaak et al., 2017). In
response to these limitations, statistical methods and phys-
ically based computer models have been steadily employed
over the last few decades to support the advancement of sci-
entific understanding of stream form and function as well as
subsequent implications for water management (Cluis, 1972;
Caissie et al., 1998; DeWeber and Wagner, 2014; Isaak et al.,
2017).

Aided by the continued development of computers and
the internet, physical and statistical computer models have
gained prominence outside of academia and are more com-
monly being used by stakeholders and local groups to ad-
dress a myriad of hydrology challenges (Maheu et al., 2016;
Liu et al., 2018; Tao et al., 2020; Rogers et al., 2020). At the
same time, the problem-solving success of machine learn-
ing (ML), which falls under the umbrella of artificial intelli-
gence, has become increasingly popular in hydrologic sci-
ences in the last few years (DeWeber and Wagner, 2014;
Xu and Liang, 2021). Artificial intelligence (AI) describes
technologies that can incorporate and assess inputs from an
environment, learn optimal patterns, and implement actions
to meet stated objectives or performance metrics (Xu and
Liang, 2021; Varadharajan et al., 2022). As a subset of AI,
the goal of ML algorithms and models is to learn patterns
from complex data (Friedberg, 1958). A global call to better
predict and prepare for near- and far-future hydrologic con-
ditions has led researchers in the last few decades to use ML
algorithms to model hydrologic processes at various tempo-
ral and spatial scales (Poff et al., 1996; Solomatine et al.,
2008; Cole et al., 2014; Khosravi et al., 2023). For exam-
ple, a type of ML called artificial neural networks (ANNs)
have been used since the 1990s in many subfields of hydrol-
ogy, such as streamflow predictions (Karunanithi et al., 1994;
Poff et al., 1996), rainfall-runoff modeling (Hsu et al., 1995;
Shamseldin, 1997), subsurface flow and transport (Morshed
and Kaluarachchi, 1998), and flood forecasting (Thirumala-
iah and Deo, 1998). For SWT modeling, however, the use
of ML algorithms such as ANNs has only recently garnered
interest (Zhu and Piotrowski, 2020).

1.2 Study objective

The current work includes an extensive literature review of
studies that used ML algorithms and models for river and
SWT modeling, hindcasting, and forecasting. The intent of
this review is twofold: (1) to introduce ML for hydrologists
who have modeling experience and are interested in pursu-
ing ML use for their SWT studies and (2) to provide a broad

overview of machine learning applications in SWT. For ML
experts, we think that this review could also prove useful as
a reference for how ML has been applied in the field of SWT
modeling and where improvement is needed. Overall, this
article aims to serve as a bridge between hydrologists and
machine learning experts. Our review includes papers cited
by Zhu and Piotrowski (2020), who previously conducted a
study of ANNs used in SWT modeling; however, we pro-
vide a comprehensive examination of peer-reviewed journals
that use any type of artificial intelligence or ML algorithm
to model or evaluate river or SWT. This review’s first ob-
jective is to provide a concise review of ML algorithm use
in SWT modeling. Secondly, our goal is to examine the ML
performance evaluation metrics used in SWT modeling and
find the most-used metrics and suggest guidelines for clearer
comparison of ML performance. The third objective is to dis-
cuss the community’s use of ML to address physical system
understanding in SWT modeling. Overall, this review aims
to serve as a critical assessment of the state of SWT under-
standing given the increasing popularity of ML use in SWT
modeling.

2 Overview: stream water temperature model types

2.1 SWT statistical (also stochastic or empirical)
models

In the 1960s, considerable interest grew in the prediction of
SWT, particularly in the western United States (US) due to
increased awareness of environmental quality issues (Ward,
1963; Edinger et al., 1968; Brown, 1969). The creation
of large dams, daily release of heated industrial effluents,
growing agricultural waste discharge, and forest clear-cutting
could influence downstream SWT. However, the extent of
such influence remained poorly understood and difficult to
test at large spatial and temporal scales (Brown, 1969). From
the 1960s to the 1970s, understanding of the relationship be-
tween SWT and ambient air temperature (AT) was solidified,
and scientists began to increasingly use statistical methods to
examine the air–water relationships in stream environments
(Morse, 1970; Cluis, 1972). Statistical (also stochastic or em-
pirical) models are governed by empirical relations between
SWT and their predictors, which require fewer input data. An
example of such progress took place in Canada, where re-
searchers created an autoregressive model to calculate mean
daily SWT fluctuations using 6 months of data from the
summer and winter months of 1969 (Cluis, 1972). Cluis
(1972) further said that their model was transferrable to other
streams of comparable size. The use of statistical methods in
SWT modeling became increasingly common in the latter
half of the 20th century due in large part to minimal data re-
quirements (Benyahya et al., 2007). For example, scientists
in Europe used limited data and statistics to examine the in-
fluence of atmospheric and topographic factors on the tem-
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perature of a small upland stream (Smith and Lavis, 1975).
In Australia, scientists interested in finding limits for reaches
of streams downstream from thermal discharges found a sim-
ple method that could predict SWT based solely on site alti-
tude and AT or upstream SWT (Walker and Lawson, 1977).
In Canada, SWT was predicted using a stochastic approach,
which included the use of Fourier series, multiple regression
analysis, Markov processes, and a Box–Jenkins time series
model (Caissie et al., 1998). In the 21st century, statistical
methods continue to be a prominent tool used for SWT mod-
eling and prediction (Ahmadi-Nedushan et al., 2007; Chang
and Psaris, 2013; Segura et al., 2015; Detenbeck et al., 2016;
Siegel and Volk, 2019; Ulaski et al., 2023; Fuller et al., 2023).
We refer the reader to Benyahya et al. (2007) for a compre-
hensive review of SWT statistical models and approaches.

2.2 SWT physically based (also process-based,
deterministic, mechanistic) models

While statistical methods can be straightforward to use and
require minimal in situ data for first analysis (Benyahya et
al., 2007), limitations and uncertainty with regards to SWT
predictions are possible, specifically when trying to under-
stand the controls of the energy transfer mechanisms re-
sponsible for trends (Dugdale et al., 2017). To address these
shortcomings and with the introduction of personal com-
puters in the late 1960s (Dawdy and Thompson, 1967),
researchers developed computer models and software pro-
grams that tried to address the more fundamental hydrology
questions founded in physics and natural processes (Theurer
et al., 1984; Bartholow, 1989). One example of such progress
was an SWT prediction one-dimensional computer model
that used a simplified energy conservation equation to pre-
dict SWT for the upper reaches of the Columbia River in the
Pacific Northwest of the US during July 1966 (Morse, 1970).
These models are described as being physically based or
process-based (alternatively called “deterministic” or “mech-
anistic” models).

Due to the continued lack of sufficient in situ observa-
tions and resources with which to undertake field studies in
SWT science (Dugdale et al., 2017), physically based mod-
els became increasingly used. From the end of the 20th cen-
tury through the present, they are considered one of the best
available options in generating predictions of SWT, particu-
larly at a localized scale (Dugdale et al., 2017). Physically
based models became useful enough that government agen-
cies introduced their own models to encourage uniformity. In
the 1980s, the US Geological Survey (USGS) introduced a
physically based model that simulated SWT called SNTemp
(Theurer et al., 1984; Bartholow, 1989). A few years later,
the US Environmental Protection Agency (EPA) introduced
SHADE-HSPF for similar purposes (Chen et al., 1998a, b).
Where available, academic scientists coupled field measure-
ments with physically based numerical models. For exam-
ple, scientists in Minnesota created a numerical model, called

MNSTREM, based on a finite-difference solution of the non-
linear equation to predict SWT at 1 h increments for the
Clearwater River (Sinokrot and Stefan, 1993). Similarly, aca-
demic scientists in Canada introduced CEQUEAU, a wa-
ter balance type of model which incorporated vegetation
and soil characteristics to solve for SWT (St-Hilaire et al.,
2000). Physically based models became commercially avail-
able in the 2000s, one example being the MIKE suite of
models, which were created to solve the heat and advection–
dispersion equation to simulate both surface and subsurface
water dynamics, created by the DHI consulting group (Jaber
and Shukla, 2012; Loinaz et al., 2013). In addition to the
models mentioned, over a dozen more physically based mod-
els were created and used between 1990 and 2017 (Dugdale
et al., 2017). For a more detailed review of physically based
SWT models, we refer the reader to Dugdale et al. (2017).

2.3 Artificial intelligence models in SWT modeling

Initial discussion of artificial intelligence can be traced back
to 1943, when McCulloch and Pitts presented a computer
model that functioned like neural networks of the brain
(McCulloch and Pitts, 1943). In 1958, R.M. Friedberg pub-
lished A Learning Machine: Part 1 in IBM’s Journal of Re-
search and Development, one of the first to describe the con-
cept of “machine learning”. Friedberg hypothesized that ma-
chines could be taught how to learn such that they devel-
oped the capability to improve their own performance to the
point of completing tasks or meeting objectives (Friedberg,
1958). Sixty years later, ML has grown as a field of study in
academia and as an area of great interest in society, the latter
due in large part to the popularity of large language models
(a type of machine learning that we will not discuss here),
such as ChatGPT (OpenAI, Inc., 2025), Copilot (Microsoft,
Inc., 2025), and Gemini (Google, 2025).

In the last decade, computing advances in AI have started
to offer several advantages for using machine learning (ML)
in hydrology that are comparable to physically based mod-
els (Cole et al., 2014; Rehana and Rajesh, 2023). In con-
trast to traditional physically based models, the code underly-
ing ML models is generally open-source and publicly avail-
able, allowing for near-real-time accessible advances and
user feedback, whereas the source code for some physically
based models may be inaccessible to the public due to be-
ing privately managed (MIKE suite of models), or the model
software may be publicly available but could take years to
publish updates (USGS MODFLOW, Simunek’s HYDRUS).
One advantage that has made ML increasingly appealing in-
cludes its ability to learn directly from the data (i.e., data-
driven), which can be useful when the underlying physics are
not fully understood or are considered too complex to model
accurately.

Additionally, ML models are more efficient in making pre-
dictions compared to the time-intensive solvers of physically
based models. ML models can also handle the challenge of
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scalability, which means managing large datasets and seam-
lessly deploying across various computer platforms and ap-
plications (Rehana and Rajesh, 2023). Air2stream, a hybrid
statistical–physically based SWT model (Toffolon and Pic-
colroaz, 2015; Piccolroaz et al., 2016), initially outperformed
earlier ML models such as Gaussian process regression (Zhu
et al., 2019a). However, in the last few years, Air2stream has
had its performance matched and even exceeded by recent
neural network models (Feigl et al., 2021; Rehana and Ra-
jesh, 2023)

Finally, with computer processing power improving and
the emergent field of quantum computing, there is a strong
belief that using ML and by extension AI in science applica-
tions will drive innovation to the point where natural patterns
and insights not currently apparent in physical modeling will
be uncovered (Varadharajan et al., 2022). Thus, while physi-
cally based models are considered invaluable for their inter-
pretability and grounding in established physics, ML models
have the potential for growth in various fields of hydrology,
where they can be used to first complement and eventually
lead as powerful tools for prediction, optimization, and un-
derstanding in increasingly complex and data-rich environ-
ments.

For this review, we differentiate between traditional ML
and newer ML, where the former includes approaches that
have been used for decades in hydrologic modeling, i.e., clus-
ter analysis, support vector machine, and shallow neural net-
works. We define newer ML as that introduced in hydro-
logic modeling in recent years, such as the deep learning long
short-term memory NNs, extreme learning machine, and ML
hybridizations. The following sections provide an overview
of ML types and learning techniques. Finally, we assume that
readers have a very basic understanding of the differences
between machine learning types such as supervised, semi-
supervised, and unsupervised learning and refer the reader to
Xu and Liang (2021) for a nice overview.

2.3.1 Traditional ML algorithms

K-nearest neighbors

K-nearest neighbors (K-nn) is a versatile supervised ML
algorithm (Fix and Hodges, 1952; Cover and Hart, 1967)
used to solve nonparametric classification and regression
problems. The K-nn algorithm uses proximity between
data points to make classifications or evaluations about the
grouping of any given data point. K-nn gained popularity
in the 2000s due to its simplicity in implementation and
understanding, making it readily accessible to hydrologic
researchers and practitioners. For example, St.-Hilaire et
al. (2011) used various K-nn model configurations to model
SWT for the Moisie River in northern Quebec, Canada, find-
ing that the best K-nn model required prior-day SWT data
and day of year (DOY), an indicator of seasonality. Advan-
tages of K-nn include its non-assumptions of the underlying

distribution of the data, allowing it to handle nonlinear com-
plexities without requiring a solid model structure as is the
case for some physical models (St-Hilaire et al., 2011). There
are some disadvantages of K-nn: it is computationally inten-
sive and may require extensive cross-validation; performance
can be affected by irrelevant and/or redundant features; and
due to its high memory and computational needs it is imprac-
tical for large-scale applications, i.e., scalability issues (Ac-
ito, 2023). For example, Heddam et al. (2022b) compared
K-nn with other ML algorithms, finding that K-nn was out-
performed by other MLs such as least-squares support vector
machine and neural networks. The use of K-nn may still be
reasonable for simple, local cases but we suggest other MLs
for more complex or larger use cases.

Cluster analysis and variants

Cluster analysis is a category of unsupervised ML methods
used to create groups from an unlabeled dataset. Clustering
methods use distance functions such as Euclidean distance,
Manhattan distance, Minkowski distance, cosine similarity,
and others to group data into clusters (Irani et al., 2016). The
analysis separates data into groups of maximum similarity,
while also trying to minimize the similarity from group to
group (Xu and Liang, 2021). In SWT modeling, studies have
used cluster analysis to try a reduction of a dataset prior to as-
sessment (Voza and Vuković, 2018) and/or to find spatiotem-
poral patterns in a dataset (Krishnaraj and Deka, 2020). An-
other popular clustering technique is discriminant analysis,
which tries to find parameters that are most significant for
temporal differentiation between rendered periods (Voza and
Vuković, 2018). K-means, a type of unsupervised ML, is a
clustering algorithm that finds k number of centroids in the
dataset and distributes each respective data value to the near-
est cluster while keeping the smallest number of centroids
possible (Krishnaraj and Deka, 2020). Krishnaraj and Deka
(2020) used K-means to organize spatial grouping for wa-
ter quality monitoring stations for dry and wet regions along
the Ganges River basin in India to identify whether pollution
patterns could be discerned.

While cluster analysis and discriminant analysis are gen-
erally used to reduce datasets, another technique, the princi-
pal component analysis (PCA) (or factor) test, is applied to
assess dominant factors in datasets. Mathematically, princi-
pal component analysis (PCA) is a statistical unsupervised
ML technique that uses an orthogonal transformation (a lin-
ear transformation that preserves lengths of vectors and an-
gles) to convert a set of variables from correlated to uncor-
related (Krishnaraj and Deka, 2020). Using PCA, Krishnaraj
and Deka (2020) found that certain water quality parame-
ters (dissolved oxygen, sulfate, electrical conductivity) were
more dominant in the dry season compared to the wet sea-
son (total dissolved solids, sodium, potassium, sodium, chlo-
rine, chemical oxygen demand), data which could be used
to cater the monitoring program to the important parameters.
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SWT was not a dominant parameter, likely in part because
the SWT values of large downstream rivers like the Ganges
are generally less variable due to their larger volume and
stronger thermal buffer.

Support vector machine and regression

Support vector machine (SVM) is a supervised learning tech-
nique used for classification, regression, and outlier detec-
tion. The aim of SVM is to find a hyperplane (or the deci-
sion surface) in an N -dimensional space (N is the number
of features) that best separates labeled categories, or support
vectors (Cortes and Vapnik, 1995). One of the advantages
of SVM is that it seeks to minimize the upper bound of the
generalization error instead of the training error (Cortes and
Vapnik, 1995). A big disadvantage is that it does not perform
well with large datasets due to the likelihood of greater noise,
which would cause support vectors to overlap, making clas-
sification difficult. For a more detailed explanation of SVM,
we refer the reader to Cortes and Vapnik (1995) and Xu and
Liang (2021). In the last few decades, SVM has been coupled
with other ML models to find the best-performing models
for short-term water quality predictions (Lu and Ma, 2020)
and daily SWT modeling (Heddam et al., 2022b). For ex-
ample, Heddam (2022b) used least-squares SVM (LSSVM),
a variant of SVM which takes a linear approach (instead of
quadratic-like SVM), to reach a solution (Suykens and Van-
dewalle, 1999).

A version of SVM used for regression tasks is support
vector regression (SVR). SVR attempts to minimize the ob-
jective function (composed of loss greater than a specified
threshold) and a regularization term (Rehana, 2019; Hani et
al., 2023). For further detail on SVR, we refer the reader to
Rehana (2019) and Hani et al. (2023). Using historical data,
SVR has been compared with other ML models that evalu-
ate SWT variability due to climate change (Rehana, 2019),
finding temperature increases less pronounced in the SVR
model. Jiang et al. (2022) compared SVR to other ML mod-
els to forecast SWT in cascade-reservoir-influenced rivers.
For the cascade-reservoir-operation-influenced study, SVR
was outperformed by random forest (RF) and gradient boost-
ing (Jiang et al., 2022). Focusing on 78 catchments in the
mid-Atlantic and Pacific Northwest hydrologic regions of the
US, researchers used SVR and an ML algorithm called XG-
Boost to predict monthly SWT (Weierbach et al., 2022), find-
ing that SVR significantly outperformed traditional statisti-
cal approaches such as multi-linear regression (MLR) but did
not outperform XGBoost. In addition, the SVR models had
the highest accuracy for SWT across different catchments
(Weierbach et al., 2022). In Quebec, Canada, a comparison
of four ML models that estimated hourly SWT showed that
SVR outperformed by RF (Hani et al., 2023).

A lesser-known form of SVM is its extended form, called
relevance vector machine (RVM). RVM is a form of su-
pervised learning that uses a Bayesian framework to solve

classification and regression problems (Tipping, 2001). Lo-
cally weighted polynomial regression (LWPR) is a form of
supervised ML (Moore et al., 1997) used for learning con-
tinuous nonlinear mappings from real-valued (i.e., functions
whose values are real numbers) inputs and real-valued out-
puts. LWPR works by adapting the model locally to the re-
spective data points, assigning different weights to differ-
ent data points based on data point proximity to the target
(Moore et al., 1997). This type of regression is best employed
when the variance around the regression line is not constant,
thereby suggesting heteroscedasticity.

Gaussian process regression and generalized additive
models

Gaussian process regression (GPR) is a type of nonparamet-
ric supervised learning method used to solve regression prob-
lems. As a Bayesian approach, GPR assumes a probability
distribution over all functions that fit the data. GPR is speci-
fied by a mean function and covariance kernel function which
reflect prior knowledge of the trend and level of smoothness
of the target function (Xu and Liang, 2021). One of GPR’s
advantages is the model’s ability to calculate empirical con-
fidence intervals, allowing the user to consider refitting pre-
dictions to areas of interest in the function space (Grbić et
al., 2013). For more details on GPR, we refer the reader
to Xu and Liang (2021). Grbić et al. (2013) used GPR for
SWT modeling of the river Drava, Croatia, where model no.
1 estimated the seasonal component of SWT fluctuations and
model no. 2 estimated the shorter-term component (Grbić et
al., 2013). A separate study for the river Drava used three
variations of GPR to model SWT, finding that GPR was out-
performed by the physically based, stochastically calibrated
model, Air2stream (Zhu et al., 2019). More recently, Ma-
jerska et al. (2024) used GPR to simulate SWT for a non-
glaciated arctic catchment, Fuglebekken (Spitsbergen, Sval-
bard). Using GPR and another model, the authors identified a
diurnal warming trend of 0.5–3.5 °C per decade through the
summer season, implying a warming thermal regime in the
Fuglebekken catchment (Majerska et al., 2024).

Generalized additive models (GAMs) are a type of semi-
parametric, nonlinear model with a wide range of flexibil-
ity, allowing the model to analyze data without assuming re-
lations between inputs and outputs (Hastie and Tibshirani,
1987). Where GPR uses a probabilistic approach, GAM uses
smoothing functions (i.e., splines) to model the relationship
between a predictor variable and response variable. GAMs
have been used to model SWT for the Sainte-Marguerite
River in eastern Canada (Laanaya et al., 2017; Souaissi et
al., 2023; Hani et al., 2023). Hani et al. (2023) used GAMs
to identify potential thermal refuge areas for Atlantic salmon
in two tributary confluences using sub-hourly observations.
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Decision trees and classification and regression trees

Decision trees (DTs) are a nonparametric, supervised learn-
ing technique. DTs can make predictions or decisions based
on a set of input features and are likely to be more accurate
where the problem can be solved in a hierarchical sequence
of decisions (Breiman, 2001). Classification and regression
trees (CARTs) are a specific type of algorithm that builds
decision trees, where the internal node in the tree splits the
data into two branches (sub-nodes) based on the specified
decision rule (Loh, 2008). While CART can quickly find re-
lationships between data, it is prone to overfitting and can be
statistical unstable, where a small perturbation in the training
data could negatively affect the output of the tree (Hastie et
al., 2001; Xu and Liang, 2021). For a detailed explanation of
DT and CART, we refer the reader to Hastie et al. (2001),
Loh (2008), and Xu and Liang (2021). An SWT modeling
study comparing the output of three model versions of DT,
GPR, and feed-forward neural networks for multiple sites
found that DTs could perform similarly to GPR and feed-
forward neural networks when detailed statistics of air tem-
perature, day of year, and discharge were included (Zhu et al.,
2019a). However, when comparing daily SWT results from
DTs with gradient boosting (GB) or random forest (RF), DTs
generally underperform (Anmala and Turuganti, 2021; Jiang
et al., 2022). Recent studies have compared CART with other
ML algorithms to model water quality parameters (including
SWT), finding that CART underperformed due to overfitting
compared to RF (Souaissi et al., 2023) and extreme learn-
ing machine (ELM) (Heddam et al., 2022a). To combat the
problem of overfitting that can occur using decision trees, the
idea of using multiple trees by bootstrap aggregation (i.e.,
bagging) has gained interest.

Random forests and XGBoost

RF and XGBoost have been used to predict daily SWT pre-
diction for Austrian catchments,with results showing minor
differences in model performance, with a median RMSE dif-
ference of 0.08 °C between tested ML models (Feigl et al.,
2021). Using RF and XGBoost along with four other ML
models, Jiang et al. (2022) estimated daily SWT below dams
in China, finding day of year, streamflow flux, and AT to
be most influential in the prediction of SWT (Jiang et al.,
2022). Weierbach et al. (2022) used XGBoost and SVR to
predict SWT at monthly timescales for the Pacific North-
west region of the US, showing that an ensemble XGBoost
outperformed all modeling configurations for spatiotemporal
predictions in unmonitored basins, with AT identified as the
primary driver of monthly SWT. Zanoni et al. (2022) used
RF and a deep learning model to develop regional models
of SWT and other water quality parameters, with RF perfor-
mance comparatively less effective at detecting nonlinear re-
lationships than the deep learning model, though both models
identified AT as most influential (Zanoni et al., 2022).

Souaissi et al. (2023) tested the performance of RF and
XGBoost with nonparametric models for the regional esti-
mation of maximum SWT at ungaged locations in Switzer-
land, finding no significant differences between the ML per-
formance and the nonparametric model performances, which
was attributed to the lack of a large dataset. Hani et al. (2023)
used four supervised ML models – MARS, GAM, SVM, and
RF – to model potential thermal refuge area (PTRA) at an
hourly time step for two tributary confluences of the Sainte-
Marguerite River in Canada. RF had the highest accuracy at
both locations in terms of hourly PTRA estimates and mod-
eling SWT (Hani et al., 2023). Wade et al. (2023) conducted
a CONUS-scale study using 410 USGS sites with 4 years of
daily SWT and discharge to examine maximum SWT. They
used RF to estimate max SWT and thermal sensitivity (Wade
et al., 2023), finding that AT was the most influential con-
trol followed by other properties (watershed characteristics,
hydrology, anthropogenic impact).

2.3.2 Traditional artificial neural networks (ANNs)

An artificial neural network (ANN) is a type of ML algorithm
inspired by biological neural networks in the brain (McCul-
loch and Pitts, 1943; Hinton, 1992). ANNs learn from data
provided and improve on their own to progressively extricate
higher-level trends or relationships within the given dataset
(Hinton, 1992). Currently, ANNs are capable of data clas-
sification, pattern recognition, and regression analysis. Con-
sidered robust, ANNs can undergo supervised, unsupervised,
semi-supervised, and reinforcement learning. The first study
that utilized ANNs specifically for SWT modeling was pub-
lished around the year 2000. The work was done by re-
searchers interested in hindcasting SWT for a river in Canada
for a 41-year period dating back to 1953 (Foreman et al.,
2001). Since 2000, various types of ANNs have been increas-
ingly used to model SWT at various sites at hourly, daily,
and monthly time steps. For more detail on traditional ANNs,
with descriptions of ANN variants and back-propagation al-
ternatives, we refer the reader to Appendix A.

2.3.3 Newer and recent ML algorithms

We define newer and recent ML algorithms as those intro-
duced or reintroduced in the last decade for SWT modeling.
These ML algorithms include deep (i.e., increased layers)
ANNs such as recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), extreme learning machine
(ELM), ML hybridizations, and subsets.

A “deep” neural network (DNN) has three or more hid-
den layers, MLPNNs being one such example. The purpose
of added layers is to serve as optimizations for greater ac-
curacy. Due to their complex nature, DNNs need extensive
time spent solely on training the network on the input data
(Abdi et al., 2021). Convolutional neural networks (CNNs)
are FFNNs used to recognize objects and patterns in visual
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data (LeCun et al., 1989, 2004). CNNs have convolutional
layers, which hold one or more filters that calculate a local
weighted sum as they analyze the input data. A CNN filter is
a matrix (rows and columns) of randomized number values
that convolves (i.e., moves) through the pixels of an image,
taking the dot product of the matrix of values in the filter
and the pixel values of the image. The dot product is used
as input for the next convolutional layer. To ensure adequate
performance, CNNs must be trained with examples of cor-
rect output in the form of labeled training data and should be
calibrated (i.e., adjusting filters, implement loss functions)
to optimize performance (Krizhevsky et al., 2012). For more
detail on CNN, we refer the reader to LeCun et al. (2004),
Krizhevsky et al. (2012), and Xu and Liang (2021). A dis-
advantage of CNNs is that they are not ideal for interpreting
temporal or sequential information or data that require learn-
ing from past data to predict future output. For interpreting
temporal information or sequential data, recurrent neural net-
works are preferred.

Unlike FFNNs, recurrent neural networks (RNNs) work
in a chain-link nature that allows them to loop (i.e., keep)
previously handled data for use in a present task to make
better predictions (Hochreiter and Schmidhuber, 1997). The
RNN architecture is better equipped (and preferred) to han-
dle temporal (i.e., time series) or sequential (i.e., a video is
a sequence of images) data due to their ability to learn from
their past (Bengio et al., 1994). The Elman neural network
(ELM-NN) is a type of RNN where the hidden layer (bi-
directionally connected to the input layer and output layer)
stores contextual information of the input that it sends back
to the input layer with sequential time steps (Elman, 1990).

However, one of the issues that persists in RNNs is that
there is a limit to how far back RNNs can access past data
to make better predictions. This is described as the prob-
lem of long-term dependencies, also known as the vanishing
gradient problem. The vanishing gradient problem is due to
back-propagated gradients that can grow or shrink at each
time step, increasing instability until the gradients “explode”
or “vanish” (Bengio et al., 1994; Hochreiter and Schmidhu-
ber, 1997). Hochreiter and Schmidhuber (1997) introduced
the long short-term memory (LSTM) model, a type of RNN
explicitly designed to overcome the vanishing gradient prob-
lem. The LSTM architecture includes three gates (input, for-
get, and output gates) that control the flow of information in
and out of the cell state, allowing the ANN to store and ac-
cess data over longer time periods. In the last few decades,
LSTMs have improved and variations introduced (Gers and
Schmidhuber, 2000; Cho et al., 2014; Yao et al., 2015), and
many have been cross-compared, with findings showing sim-
ilar performance across LSTMs (Greff et al., 2016). In the
last few years, LSTMs and their variations have been revis-
ited and employed in hydrologic studies to examine possi-
ble relationships in time series data (Shi et al., 2015; Shen,
2018; Kratzert et al., 2018, 2019). For example, Sadler et
al. (2022) used an LSTM model to multi-task, i.e., predict

two related variables – streamflow and SWT. Their argument
for forcing an LSTM to multi-task is that if two variables are
driven by the same underlying physical processes, a multi-
tasking LSTM could more holistically represent shared hy-
drologic processes and thus better predict the variable of in-
terest. Their LSTM model consisted of added components:
specifically, two parallel, connected output layers that rep-
resented streamflow output and SWT output (Sadler et al.,
2022). Overall, using the multi-tasking LSTM improved ac-
curacy for half the sites, but for those sites with marked im-
provement, more calibration was needed to reach improve-
ment (Sadler et al., 2022).

Another type of NN is the graph neural network (GNN),
which is used for representation learning (unsupervised
learning of feature patterns) of graphed data (Bengio et al.,
2013), where a “graph” denotes the links between a collec-
tion of nodes. At each graph node or link, information in the
form of scalars or embeddings can be stored, making them
very flexible data structures. Example of graphs that we in-
teract with regularly are images, where each pixel is a node
and is linked to adjacent pixels. A stream network is also
an example of a graph, albeit a directed graph, which is a
graph in which the links (also called “edges”) have direction.
Two examples of recent GNNs are recurrent graph convo-
lution networks (RGCNs) and temporal convolution graph
models (TCGMs). The RGCN utilizes LSTM network ar-
chitecture (i.e., use of forget, input, output gates) for tem-
poral recognition (Topp et al., 2023). In contrast to RGCN,
TCGM uses 1D convolutions (i.e., input a three-dimensional
object and output a three-dimensional object), pooling, and
channel-wise normalization to capture low-, intermediate-,
and high-level temporal information in a hierarchical man-
ner (Lea et al., 2016). An example that utilizes this approach
is Graph WaveNet (Wu et al., 2019), which has been used
in spatial-temporal modeling of SWT (Topp et al., 2023).
According to Topp et al. (2023), the temporal convolutional
structure of Graph WaveNet is more stable in the gradient-
based optimization process in contrast to the possible gradi-
ent explosion problem that the LSTM in the RGCN could
experience.

While present studies continue to use ML models as stan-
dalones to evaluate SWT predictions, other studies have cou-
pled modern ML with non-ML models to examine whether
such combinations improve model performance (Graf et al.,
2019; Qiu et al., 2020; Rehana and Rajesh, 2023). For exam-
ple, Graf et al. (2019) coupled four discrete wavelet trans-
form (WT) techniques with MLPNN to predict SWT for
eight stations on the Warta River in Poland. For reference,
WT is widely applied for the analysis and denoising of infor-
mation (signals) and images both over time and on a domain
scale (frequency). The unique characteristic of a wavelet neu-
ral network (WNN) is the use of the WT as the activation
function in the hidden layer of the NN (Qiu et al., 2020). Zhu
et al. (2019) coupled WT with MLPNN and ANFIS to eval-
uate daily SWT at two stations on the river Drava in Croatia
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and separately compared the WT-ML coupling with MLR.
The study found that the combination of WT and ML im-
proved performance compared to the standalone models (Zhu
et al., 2019d). A recent ML approach called differentiable
modeling incorporates physics into ML modeling frame-
works, where the basic model structure and parameters of
a process-based model are inserted into an ANN to estimate
parameters or replace existing process descriptions (Rahmani
et al., 2023). Rahmani et al. (2023) examined model compo-
nents that could improve an LSTM model’s ability to bet-
ter match model predictions to field observations. From their
study, Rahmani et al. (2023) found that adding a separate
shallow subsurface flow component to the LSTM model and
a recency-weighted averaging of past air temperature for cal-
culating source SWT resulted in improved predictions (Rah-
mani et al., 2023).

Attention-based transformers are a more novel type of
deep learning that has led to advancements in natural lan-
guage processing, in the form of ChatGPT, Microsoft’s CoPi-
lot, Google’s Gemini, and others. Due to their exponential
success in the last few years, attention-based transformer
models have been used in geological science fields such as
oceanography for sea surface temperature prediction (Shi et
al., 2015), hydrology for streamflow and runoff prediction
(Ghobadi and Kang, 2022; Wei, 2023), and remote sensing
for streambed land use change classification (Bansal and Tri-
pathi, 2024). As a relatively new AI tool, attention-based
transformers have yet to be used for SWT (to our knowl-
edge), but their applications in other geological science fields
suggest it is only a matter of time before their use is observed
in SWT modeling.

2.4 SWT predictions using ML

2.4.1 Identifying model complexity

The strong success of ML use in SWT modeling warrants a
brief and broad overview on identifying model complexity
to minimize overfitting and underfitting of models. When a
model is too complex, i.e., has too many features or param-
eters relative to the number of observations, or is forced to
overextend its capabilities, i.e., to make predictions with in-
sufficient training data, the model runs the risk of overfitting
(Srivastava et al., 2014). An overfitted model fits the train-
ing data “too well”, capturing noise and details that provide
high accuracy on a training dataset, only to perform poorly
once the model encounters “unseen” data in testing and val-
idation (Xu and Liang, 2021). Scenarios where overfitting
may be temporarily acceptable are (1) model development
is at preliminary stages, such as a “proof of life” concept;
(2) when the objective is to identify heavily relied on fea-
tures by the model, i.e., feature importance; or (3) in highly
controlled modeling environments where the expected data
will be consistently similar to the training dataset. The latter

is more likely in industrial applications and unlikely in the
changing nature of hydrology.

In contrast, underfitting occurs when a model is too simple
to capture any patterns in the data, which can also lead to un-
satisfactory performance in training, testing, and validation.
Underfitting can occur with inadequate model features and
poor model complexity or when regularization techniques
(e.g., L1 or L2 regularization) are over-used, making the
model too rigid and unable to respond to changes in the data.
Given the propensity of ML models to effectively learn the
training data, underfitting is less of an issue in ML, whereas
overfitting can be widespread. In Fig. 1, we present an ex-
ample workflow that researchers can use to transition away
from overfitting and towards model generalizability. In the
five-step outline (Fig. 1), we suggest the need for “temporal,
unseen, ungaged region tests” (TUURTs) in SWT ML mod-
eling. The idea behind TUURTs has been applied for decades
in SWT process-based (Dugdale et al., 2017) and statistically
based models (Benyahya et al., 2007; Gallice et al., 2015)
to improve SWT model robustness. In TUURTs, testing for
unseen cases means testing only within the developmental
dataset, whereas testing for “ungaged” cases means testing
for new sites that have no data and have not been previously
seen by the model at all. Some statistically based models,
such as DynWat (Wanders et al., 2019) and the Pacific North-
west (PNW) SWT model (Siegel et al., 2023), have tested
for ungaged regions and unseen data. In the last few years,
ML-SWT studies have begun applying TUURTs (Hani et al.,
2023; Rahmani et al., 2020, 2021, 2023; Souaissi et al., 2023;
Topp et al., 2023; Philippus et al., 2024a) but more ML-SWT
studies need to apply these tests to improve user confidence
in extrapolation capability. We further encourage researchers
to shift towards more generalizable models, which are in the-
ory more capable of performing well across diverse scenarios
and datasets and stand to become increasingly important with
the unpredictability of climate extremes.

2.4.2 Model inputs for ML-SWT

Using air temperature (AT) to better understand SWT has
been considered since the 1960s, when Ward (1963) and
Edinger et al. (1968) discussed the influence of air temper-
ature on SWT. Since then, various input variables have been
tested (see Table S1); however, the model inputs of AT and
SWT continue to be the most used in ML modeling studies.
For example, studies have used AT from time periods out-
side of the known SWT record to improve ML model per-
formance (Sahoo et al., 2009; Piotrowski et al., 2015; Graf
et al., 2019). In addition to AT and SWT, flow discharge has
been used to attempt to constrain SWT (Foreman et al., 2001;
Tao et al., 2020; St-Hilaire et al., 2011; Grbić et al., 2013;
Piotrowski et al., 2015; Graf et al., 2019; Qiu et al., 2020).
Other model inputs include precipitation (Cole et al., 2014;
Jeong et al., 2016; Rozos, 2023), wind direction and speed
(Hong and Bhamidimarri, 2012; Cole et al., 2014; Jeong
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Figure 1. Diagram outlining steps that can be taken in the modeling process to mitigate overfitting.

et al., 2016; Kwak et al., 2016; Temizyurek and Dadaser-
Celik, 2018; Abdi et al., 2021; Jiang et al., 2022), baromet-
ric pressure (Cole et al., 2014), landform attributes (Risley
et al., 2003; DeWeber and Wagner, 2014; Topp et al., 2023;
Souaissi et al., 2023), and many more (see Table S1).

In the last few years, including the day of year (DOY) as
an input (Qiu et al., 2020; Heddam et al., 2022a; Drainas
et al., 2023; Rahmani et al., 2023) and humidity (Cole et
al., 2014; Hong and Bhamidimarri, 2012; Kwak et al., 2016;
Temizyurek and Dadaser-Celik, 2018; Abdi et al., 2021) has
also been shown to better capture the seasonal patterns of
SWT (Qiu et al., 2020; Philippus et al., 2024a). With im-
proved access to remote sensing data, there has also been a
notable increase in satellite product inputs such as estimates
of sky cover (Cole et al., 2014), solar radiation (Kwak et al.,
2016; Topp et al., 2023; Majerska et al., 2024), sunshine per
day (Drainas et al., 2023), and potential evapotranspiration
or ET (Rozos, 2023; Topp et al., 2023). However, more re-

search is needed to better understand the influence of newer
model inputs on SWT (Zhu and Piotrowski, 2020).

Recently, SWT studies focused on the CONUS scale have
chosen to use as many model inputs as available, with Wade
et al. (2023) using a point-scale CONUS ML study using
over 20 variables, while Rahmani et al. (2023) created an
LSTM model and considered over 30 variables to simu-
late SWT. Despite the use of diverse data, the models in
these studies performed only satisfactorily and were deemed
not generalizable, leaving much room for improvement in
CONUS-scale modeling of SWT. With the compilation of
larger and larger datasets, feature importance in ML, which
is the process of using techniques to assign a score to model
input features based on how good the features are at pre-
dicting a target variable, can be an efficient way to improve
data comprehension, model performance, and model inter-
pretability, the latter of which can dually serve as a trans-
parency marker of which features are driving predictions.
Methods for measuring feature importance include using cor-
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relation criteria (Pearson’s r , Spearman’s ρ), permutation
feature importance (shuffling feature values, measuring de-
crease in model performance), and linear regression feature
importance (larger absolute values indicate greater impor-
tance); if using CART/RF/gradient boosting, entropy impu-
rity measurements can be insightful (Venkateswarlu and An-
mala, 2023).

For example, one technique that can be used to improve
ML model parameter selection is the Least Absolute Shrink-
age and Selection Operator (LASSO), a regression technique
used for feature selection (Tibshirani, 1996). Research uti-
lizing ML models for SWT frequency analysis at ungaged
basins used the LASSO method to select explanatory vari-
ables for two ML models (Souaissi et al., 2023). The LASSO
method consists of a shrinkage process where the method
penalizes coefficients of regression variables by minimiz-
ing them to zero (Tibshirani, 1996). The number of coef-
ficients set to zero depends on the adjustment parameter,
which controls the severity of the penalty. Thus, the method
can perform both feature selection and parameter estimation,
an advantage when examining large datasets (Xu and Liang,
2021).

2.4.3 Local: single rivers, site-specific ( ≤ 100 km2)

SWT predictions using ML have extended from the local
scale to nearly continental scales over the last 24 years. One
of the first studies to use a neural network to estimate SWT
using an MLPNN was done by Sivri et al. (2007), who pre-
dicted monthly SWT for Firtina Creek in Türkiye, a novel
approach at the time. While the MLPNN model R2

∼ 0.78
was not very good, the proof of concept was a success (Sivri
et al., 2007). Chenard and Caissie (2008) used eight ANNs
to calculate daily and max SWT for Catamaran Brook, a
small drainage basin tributary to the Miramichi River in
New Brunswick, Canada, for the years 1992 to 1999. Their
ANN models performed best in late summer and autumn
and performed comparatively to stochastic models for the
same watershed (Chenard and Caissie, 2008). In 2009, Sahoo
et al. (2009) compared an ANN, multiple regression anal-
ysis, and dynamic nonlinear chaotic algorithms (Islam and
Sivakumar, 2002) to estimate SWT in the Lake Tahoe wa-
tershed area in along the California–Nevada border within
the US. Their ANN models included available solar radiation
and air temperature, with results showing a variation of the
BPNN as having the best performance (Sahoo et al., 2009).

Hadzima-Nyarko et al. (2014) used a linear regression
model, a stochastic model, and variations of two NNs –
MLP (six variations) and RBF (two variations) – to compute
and compare SWT predictions for four stations on the river
Drava, along the Croatia–Hungary border in southern cen-
tral Europe. While their ANN models performed better than
the linear regression and stochastic models, a comparison of
their NN models found that one of their six MLPNN varia-
tions barely outperformed the RBFNN, with a difference in

RMSE of 0.0126 °C, within the margin of error. The authors
stated that apart from the current mean AT, the daily mean
AT of the prior 2 d and classification of the day of the year
(DOY) were significant controls of the daily SWT (Hadzima-
Nyarko et al., 2014). Rabi et al. (2015) conducted a study
using the same gage stations on the river Drava using only
AT as a predictor and restricted the use of NNs to only MLP,
finding that the MLPNN outperformed the linear regression
approaches (Rabi et al., 2015).

Cole et al. (2014) tested a suite of models including an
FFNN to predict SWT downstream of two reservoirs in the
upper Delaware River, in Delaware, US. During training, the
FFNN was outperformed by an Auto Regressive Integrated
Moving Average (ARIMA) model and performed similarly
to the physically based Heat Flux Model (HFM) (Cole et al.,
2014). During testing, the FFNN, ARIMA, and HFM mod-
els performed similarly, with HFM being slightly more ac-
curate due to its advantage as a physically based model with
data availability and calibration potential (Cole et al., 2014).
The authors suggest that the under- or overpredictions of the
models may have been from unaddressed groundwater in-
puts or unaccounted for nonlinear relationships (Cole et al.,
2014). Hebert et al. (2014) focused on the Catamaran Brook
area (like Chenard and Caissie, 2008) and included the Little
Southwest Miramichi River in New Brunswick, Canada, to
conduct ANN model predictions of hourly SWT. The study
considered spring through autumn with hourly data from
1998 to 2007, finding that the ANN models performed simi-
larly to or better than deterministic and stochastic models for
both areas (Hebert et al., 2014).

Piotrowski et al. (2015) examined data from two streams,
one mountainous and one lowland, in a moderately cold
climate of eastern Poland to model SWT using MLPNN,
PUNN, ANFIS, and WNN. The ANN models were indepen-
dently calibrated to find the best fits, with results showing
that MLPNN and PUNN slightly outperformed ANFIS and
WNN (Piotrowski et al., 2015). The study also found cur-
rent AT and information on the mean, maximum, and min-
imum AT from 1–2 d prior to be important for improving
model accuracy (Piotrowski et al., 2015). Temizyurek and
Dadaser-Celik (2018) used an ANN with observations of AT,
relative humidity, prior month SWT, and wind speed to pre-
dict monthly SWT at four gages on the Kızılırmak River in
Türkiye. Best results were obtained from using the sigmoidal
(S-shape) activation function and the scaled conjugate gra-
dient algorithm (Møller, 1993), though the average RMSE
(∼ 2.3 °C) for the NN used was higher (worse) than the av-
erage calculated from this literature review where RMSE
∼ 1.4 °C.

Zhu et al. (2019a, c, d) conducted several studies that
used NNs to examine SWT on the river Drava, Croatia
(Zhu et al., 2019a, c, d). They also examined SWT of three
rivers in Switzerland and three rivers in the US (Zhu et
al., 2019a, b, c). Across the studies, the MLPNN mod-
els had better performance compared to ANFIS (Zhu and
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Heddam, 2019), GPR (Zhu et al., 2019a), or MLR (Zhu
et al., 2019b). Qiu et al. (2020) used variations of NNs
(MLP/BPNN, RBFNN, WNN, GRNN, ELMNN) to examine
SWT at two stations on the Yangtze River, China, finding that
the MLP/BPNN outperformed all other models when the par-
ticle swarm algorithm (PSO) was used for optimization (Qiu
et al., 2020). Stream discharge and DOY were also shown to
improve model accuracy. Piotrowski et al. (2020) used vari-
ous MLPNN shallow (one hidden layer) structures to test the
use of an approach called dropout in SWT modeling using
data from six stations in Poland, Switzerland, and the US.
The dropout approach can be applied to deep ANNs due to
its efficiency in preventing overfitting and low computation
requirements (Piotrowski et al., 2020). The study found that
use of dropout and drop-connect significantly improved per-
formance of the worst training cases. For more information
on the use of dropout with shallow ANNs, we refer the reader
to Piotrowski et al. (2020).

Graf and Aghelpour (2021) compared stochastic and ANN
(ANFIS, RBF, GMDH) SWT models for four gages on
the Warta River in Poland, finding that all models per-
formed similarly well (R2>97.6 %). Results showed that the
stochastic and ML models performed similarly, while the
stochastic models had fewer prediction errors for extreme
SWT (Graf and Aghelpour, 2021). Rajesh and Rehana (2021)
used several ML models (ridge regression, K-nn, RF, SVR)
to predict SWT at daily, monthly, and seasonal scales for
a tropical river system in India. The authors found that the
monthly SWT prediction performed better than the daily or
seasonal (Rajesh and Rehana, 2021). Of the ML models, the
SVR was the most robust, though a data assimilation al-
gorithm notably improved predictions (Rajesh and Rehana,
2021). Jiang et al. (2022) examined SWT under the effects
of the Jinsha River cascaded reservoirs using six ML mod-
els (i.e., adaptive boosting – AB, decision tree – DT, ran-
dom forest – RF, support vector regression – SVR, gradient
boosting – GB, and multilayer perceptron neural network –
MLPNN). The study found that day of year (DOY) was most
influential in each model for SWT prediction, followed by
streamflow and AT (Jiang et al., 2022). With knowledge of
the influential parameters, ML model variations were tested,
finding that gradient boosting and random forest provided the
most accurate estimation for the training dataset and the test
dataset (Jiang et al., 2022). Abdi et al. (2021) used linear re-
gression and a deep (multi-layered) neural network (DNN)
to predict hourly SWT for the Los Angeles River, finding
that the DNN outperformed the linear regressions. They sug-
gested that using a variety of ML models to predict SWT
could add robustness to a study but state that training ANNs
is more time-consuming than training linear regression mod-
els for minimal improved accuracy (Abdi et al., 2021).

Khosravi et al. (2023) used an exploratory data analysis
(EDA) technique, a type of feature engineering that pre-
pares the dataset for best performance with an LSTM to
identify SWT predictors (discharge, water level, AT, etc.)

up to 1 week in advance for a monitoring station on the
central Delaware River. The authors noted that though the
LSTM performed satisfactorily, future studies should com-
pare LSTMs with CNNs or other model types and that gen-
eralizability is limited to the specific location and dataset
(Khosravi et al., 2023). Majerska et al. (2024) used GPR to
simulate SWT for the years 2005–2022 for the Arctic catch-
ment Fuglebekken in Svalbard, Norway. The unique oppor-
tunity to study SWT of an unglaciated High Arctic stream
regime showed an alarming warming throughout the summer
where SWT increased as much as 6 °C, highlighting a strong
sensitivity of the Arctic system to ongoing climate change
(Majerska et al., 2024).

2.4.4 Regional, continental scale (≥ 100 km2)

DeWeber and Wagner (2014) conducted one of the first re-
gional ANN ensemble studies, focusing on thousands of in-
dividual streams reaches across the eastern US. They used an
ensemble of 100 ANNs to estimate daily SWT with varying
predictors for the 1980–2009 period, finding that daily AT,
prior 7 d mean AT, and catchment area were the most impor-
tant predictors (DeWeber and Wagner, 2014). In Serbia, Voza
and Vuković (2018) conducted cluster analysis, PCA, and
discriminant analysis for the Morava River Basin using data
from 14 river stations to identify monitoring periods for sam-
pling. With discriminant parameters identified, an MLPNN
was used to predict changes in the values of the discriminant
factors (see Fig. 1 of Voza and Vuković, 2018) and identify
controls on the monitoring periods, finding that seasonality
and geophysical characteristics were most influential (Voza
and Vuković, 2018).

Rahmani et al. (2020) used 4 years of SWT data for
118 sites across the CONUS to test three LSTM models
that simulated SWT, finding that the LSTM trained with
streamflow observations was the most accurate, which was
unsurprising. Of interest to the reader would be the inner
mechanisms of the LSTM, but the study did not explicitly
state what physical laws were followed by the LSTM. In-
stead, the authors hypothesized that the LSTM could as-
sume internal representations of physical quantities (i.e., wa-
ter depth, snowmelt, net heat flux, baseflow temperature,
SWT). The authors further stated that the LSTM was de-
pendent on a good historical data record and would not gen-
eralize well to ungaged basins. A follow-up study by Rah-
mani et al. (2021) used 6 years of SWT data and relevant
meteorological parameters for 455 sites across the CONUS
(minus California and Florida) to test LSTM models for
data-scarce, dammed, and semi-ungaged basins (discharge
used as input). The follow-up study showed improved per-
formance, but the models remained limited in capturing the
influence of latent contributions such as baseflow and sub-
surface storage. Feigl et al. (2021) tested the performance
of six ML models – stepwise linear regression, RF, XG-
Boost, FFNNs, and two RNNs (LSTM and GRU) – using

https://doi.org/10.5194/hess-29-2521-2025 Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025



2532 C. R. Corona and T. S. Hogue: Machine learning in stream and river water temperature modeling

data from 10 gages in the Austria–Germany–Switzerland re-
gion to estimate daily SWT. From the comparison, FFNNs
and XGBoost were the best-performing in 8 of 10 catch-
ments (Feigl et al., 2021). For modeling SWT in large catch-
ments (>96000 km2

∼Danube catchment size), the RNNs
performed best due to their long-term dependencies (Feigl et
al., 2021). Zanoni et al. (2022) used RF, DNN, and a linear
regression to predict daily SWT in the Warta River basin and
compared the results with those of stochastic models. Their
results found that the DNN was the most effective in captur-
ing nonlinear relationships between drivers (i.e., SWT) and
water quality parameters (Zanoni et al., 2022). On parameter
influence, the analysis also found that DOY was an adequate
surrogate for AT input in modeling SWT, experiencing only
a slight performance reduction.

Heddam et al. (2022b) used six ML models – K-nn,
LSSVM, GRNN, CCNN, RVM, and LWPR – to evaluate
SWT for several of Poland’s larger rivers. For each ML,
three variations were created: one calibrating with only AT
as input, another calibrating with AT and DOY, and a third
decomposing AT using the variational mode decomposition
(VMD) (Heddam et al., 2022b). For more on VMD, we re-
fer the reader to Heddam et al. (2022a). The study found
that the VMD parameters improved RMSE and MAE per-
formance metrics for some models, but neither GRNN nor
K-nn showed improvement. Heddam et al. (2022a) examined
how use of the Bat algorithm optimized the extreme learning
machine (Bat-ELM) neural network and how that in turn af-
fected modeling of SWT in the Orda River in Poland. Results
from the Bat-ELM were compared with MLPNN, CART,
and multiple linear regression (MLR), finding the Bat-ELM
outperformed MLPNN, CART, and MLR (Heddam, Kim,
et al., 2022). Focusing on a region of Germany, Drainas et
al. (2023) trained and tested various ANNs with different in-
puts for 16 small (≤ 1 m3 s−1) headwater streams, finding
that the best-performing (lowest RMSE) input combination
was stream-specific, suggesting that the optimal input com-
bination cannot be generalized across streams for the region
(Drainas et al., 2023). The ANN prediction accuracy of SWT
was negatively affected by river length, total catchment area,
and stream water level (Drainas et al., 2023). Additionally,
ANN accuracy suffered when dealing with open-canopy land
use types such as grasslands but improved with semi-natural
and forested land cover (Drainas et al., 2023). Recently, He
et al. (2024) built an LSTM framework to model water dy-
namics in stream segments while attempting to capture spa-
tial and temporal dependencies. First, they created a base-
line LSTM+GNN, then improved it by using graph mask-
ing and adjusting the model based on constraints (He et al.,
2024). For the Delaware River Basin, the Fair-Graph model
performed slightly better than the baseline with an RMSE of
1.83 vs. 1.78, respectively. For the Houston River network,
the Fair-Graph model also performed slightly better than the
baseline (NSE of 0.721 vs. 0.580). While the relative perfor-
mance compared to the baseline was not significantly better,

we anticipate that graph masking (an algorithm that incor-
porates spatial awareness into ANN) will play an increas-
ingly large role in hydrologic modeling (Shen, 2018; He et
al., 2024).

2.5 Decision support and climate change scenarios

In 2003, the United States Geological Survey (USGS) used
an FFNN to estimate hourly SWT for a summer season
in western Oregon (Risley et al., 2003). Their work used
the predicted SWT to better constrain future total maxi-
mum daily loads (TMDLs) for stream management. Jeong
et al. (2016) used an ANN to evaluate SWT for the Soyang
River, South Korea. The goal was to couple the ANN predic-
tions with a cyber infrastructure prototype system to deliver
automated, real-time predictions using weather forecast data
(Jeong et al., 2016).

Liu et al. (2018) used a hydrological model called the
Variable Infiltration Capacity (VIC) model to produce es-
timates of AT and river-section-based variables for the Eel
River Basin, Oregon, US, to be used as input data for an
ANN. The study considered the AT rise from the RCP8.5 sce-
nario to estimate future (2093–2100) daily streamflow and
SWT, finding that SWT was increasingly sensitive to the pro-
portion of baseflow in the summer (Liu et al., 2018). Topp
et al. (2023) used the Delaware River Basin in the eastern
US to compare two DL models: a recurrent graph convo-
lution network (RGCN) and a temporal convolution graph
model (TCGM) called Graph WaveNet. The comparison in-
cluded scenarios capturing climate shifts representative of
long-term projections where warm conditions or drought per-
sisted. Considered spatiotemporally aware, the two process-
guided deep learning models performed well (test RMSE
of 1.64 and 1.65 °C); however, Graph WaveNet significantly
outperformed RGCN in four out of five experiments where
test partitions represented diverse types of unobserved envi-
ronmental conditions.

Further focusing on the Delaware River Basin, Zwart et
al. (2023a) used data assimilation and an LSTM to generate
1 and 7 d forecasts of daily maximum SWT for the purpose
of aiding reservoir managers in decisions about when to re-
lease water to cool streams. Following up on this study was
Zwart et al. (2023b), who used an LSTM and an RGCN, both
with and without data assimilation, to generate 7 d forecasts
of daily maximum SWT for monitored and unmonitored lo-
cations in the Delaware River Basin, finding that the RGCN
with data assimilation performed best for ungaged locations
and at higher SWT, which is important for reservoir operators
to be aware of while drafting release schedules.

Rehana and Rajesh (2023) used a standalone LSTM, a
WT-LSTM, and a k-nearest neighbor (K-nn) bootstrap re-
sampling algorithm with LSTM to assess climate change
impacts on SWT using downscaled projections of AT with
RCPs 4.5 and 8.5 for seven polluted river catchments in In-
dia. Comparing the coupled models and the physically based
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Air2stream model, they found the K-nn coupled with LSTM
to be the best-performing in terms of effectively predicting
SWT at the monthly timescale. Considering the RCP scenar-
ios, the predicted SWT increase for 2071–2100 for the rivers
in India ranged from 3.0–4.7 °C.

3 Model evaluation metrics

The second part of this review compiles ML performance
evaluation metrics as they pertain to SWT modeling and pre-
diction and considers the commonly used metrics to suggest
guidelines for easier comparison of ML performance across
SWT studies. We considered journal articles from 2000–
2024 that used ML to evaluate, predict, or forecast SWT and
examine what model performance metrics were used. Perfor-
mance metrics can be calculated during model calibration,
testing, and (or) validation to compute a single value that
denotes the agreeableness between simulated and observed
data.

For this literature review, all journals examined used at
least one metric to evaluate model performance, with two or
more metrics used by >84 % of studies published in or af-
ter the year 2019. For review, the quantitative statistics were
split into three categories: standard regression, dimension-
less, and error index (Moriasi et al., 2007). Standard regres-
sion statistics (Pearson’s r , R2) are ideal for examining the
strength of the linear relationship between model simulations
or predictions and the observed or measured data. Dimen-
sionless techniques (NSE, KGE) provide a relative assess-
ment of model performance but due to their interpretational
difficulty (Legates and McCabe, 1999) have been less com-
monly used. In contrast, error indices (RMSE, MAE) quan-
tify the error in terms of the units of the data (i.e., °C) con-
sidered.

3.1 Model performance metrics: standard regression

The most basic statistics (slope, y-intercept mean, median,
standard deviation) continue to be used in part due to their
simplicity and ease of interpretability. These statistics are
useful for preliminary examinations, where the assumption is
that measured and simulated values are linearly related, and
all the variance of error is contained within the predictions
or simulations, whilst the observations are free of error. Un-
fortunately, observations are rarely error-free, and datasets
are nonlinear, highlighting a need for using a diverse set of
statistics (Helsel and Hirsch, 2002). One such set of statis-
tics commonly used for standard regressions are called the
correlation coefficients – Kendall’s tau, Spearman’s rho, and
Pearson’s r .

Pearson’s r , also known as the correlation coefficient, is
used to determine the strength and direction (i.e., positive,
negative) of a simple linear relationship (Helsel and Hirsch,
2002). Values of r range from−1 to+1, where r<0 indicates

a negative correlation and r>0 indicates a positive correla-
tion (Legates and McCabe, 1999). The square of r is denoted
as r2, known as the square of the correlation coefficient, with
values of r2 ranging from 0 to 1. The r2 metric is commonly
used in simple linear regression to assess the goodness of
fit by measuring the fraction of the variance in one variable
(i.e., observations) that can be explained by the other vari-
able (i.e., predictors). The metric r2 tends to be confused
with R2, the latter of which is a statistical measure that repre-
sents the proportion of variance explained by the independent
variable(s) in a multiple linear regression model (Helsel and
Hirsch, 2002). Part of the confusion may be related to the
fact that R2 shares the same range of 0 to 1, with R2

= 1 in-
dicating that the model can explain all the variance, and vice
versa. We note that while both r2 and R2 share similarities
in that they measure the proportion of variance, R2 is more
commonly used for multiple linear regression context, while
r2 is best suited for simple linear regressions. To reduce con-
fusion, we strongly suggest that r , r2, and R2 always be re-
ported together (even if as a supplement to a manuscript) to
characterize goodness of fit.

In contrast to the linear regression metrics, Spearman’s
rank correlation coefficient, rho (ρ), is a nonparametric rank-
sum test useful for analyzing non-normally distributed data
and nonlinear monotonic relationships (Helsel and Hirsch,
2002). The data are ranked on a range from−1 to +1, where
ρ = 0 indicates no association and ρ =−1 or +1 suggests a
perfect monotonic relationship. By ranking the data, Spear-
man’s correlation coefficient quantifies monotonic relation-
ships between two variables (converts nonlinear monotonic
relationships to linear relationships), allowing ρ to be robust
against outliers (Helsel and Hirsch, 2002).

3.2 Model performance metrics: error indices

The mean absolute error (MAE), mean square error (MSE),
and root mean squared error (RMSE) are popular error in-
dices used to assess model performance. The equations for
MAE, MSE, and RMSE are as follows.

MAE=
1
N

∑N

i=1
|Oi −Pi | (1)

MSE=
1
N

∑N

i=1
(Pi −Oi)

2 (2)

RMSE=

√∑N
i=1(Pi −Oi)

2

N
(3)

For the equations, N is the number of samples, Oi is the
observed SWT, and Pi is the predicted SWT at time i. The
MAE computes the average magnitude of the errors in a set
of predicted values to obtain the average absolute difference
between the predicted Pi and the observed Oi . In contrast
to MAE, the MSE squares the error terms, resulting in the
squared average difference between the predicted and ob-
served values. The resultant MSE is not in the same units
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as the value of interest, making it difficult to interpret. As the
square root of the MSE, RMSE provides an error index in the
unit of the data (Legates and McCabe, 1999). However, both
the MSE and RMSE are more sensitive to outliers and less
robust than MAE.

PBIAS= 100 ·
∑N
i=1(Pi −Oi)∑N

i=1Oi
(4)

Another error index used in SWT modeling is called the per-
cent bias (PBIAS) index. PBIAS computes the average ten-
dency of model predictions to be greater or smaller than the
observations or measurements (Gupta et al., 1999). A PBIAS
value of 0 is best, and low-magnitude values (closer to 0) de-
note stronger model accuracy. Positive PBIAS values suggest
model underestimation, while negative PBIAS values sug-
gest model overestimation (Moriasi et al., 2007).

3.3 Model performance metrics: dimensionless

The Nash–Sutcliffe efficiency (NSE, also called NSC, NS,
or NASH) is a “goodness-of-fit” criterion that describes the
predictive power of a model. Mathematically, the NSE is a
normalized statistic that computes the relative magnitude of
the variance of the residuals compared to the variance of the
measured or observed data (Nash and Sutcliffe, 1970). Visu-
ally, the NSE shows how well the observed versus simulated
data fit on a 1 : 1 line.

NSE= 1−
∑N
i=1(Pi −Oi)

2∑N
i=1
(
Oi −O

)2 , (5)

where O is the average value of Oi . To compute the Kling–
Gupta efficiency (KGE),

KGE= 1−ED,

ED=

√
(r − 1)2+

(
σP

σO
− 1

)2

+

(
µP

µO
− 1

)2

, (6)

where r is the linear correlation coefficient between predic-
tions and observations. The purpose of the KGE metric is to
reach a balance between optimal conditions of modeled and
observed quantities being perfectly correlated (i.e., r = 1),
with the same variance (σp/σo = 1) and minimizing model
output bias (µp/µo = 1). The Kling–Gupta efficiency (KGE)
is based on a decomposition of NSE into separate compo-
nents (correlation, variability bias, and mean bias) and tries
to improve on NSE weaknesses (Knoben et al., 2019). Like
NSE, KGE= 1 is a perfect fit between model simulations
or predictions and observations or measurements. However,
NSE and KGE values cannot be directly compared because
each metric is influenced by the coefficient of variation of the
observed time series (Knoben et al., 2019).

The Willmott index of agreement, d , ranging from 0 to 1,
is defined as a standardized measure of model prediction er-

ror, where a value of 1 is perfect agreement between mea-
sured and predicted values, and a value of 0 indicates no
agreement.

d = 1−
∑N
i=1(Pi −Oi)

2∑N
i=1
(∣∣Pi −O∣∣+ |Oi −O|)2 (7)

The Akaike information criterion (AIC) is a selection method
used to compare several models to find the best approximat-
ing model for the dataset of interest (Akaike et al., 1973;
Banks and Joyner, 2017; Portet, 2020). For details on the
mathematical derivation and application of AIC, please see
Banks and Joyner (2017), Portet (2020), and Piotrowski et
al. (2021). The AIC equation version shown was devel-
oped for the least-squares approach (Anderson and Burnham,
2004):

AIC = N · ln(MSE)+ 2 ·K, (8)

whereN is the number of samples,K is the number of model
parameters+ 1, and MSE is obtained by the model, for
the respective dataset, per stream (Piotrowski et al., 2021).
The Bayesian information criterion (BIC) was developed for
studies where model errors are assumed to follow a Gaus-
sian distribution (Faraway and Chatfield, 1998; Piotrowski et
al., 2021). For other versions of BIC, please see Faraway and
Chatfield (1998).

BIC = N · ln(MSE)+ Kln(N) (9)

Unlike other performance metrics, the AIC and BIC are
unique in their ability to penalize the number of parameters
used by a model, thus favoring more parsimonious models.
For both the AIC and BIC, lower values of the criterion point
to a better model (Piotrowski et al., 2021).

3.4 Performance metrics for most-cited ML statistics

Reviewing ML studies focused on SWT modeling (Table S1,
S2), the most-cited performance metrics were RMSE (45 ci-
tations), NSE (25), MAE (18), and R2 (17). Having reviewed
the literature and in agreement with previous published rec-
ommendations (Moriasi et al., 2007), we recommend that a
combination of standard regression (i.e., r , r2, R2), dimen-
sionless (i.e., NSE), and error index statistics (i.e., RMSE,
MAE, PBIAS) be used for model evaluation and reported to-
gether in future publications. As part of our efforts to propose
guidelines for easier comparison of ML performance across
SWT studies, we identified the range in reported values for
these four most-cited metrics and show the spread of values
in the training and calibration as well as the testing and vali-
dation phases in box plot form.

We begin with the standard regression and dimension-
less statistics, R2 and NSE, both of which have an optimal
value of 1. Figure 2 shows the median R2 per ML model per
model phase for the cited publications. For example, Fore-
man et al. (2001) used an ANN to model SWT in the Fraser
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Watershed in British Columbia, Canada. Their model esti-
mated 1995–1998 tributary and headwater temperatures and
reported a medianR2 (Fig. 2) of 0.93 for the training and cal-
ibration phase. Over the review period, the R2 range (2001–
2024) was 0.65–1.00. We note that for process-based model-
ing, acceptable R2 values start around R2

∼ 0.50 (Moriasi et
al., 2007). In stark contrast, ML models published between
2000–2024 exhibited significantly higher R2 values, with a
median of R2

∼ 0.93 across 17 studies (Fig. 2).
Unlike the R2 metric, NSE was not used as a metric in ML

studies of SWT between 2000 and 2010 (Fig. 3). The first
ML study to use NSE was St. Hilaire et al. (2011) to ana-
lyze SWT in Catamaran Brook, a small catchment in New
Brunswick, Canada. Fig. 3 shows that the NSE range re-
ported by studies using ML for SWT was between 0.25–
1.00 over the reviewed period (2000–2024). Like R2, NSE
published values are high compared to traditional models
(Moriasi et al., 2007, 2015), with a median NSE of 0.93
across 25 studies (Fig. 3). Overall, these complementary met-
rics should always be reported together as they provide a
broader evaluation of model performance; i.e., NSE mea-
sures a model’s predictive skill and error variance, while R2

assesses how well the model explains the variability of the
data.

Figure 4 shows the median RMSE (°C) and Fig. 5 shows
the median MAE (°C) per ML model per model phase for
each publication. RMSE (°C) and MAE (°C) are popular
error indices used in model evaluation because the metrics
show error in the units of the data of interest (i.e., °C), which
helps analysis of the results. RMSE and MAE values equal
to 0 are a perfect fit. Over the review period, median RMSE
(Fig. 4) ranged from 0.0002–3.50 °C. The median RMSE
was 1.35 °C across 45 studies (Fig. 4). Figure 5 shows that
between 2000–2012, MAE was not used as a metric in ML
studies of SWT. The first ML study to use MAE for SWT
modeling was Grbić et al. (2013), where the Gaussian pro-
cess regression (GPR) ML approach was compared with field
observations of SWT from the river Drava in Croatia to as-
sess the feasibility of model development in SWT prediction.
In contrast to RMSE, the MAE range (Fig. 5) was 0.14–
2.19 °C. The median MAE overall was 1.09 °C across 18
studies (Fig. 5).

3.5 Spatial scale

We examined the data for the possible influence of spa-
tial scale on the most-cited performance metric, RMSE,
by grouping publications into two spatial categories: local,
which included studies that focused on point to plot, spe-
cific sites, and small watersheds less than ∼ 100 km2 in area
(about the size of a HUC-08), and regional, which included
everything over ∼ 100 km2 in area. For this analysis, all
RMSE values reported by publications were compiled into
a table (not shown) and classified as belonging to either the
local/watershed or regional/CONUS scale. A comparison of

Table 1. Average, median, maximum, and minimum RMSE (°C)
for studies grouped by local/watershed and regional/CONUS spatial
scales.

Local/watershed Regional/CONUS
(<100 km2 area) (>100 km2 area)

Number of data points 900 1369
Average 1.52 1.55
Median 1.38 1.42
Maximum 5.170 4.387
Minimum 0.038 0.0002

the data found that the average RMSE was similar for the lo-
cal (∼ 1.52 °C) and regional (∼ 1.55 °C) categories. The me-
dian local RMSE was slightly better than the regional RMSE
(∼ 0.04 °C) but arguably within a standard of error. The lo-
cal/watershed category had a higher maximum and minimum
RMSE than those reported for the regional category. Overall,
neither category appeared significantly better or worse than
the other.

3.6 Temporal scale

Across studies, there was large variability in the focus of
temporal scales and use. For example, some studies used
data collected at 5–15 min intervals to simulate SWT at daily
or weekly intervals for an abbreviated period (Risley et al.,
2003; Hong and Bhamidimarri, 2012). Other studies used
data collected at hourly, daily, weekly, or monthly intervals
(Foreman et al., 2001; Sivri et al., 2007; Temizyurek and
Dadaser-Celik, 2018) for periods of record spanning weeks
(Lu and Ma, 2020; Abdi et al., 2021) to several decades
(Cole et al., 2014; Weierbach et al., 2022; Heddam et al.,
2022a; Topp et al., 2023; Rehana and Rajesh, 2023) to simu-
late SWT. Concurrently, output for studies was then provided
at resolutions ranging from hourly to monthly periods for
the past, present, or future. Given the use of study-specific
temporal outputs and the limited amount of reported peer-
reviewed model performance data at the temporal scales used
by researchers, it was difficult to conduct statistical compar-
isons for temporal scales, so they are not further discussed in
this review. We strongly suggest to researchers that metrics
be made available at the temporal scale of interest (and not
just for the overall model) in appendices or supplementary
information to encourage more comparison across studies.

4 Discussion

4.1 Model evaluation ratings

From our review of RMSE, R2, NSE, and MAE, we com-
piled ratings for ML performance metrics that should be used
to for cross-comparison across SWT studies. From Table S2,
we note that there was not a consistent way of reporting train-
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Figure 2. Median R2 (dimensionless) values from published literature for training and calibration, testing, and validation phases of model
evaluation.

Figure 3. Median NSE (dimensionless) values from published literature for training and calibration, testing, and validation phases of model
evaluation.

ing, validation, and testing percentages; for example, some
studies only reported performance metrics for one model-
ing phase (i.e., training), while others used “testing” and
“validation” interchangeably, which could affect interpreta-
tion of model performance (Laanaya et al., 2017; Voza and
Vuković, 2018; Hani et al., 2023). Additionally, others stated
information not by percentages but by years (i.e., training 2
years, testing 1 year, validation 1 year), which can make com-

parisons challenging. Despite all the different ways that re-
searchers chose to compile performance metrics, most mod-
els had strong metrics, as shown by our calculated ratings for
performance metrics shown in Table 2.

We posit that the definitions of satisfactory, good, and very
good be updated to reflect the inherent capability of an ML
algorithm to fit the input data more successfully than other
model types, such as statistical models and process-based
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Figure 4. Median RMSE (°C) values from published literature for training and calibration, testing, and validation phases of model evaluation.

Figure 5. Median MAE (°C) values from published literature for training and calibration, testing, and validation phases of model evaluation.

models. For example, R2 values from ML-SWT studies that
may appear to be very good, such as R2

∼ 0.91, should be
considered satisfactory given the context of the performance
metrics published in the ML-SWT literature. In Table 2, the
very good and unsatisfactory ranges were calculated from
the box plots by identifying the two-thirds distance from the
upper (or lower) quartile to the respective extreme whisker.
This calculation identifies the ∼ 8 % of the data that is rela-
tively closest to the minimum or maximum values of the box
plots, indicating a very good or unsatisfactory value. For Ta-
ble 2, the separation between the satisfactory range and the

good range was denoted as the halfway value between very
good and unsatisfactory. The purpose of these guidelines is
to serve as a reference for SWT studies looking to under-
stand and consider ML performance relative to other SWT-
ML studies.

4.2 ML data requirements vs. data availability

While, in recent years, access to hydrologic data has im-
proved (CUAHSI Inc., 2024), data remain scarce for many
hydrologic applications including SWT research, particu-
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Table 2. Suggested ratings for performance metrics (median) using metrics published by ML studies examining SWT.

R2 NSE

Rating Training Testing Validation Training Testing Validation

Very good (>) 0.99 0.99 0.96 0.99 0.98 0.93
Good (range) 0.89–0.99 0.92–0.99 0.94–0.96 0.92–0.99 0.84–0.98 0.88–0.93
Satisfactory (range) 0.79–0.89 0.86–0.92 0.91–0.94 0.85–0.92 0.70–0.84 0.83–0.88
Unsatisfactory (<) 0.79 0.86 0.91 0.85 0.70 0.83

RMSE (°C) MAE (°C)

Rating Training Testing Validation Training Testing Validation
Very good (>) 0.25 0.26 1.15 0.33 0.42 0.86
Good (range) 1.34–0.25 1.51–0.26 1.80–1.15 1.01–0.33 1.19–0.42 1.32–0.86
Satisfactory (range) 2.43–1.34 2.77–1.51 2.45–1.80 1.70–1.01 1.97–1.19 1.79–1.32
Unsatisfactory (<) 2.43 2.77 2.45 1.70 1.97 1.79

larly because continual project management and funding to
place and maintain stream temperature sensors can be ex-
pensive and/or time-consuming to undertake. As a result, in
the 21st century, the scarcity of data remains a large impedi-
ment for the application of machine learning in SWT model-
ing. What is more, the question of data quantity (how many
data do you have?) versus quality (how many diverse data are
needed?) continues to hinder ML use in hydrologic applica-
tions. Xu and Liang (2021) make the excellent point that 1
year of streamflow data (can swap for stream temperature)
at 15 min intervals equal about ∼ 35 000 points, which may
seem extensive but is unlikely to be enough to properly train
an ML model due to autocorrelation and limited exposure to
diverse types of data that are naturally encountered with a
longer time series (Xu and Liang, 2021). For example, ma-
chine learning models may only predict flood volumes they
have previously seen (Kratzert et al., 2019). While data re-
quirements for ML remain high, there are some strategies
that researchers have used to alleviate this impact.

One strategy that hydrologists in other fields have used to
tackle this problem is data augmentation, which can be ap-
plied spatially or temporally to create new training examples
that the ML model can learn from. Spatial augmentation can
be done by means of interpolation methods, i.e., kriging or
distance weighting to create new data points or by generat-
ing synthetic data based on expected physical patterns to fill
gaps in data coverage (Baydaroğlu and Demir, 2024). Tem-
poral data augmentation can be done by shifting, scaling, or
adding noise to existing time series to create new training ex-
amples (Skoulikaris et al., 2022). Alternatively, and not a new
idea, is to use the statistical technique known as seasonal de-
composition, which breaks down a time series into its main
components, i.e., the trend, seasonal patterns, and residual
components (Apaydin et al., 2021; He et al., 2024). These
can then be recombined to generate new data and train the
model for improved accuracy (Apaydin et al., 2021). In addi-
tion to data augmentations, data requirements can be allevi-

ated by considering the help of unsupervised transfer learn-
ing, i.e., use pre-trained models on similar tasks to reduce
the amount of data needed for training, or semi-supervised
learning, such as few shot learning, i.e., combine a small per-
cent of labeled data with a larger percent of unlabeled data
to improve model performance (Yang et al., 2023). By im-
plementing these strategies, researchers in other hydrologic
fields have shown that models can be improved with fewer
data, strategies that are likely transferable to SWT research.

4.3 ML use for knowledge discovery

It has been suggested that the increasingly prominent use of
ML for hydrological predictions points to a paradigm shift,
one where the adoption of ML in most if not all future phys-
ical hydrologic modeling appears certain (Xu and Liang,
2021; Varadharajan et al., 2022). As physical scientists try to
stay afloat in a sea of ML algorithm options and processes,
there is a critical need to examine how “newer” tools such
as ML are improving our understanding of the natural world.
Our review finds that ML studies examining SWT have been
conducted from a computational perspective, one with a fo-
cus on comparing techniques and performance as opposed to
explaining the nature of SWT dynamics or influencing pro-
cesses.

While it is understandable that not every ML-SWT pa-
per aims to explain physical processes, the SWT community
should agree on a baseline of tests that all ML-SWT mod-
els undergo to assess model robustness and transferability.
Specifically, we urge use of TUURTs (temporal, unseen, un-
gaged region tests) for future ML-SWT models as a help-
ful step towards better modeling practices, increased model
transparency, and robustness (see Sect. 2.4.1, Fig. 1). From
a computational perspective, the use of ML in SWT model-
ing has led to improvements in pattern identification (i.e., re-
lease of water from reservoirs; see Jiang et al., 2022) and ex-
amination of climate events (i.e., extreme droughts; see Qiu
et al., 2020), with the aid of observations and remote sens-
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ing data. The use of ML for estimating hydrologic variables
(i.e., precipitation, snow water equivalent, and evapotranspi-
ration) and approximating hydrologic processes (i.e., runoff
generation) has also become increasingly common due to the
ML’s ability to use many inputs without the bounds of pre-
existing relationships (Xu and Liang, 2021). In addition, hy-
bridizations that couple ML models (i.e., WT-LSTM or K-nn
with LSTM) (Rehana and Rajesh, 2023) or couple ML with
process-based models (i.e., SNTEMP-LSTM) (Rahmani et
al., 2023) show potential for outperforming extensively cal-
ibrated hydrologic models, especially where physical con-
straints can be introduced (Rahmani et al., 2023).

Recent studies (Rahmani et al., 2023; Wade et al., 2023)
have tried to infer drivers of SWT regimes by accounting
for some level of physics. Compounding the challenge of ap-
plying physical laws without negatively affecting the perfor-
mance of an ML model is the problem that the ML model
itself is not immune to the difficulties met by statistical and
process-based models such as data uncertainties, parameter
uncertainties, and equifinality (Beven, 2020; Varadharajan et
al., 2022). These uncertainties, coupled with the alarming
trend of consistently high marks of the performance metrics
discussed here, point to an imperative need to reevaluate how
best to use ML in a manner that addresses knowledge gaps
of physical systems instead of perfecting performance that is
unlikely to be insightful for physical processes and trends.
Our review of the literature and analysis of the performance
data agree with the discussion by Beven (2020), who exam-
ined the future of hydrological sciences with ML and posed
several important questions regarding better use of ML mod-
els for scientific inquiry.

4.4 Future directions of SWT modeling

The utility of ML in hydrologic modeling has advanced
significantly, with interest seemingly growing exponentially
(Nearing et al., 2021). With the novelty of ML, it is easy to
over-value model performance and ignore the physics of the
system, but with several decades of ML experience, we ad-
vocate for the necessity of purposefully using ML to address
physically meaningful questions and not just creating ML for
the sake of creating. Given this, Varadharajan et al. (2022)
laid out an excellent discussion on opportunities for advance-
ment of ML in water quality modeling; see Sect. 3 of Varad-
harajan et al. (2022). Here we highlight some of the questions
from Varadharajan et al. (2022) that can be considered in the
context of what objectives the SWT community should be
using in the ML era, namely the following. (1) How do we
use physical knowledge (regarding heat exchange equations,
radiation influence) to improve models and process under-
standing? Rahmani et al. (2023) coupled NNs with the phys-
ical knowledge from SNTEMP, a one-dimensional stream
temperature model that calculates the transfer of energy to
or from a stream segment by either heat flux equations or
advection, but found that even with SNTEMP, their flexible

NNs exhibited substantial variance in prediction and needed
to be constrained by further multi-dimensional assessments
(Rahmani et al., 2023). In short, if our use of physics in ma-
chine learning makes our models worse, we should under-
stand why.

A second question that needs addressing is (2) how do we
deal with predictive uncertainty in ML used for SWT model-
ing? According to Moriasi et al. (2007), uncertainty analysis
is the process of quantifying the level of confidence in any
given model output based on five guidelines: (1) the quality
and number of observations (data), (2) the lack of observa-
tions due to poor or limited field monitoring, (3) the lack of
knowledge of physical processes or operational procedures,
i.e., instrumentation, (4) the approximation of our mathe-
matical equations, and (5) the robustness of model sensitiv-
ity analysis and calibration. For example, in rainfall-runoff
modeling, researchers have proposed benchmarking to ex-
amine uncertainty predictions of ML rainfall-runoff model-
ing (Klotz et al., 2022). For stream temperature modeling, re-
searchers have attempted to address the role of uncertainty in
deep learning model (RGCN, LSTM) predictions using the
Monte Carlo dropout (Zwart et al., 2023b) and a unimodal
mixture density network approach (Zwart et al., 2023a).

Other questions that SWT-ML studies should consider are
the following. (3) How do we make ML models generalize
better, specifically with regards to ungaged basins? And (4)
how can ML models be improved to predict extremes? As
ML models advance to use satellite data, include more sen-
sor networks, and/or couple with climate models, there is a
logical next step toward creating generalizable models that
can account for extremes. The challenge of prediction in un-
gaged basins in SWT modeling has been explored for at least
a decade by process-based (Dugdale et al., 2017) and statis-
tically based (Gallice et al., 2015, Isaak et al., 2017; Wan-
ders et al., 2019; Siegel et al., 2023) models. Unfortunately,
process-based models continue to be limited by data require-
ments and memory or processing and programming imped-
iments (Dugdale et al., 2017; Ouellet et al., 2020), while
statistically based models struggle to account for changing
physical conditions (Benyahya et al., 2007; Arismendi et al.,
2014; Lee et al., 2020). Physics-derived statistically based
models have been applied in ungaged regions (Gallice et al.,
2015), but models tend to be region-specific and not gen-
eralizable. We posit that a future direction of ML models
is to expand on their ability to learn, identify, and mimic
the complexity needed to improve SWT predictions for un-
gaged basins. To date, researchers have used ML to model
SWT for partially ungaged (i.e., discharge used as input)
regions across the CONUS (Rahmani et al., 2020, 2021),
though limitations persist in hydrologically complex and crit-
ical regions in the west (CA) and southeast (FL). Recently,
a satellite remote sensing paper used RF to model monthly
stream temperature across the CONUS and tested for tempo-
ral (walk-forward validation), unseen, and “true” ungaged re-
gions (Philippus et al., 2024a). Given community-wide mod-
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eling interest expanding from SWT prediction to forecast-
ing (Zhu and Piotrowski, 2020; Jiang et al., 2022; Zwart et
al., 2023a), ML use could prove essential in capturing un-
known, complex SWT patterns in space and time (Philippus
et al., 2024b) and with shifting baselines. With regards to
ML models such as LSTMs predicting extremes, a limitation
that must be addressed is that they generally only make pre-
dictions within the bounds of their training data (Kratzert et
al., 2019) though researchers are looking to improve on this
by using ML hybridizations (Rozos, 2023). Overall, there is
promising work in the community towards creating ML mod-
els for SWT that generalize better and/or are more robust for
predictions of extremes.

Finally, (5) how can we build ML models such that they
are seen as trustworthy and interpretable by the hydrologic
community? To answer this question, we must address a
technical barrier (black-box issues, data limitations, model
uncertainty) and a social barrier (i.e., educated skepticism of
ML due to novelty, little understanding of computer science
basics and/or coding experience). If we are to incorporate
ML into decision-making processes, it makes sense that ML
must be transparent and understandable to more than just
computer or data scientists (Varadharajan et al., 2022). For
example, Topp et al. (2023) recently used explainable AI to
elucidate how ML architectures affected the SWT model’s
spatial and temporal dependencies and how that in turn af-
fected the model’s accuracy. Addressing this technical bar-
rier can also be done by improving access to data, which has
seen remarkable progress thanks to web repositories such as
CUAHSI’s NSF-funded HydroShare (CUAHSI Inc., 2025)
and GitHub (GitHub Inc., 2024). In the United States, data
access to state and locally based data remains limited and
should be addressed. In terms of the social barrier, education
about ML and ML use is key.

Societal interest in ML has thankfully also led to a plethora
of educational resources and ML walk-through videos and
tutorials in Tensorflow (Abadi et al., 2016), PyTorch (Paszke
et al., 2019), and Google Colab (Bisong, 2019). With the
speed at which ML use is evolving, short communication
pieces (Lapuschkin et al., 2019) and opinion pieces (Kratzert
et al., 2024) with clear examples about an ML issue and prac-
tical solutions will also help make ML challenges more trans-
parent and therefore accessible to the hydrologic community
at large.

5 Conclusions

While initial examination of SWT began with statistical and
process-based modeling many decades ago, there is now a
strong interest within the hydrology community to use ML
across the board to further our understanding of hydrologic
causes and effects. Indeed, extensive progress has been made
in using ML for SWT modeling solely in the last quarter cen-
tury (2000–2024). As discussed in this review, applications

of ML in SWT modeling have ranged from the local to the
continental scale, as well as from the short-term period of
hours to the longer-term period of decades.

In this review, we examined published literature that used
ML for SWT modeling and provided a range of background
information on the ML models used in these studies. Ad-
ditionally, we compiled reported ML performance metrics
and compare those most cited – RMSE, R2, NSE, and MSE.
We find that ML performance metrics surpass all our pre-
conceived notions of what makes a very good vs. satisfactory
model. We argue that as a scientific community, we need to
redefine model success in the face of ML’s consistently ro-
bust performance or, at the very least, hold ML to additional
standards when comparing ML to physically based and sta-
tistically based models. To aid in redefining standards, we in-
troduce updated designations (for ML studies only) of very
good, good, and satisfactory performance metrics as derived
from the literature. In addition to leveling the playing field
when comparing ML results to process-based and statisti-
cally based models, we assert that raising the performance
bar could also strengthen user confidence in ML models to
the point that their consideration in decision-relevant predic-
tions becomes more widely trusted and accepted.

Finally, our review finds that the increased accessibility to
ML and its use in SWT modeling has yet to lead to better
physical understanding of SWT causes and effects. Over the
past 25 years, the focus on desired accuracy and performance
metrics has overpowered much-needed trade-offs that ear-
lier models of the 20th century considered, such as process
complexity (scale, heterogeneity, generalizability), knowl-
edge discovery, timeliness, and basic public understanding.
Given our knowledge that most ML models consistently per-
form at a higher level, we believe it is time to take a step back
and purposefully consider more thoughtful creation and pur-
posefulness of ML models for the goal of decision-relevant
predictions that include risk mitigation, water resource plan-
ning, and process understanding of stream water temperature
influencers and effects.

Appendix A: Traditional artificial neural networks,
detail, and descriptions

ANNs are composed of networks of interconnected neurons,
also called nodes or units. The network architecture of a com-
monly used ANN, the feed-forward NN (FFNN), can be de-
scribed as a three-layered (or more) network of connected
neurons, organized from left to right, where the input layer
is the first layer, the center layer (could be one or more) is
“hidden”, and the last layer is the output layer (Risley et
al., 2003). Multi-layer perceptron NNs (MLPNNs) fall un-
der the umbrella of FFNNs. In the FFNN architecture, the
first (leftmost) layer creates input signals from a dataset. In
the hidden layer, the neurons process the input signals using
an activation function (i.e., step, sigmoid-shaped, hyperbolic
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tangent, etc.) to calculate a hidden-layer output from the in-
put, the hidden-layer weight, and the hidden-layer bias (Hin-
ton, 1992). The hidden-layer weight is defined as the strength
of the influence of neurons on each other and is modifiable
(Hinton, 1992). For example, a connection between neurons
A and B may be stronger (weight ∼ 0.5) than a connection
between neurons B and C (weight ∼ 0.1). This weight can
be adjusted, or “fine-tuned”, to minimize errors. Depending
on the output of the activation function, the output signals
may be transmitted to other neurons in the network, eventu-
ally supplying output from the hidden layer to the final layer,
which computes the final output using a summation function
(Hinton, 1992).

The back-propagation (BP) learning algorithm (Hinton,
1992) is one of the more popular techniques that iteratively
adjusts model weights and bias terms in a neural network.
First, the FFNN is trained on a labeled and categorized
dataset, called the “training” dataset. The BP algorithm then
iteratively adjusts weights in the NN based on the calculated
error between the predicted output and the actual output, al-
lowing the NN to find underlying patterns or possible rela-
tionships in the data (Hinton, 1992). However, use of the
BP learning algorithm for FFNNs can be time-consuming
in terms of training and calibration (Huang et al., 2006).
Huang et al. (2006) proposed an alternative learning algo-
rithm called extreme learning machine (ELM) for shallow-
layer BP FFNNs (also abbreviated to BPNNs). The ELM
algorithm optimizes training by randomly choosing hidden
nodes and analytically finding output weights (Huang et
al., 2006). In a comparison study, ELM generally outper-
formed the BP algorithm in terms of learning and perfor-
mance (Huang et al., 2006).

Another kind of ANN with a similar three-layer struc-
ture is the radial basis function NN (RBFNN). However, the
RBFNN distinction is that only one hidden layer is used and
that the width of connections and centers (distance between
inputs and weights) must be calculated prior to adjusting
weights (Musavi et al., 1992; Buhmann, 2000). We refer the
reader to Musavi et al. (1992) and Buhmann (2000) for more
detail on RBFNN. The Cascade Correlation Neural Net-
work (CCNN), introduced by Fahlman and Lebiere (1990),
proved to be much faster than back propagation (Fahlman
and Lebiere, 1990). The CCNN was created with a cascade
architecture, where hidden neurons are added to the network
one at a time and remain unchanged; i.e., the input weights
are frozen, allowing the neuron to become a feature detector
in the network, capable of either producing outputs or creat-
ing other complex feature detectors (Fahlman and Lebiere,
1990). For more detail on CCNN, we refer the reader to
Fahlman and Lebiere (1990).

General regression NN is a Bayesian type of FFNN
based on kernel regression networks (Specht, 1991). Unlike
MLPNN, GRNN does not need an iterative training proce-
dure like back propagation. One of the advantages of GRNN
with increasingly larger datasets is that it is consistent in forc-

ing the estimation error to approach zero with only minor
restrictions on the function (Specht, 1991). GRNN also dif-
fers from RBFNN in the method used to decide the weights
of the hidden-layer nodes. GRNN does not train the weights
as RBFNN does; instead, GRNN provides the target value
(to the node weight) by considering the input training dataset
and the related output (Specht, 1991). The product-unit NN
(PUNN) uses product units (in contrast to the summation
units used by MLPNN) to compute the product of its inputs,
each raised to a variable power (Janson and Frenzel, 1993).
While less used in SWT modeling, PUNNs have garnered
interest due to their capacity for implementing higher-order
functions (Martínez-Estudillo et al., 2006) and advantage of
requiring fewer parameters for optimization when consider-
ing the same number of input nodes, hidden nodes, and out-
put nodes (Piotrowski et al., 2015). For more on PUNN, we
refer the reader to Janson and Frenzel (1993) and Martínez-
Estudillo et al. (2006). A lesser known but used ANN is the
Group Method of Data Handling (GMDH), created by Rus-
sian scientist Ivakhnenko in the late 1960s for the purpose
of using inductive learning methods for modeling complex,
nonlinear systems without the bias of the user (Ivakhnenko,
1970). Although not initially described as an ANN, GMDH
is a polynomial NN. GMDH initiates only with input neu-
rons; then during the training processes, neurons are “self-
organized” to optimize the network with the help of “con-
trol data” to stop the training process when overfitting occurs
(Ivakhnenko, 1970; Ivakhnenko and Ivakhnenko, 1995; Graf
and Aghelpour, 2021). For more information on GMDH, we
refer the reader to Ivakhnenko (1970) and Ivakhnenko and
Ivakhnenko (1995).

Adaptive-network-based fuzzy inference systems (AN-
FISs) are types of NNs using fuzzy inference, initially pro-
posed by Jang (1993). Fuzzy inference systems first inter-
pret values in the input vector, and then (following a set of
rules) the system assigns values to the output vector (Kalo-
girou, 2023). ANFIS uses a combination of fuzzy inference
and adaptive network learning (a superset of all FFNNs) to
make and improve upon its estimations (Jang, 1993). In SWT
modeling, ANFIS has been included in comparisons with
other ANNs for model performance evaluation (Piotrowski
et al., 2015; Zhu et al., 2019; Zhu, Hadzima-Nyarko, Gao,
Wang, et al., 2019; Graf and Aghelpour, 2021). A different
type of fuzzy ANN is the dynamic neuro-fuzzy local mod-
eling system (DNFLMS), which contrasts with ANFIS by
its use of the one-pass clustering algorithm and sequential
learning algorithm (Hong and Bhamidimarri, 2012). A com-
parison of ANFIS and DNFLMS showed that the latter re-
quires less training in terms of fuzzy rules needed and fewer
epochs, which can result in over 18.5 h saved in computing
time (Hong and Bhamidimarri, 2012).
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ter temperature prediction based on Gaussian pro-
cess regression, Expert Syst. Appl., 40, 7407–7414,
https://doi.org/10.1016/j.eswa.2013.06.077, 2013.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink,
B. R., and Schmidhuber, J.: LSTM: A search space
odyssey, IEEE T. Neur. Net. Lear., 28, 2222–2232,
https://doi.org/10.48550/arXiv.1503.04069, 2016.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of
automatic calibration for hydrologic models: Comparison
with multilevel expert calibration, J. Hydrol. Eng., 4, 135–
143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135),
1999.

Hadzima-Nyarko, M., Rabi, A., and Šperac, M.: Implementation
of artificial neural networks in modeling the water-air tempera-
ture relationship of the River Drava, Water Resour. Manage., 28,
1379–1394, https://doi.org/10.1007/s11269-014-0557-7, 2014.

Hani, I., St-Hilaire, A., and Ouarda, T. B. M. J.: Machine-learning
modeling of hourly potential thermal refuge area: A case study
from the Sainte-Marguerite River (Quebec, Canada), River Res.
Appl., rra.4191, https://doi.org/10.1002/rra.4191, 2023.

Hastie, T. and Tibshirani, R.: Generalized additive mod-
els: Some applications, J. Am. Stat. Assoc., 82, 371–386,
https://doi.org/10.1080/01621459.1987.10478440, 1987.

Hastie, T., Friedman, J., and Tibshirani, R.: The elements
of statistical learning, Springer New York, New York, NY,
https://doi.org/10.1007/978-0-387-21606-5, 2001.

He, E., Xie, Y., Sun, A., Zwart, J., Yang, J., Jin, Z.,
Wang, Y., Karimi, H., and Jia, X.: Fair graph learn-
ing using constraint-aware priority adjustment and graph
masking in river networks, AAAI, 38, 22087–22095,
https://doi.org/10.1609/aaai.v38i20.30212, 2024.

Hebert, C., Caissie, D., Satish, M. G., and El-Jabi, N.:
Modeling of hourly river water temperatures using artifi-
cial neural networks, Water Qual. Res. J., 49, 144–162,
https://doi.org/10.2166/wqrjc.2014.007, 2014.

Heddam, S., Kim, S., Danandeh Mehr, A., Zounemat-Kermani, M.,
Ptak, M., Elbeltagi, A., Malik, A., and Tikhamarine, Y.: Bat algo-
rithm optimised extreme learning machine (Bat-ELM): A novel
approach for daily river water temperature modelling, Geogr. J.,
189, 78–89, https://doi.org/10.1111/geoj.12478, 2022a.

Heddam, S., Ptak, M., Sojka, M., Kim, S., Malik, A., Kisi, O., and
Zounemat-Kermani, M.: Least square support vector machine-
based variational mode decomposition: a new hybrid model
for daily river water temperature modeling, Environ. Sci. Pol-
lut. Res., 29, 71555–71582, https://doi.org/10.1007/s11356-022-
20953-0, 2022b.

Helsel, D. R. and Hirsch, R. M.: Chapter A3: Statistical
Methods in Water Resources, in: Techniques of Water Re-
sources Investigations, Book 4, U.S. Geological Survey, 522,
https://doi.org/10.3133/twri04A3, 2002.

Hinton, G. E.: How neural networks learn from experience, Sci.
Am., 267, 144–151, 1992.

Hochreiter, S. and Schmidhuber, J.: Long short-
term memory, Neural Comput., 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hong, Y.-S. T. and Bhamidimarri, R.: Dynamic neuro-fuzzy local
modeling system with a nonlinear feature extraction for the on-
line adaptive warning system of river temperature affected by
waste cooling water discharge, Stoch. Environ. Res. Risk As-
sess., 26, 947–960, https://doi.org/10.1007/s00477-011-0543-z,
2012.

Hsu, K., Gupta, H. V., and Sorooshian, S.: Artificial neural network
modeling of the rainfall-runoff process, Water Resour. Res., 31,
2517–2530, https://doi.org/10.1029/95WR01955, 1995.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K.: Extreme learning ma-
chine: Theory and applications, Neurocomputing, 70, 489–501,
https://doi.org/10.1016/j.neucom.2005.12.126, 2006.

Irani, J., Pise, N., and Phatak, M.: Clustering techniques and the
similarity measures used in clustering: A survey, IJCA, 134, 9–
14, https://doi.org/10.5120/ijca2016907841, 2016.

Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel,
D. E., Luce, C. H., Hostetler, S. W., Dunham, J. B., Roper, B.
B., Wollrab, S. P., Chandler, G. L., Horan, D. L., and Parkes-
Payne, S.: The NorWeST summer stream temperature model and
scenarios for the Western U.S.: A crowd-sourced database and
new geospatial tools foster a user community and predict broad
climate warming of rivers and streams, Water Resour. Res., 53,
9181–9205, https://doi.org/10.1002/2017WR020969, 2017.

Islam, M. N. and Sivakumar, B.: Characterization and predic-
tion of runoff dynamics: a nonlinear dynamical view, Adv.
Water Resour., 25, 179–190, https://doi.org/10.1016/S0309-
1708(01)00053-7, 2002.

Ivakhnenko, A. G.: Heuristic self-organization in prob-
lems of engineering cybernetics, Automatica, 6, 207–219,
https://doi.org/10.1016/0005-1098(70)90092-0, 1970.

Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025 https://doi.org/10.5194/hess-29-2521-2025

https://doi.org/10.1111/1752-1688.13158
https://doi.org/10.5194/hess-19-3727-2015
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1016/j.jhydrol.2022.128608
https://www.github.com/github/
https://gemini.google.com
https://gemini.google.com
https://doi.org/10.3390/atmos12091154
https://doi.org/10.1016/j.jhydrol.2019.124115
https://doi.org/10.1016/j.eswa.2013.06.077
https://doi.org/10.48550/arXiv.1503.04069
https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
https://doi.org/10.1007/s11269-014-0557-7
https://doi.org/10.1002/rra.4191
https://doi.org/10.1080/01621459.1987.10478440
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1609/aaai.v38i20.30212
https://doi.org/10.2166/wqrjc.2014.007
https://doi.org/10.1111/geoj.12478
https://doi.org/10.1007/s11356-022-20953-0
https://doi.org/10.1007/s11356-022-20953-0
https://doi.org/10.3133/twri04A3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s00477-011-0543-z
https://doi.org/10.1029/95WR01955
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.5120/ijca2016907841
https://doi.org/10.1002/2017WR020969
https://doi.org/10.1016/S0309-1708(01)00053-7
https://doi.org/10.1016/S0309-1708(01)00053-7
https://doi.org/10.1016/0005-1098(70)90092-0


C. R. Corona and T. S. Hogue: Machine learning in stream and river water temperature modeling 2545

Ivakhnenko, A. G. and Ivakhnenko, G. A.: The review of problems
solvable by algorithms of the group method of data handling
(GMDH), Pattern recognition and image analysis, 5, 527–535,
1995.

Jaber, F. and Shukla, S.: MIKE SHE: Model use, cal-
ibration, and validation, T. ASABE, 55, 1479–1489,
https://doi.org/10.13031/2013.42255, 2012.

Jang, J.-S. R.: ANFIS: adaptive-network-based fuzzy inference
system, IEEE Trans. Syst., Man, Cybern., 23, 665–685,
https://doi.org/10.1109/21.256541, 1993.

Janson, D. J. and Frenzel, J. F.: Training product unit neu-
ral networks with genetic algorithms, IEEE Expert, 8, 26–33,
https://doi.org/10.1109/64.236478, 1993.

Jeong, K., Lee, J., Lee, K. Y., and Kim, B.: Artificial neu-
ral network-based real time water temperature predic-
tion in the Soyang River, The Transactions of The Ko-
rean Institute of Electrical Engineers, 65, 2084–2093,
https://doi.org/10.5370/KIEE.2016.65.12.2084, 2016.

Jiang, D., Xu, Y., Lu, Y., Gao, J., and Wang, K.: Fore-
casting water temperature in cascade reservoir operation-
influenced river with machine learning models, Water, 14, 2146,
https://doi.org/10.3390/w14142146, 2022.

Johnson, S. L. and Jones, J. A.: Stream temperature responses to for-
est harvest and debris flows in western Cascades, Oregon, Can. J.
Fish. Aquat. Sci., 57, 10, https://doi.org/10.1139/f00-109, 2000.

Kalogirou, S. A.: Solar energy engineering: processes and systems,
3rd edn., Elsevier, 902 pp., https://doi.org/10.1016/B978-0-12-
374501-9.X0001-5, 2023.

Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K.: Neural
networks for river flow prediction, J. Comput. Civil Eng., 8, 201–
220, https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(201),
1994.

Khosravi, M., Duti, B. M., Yazdan, M. M. S., Ghoochani,
S., Nazemi, N., and Shabanian, H.: Multivariate multi-
step long short-term memory neural network for simulta-
neous stream-water variable prediction, Eng, 4, 1933–1950,
https://doi.org/10.3390/eng4030109, 2023.

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brand-
stetter, J., Klambauer, G., Hochreiter, S., and Nearing,
G.: Uncertainty estimation with deep learning for rainfall–
runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673–1693,
https://doi.org/10.5194/hess-26-1673-2022, 2022.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: In-
herent benchmark or not? Comparing Nash–Sutcliffe and Kling–
Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331,
https://doi.org/10.5194/hess-23-4323-2019, 2019.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019.

Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opin-
ions: Never train a Long Short-Term Memory (LSTM) network
on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201,
https://doi.org/10.5194/hess-28-4187-2024, 2024.

Krishnaraj, A. and Deka, P. C.: Spatial and temporal variations in
river water quality of the Middle Ganga Basin using unsuper-
vised machine learning techniques, Environ. Monit. Assess., 192,
744, https://doi.org/10.1007/s10661-020-08624-4, 2020.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet classifi-
cation with deep convolutional neural networks, Adv. Neur. In.,
25, 1–9, https://doi.org/10.1145/3065386, 2012.

Kwak, J., St-Hilaire, A., and Chebana, F.: A comparative
study for water temperature modelling in a small basin, the
Fourchue River, Quebec, Canada, Hydrol. Sci. J., 62, 64–75,
https://doi.org/10.1080/02626667.2016.1174334, 2016.

Laanaya, F., St-Hilaire, A., and Gloaguen, E.: Water tem-
perature modelling: comparison between the generalized
additive model, logistic, residuals regression and lin-
ear regression models, Hydrolog. Sci. J., 62, 1078–1093,
https://doi.org/10.1080/02626667.2016.1246799, 2017.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek,
W., and Müller, K.-R.: Unmasking Clever Hans predictors and
assessing what machines really learn, Nat. Commun., 10, 1096,
https://doi.org/10.1038/s41467-019-08987-4, 2019.

Lea, C., Vidal, R., Reiter, A., and Hager, G. D.: Temporal convo-
lutional networks: A unified approach to action segmentation,
Proceedings of the 14th European Conference Computer Vision
– ECCV 2016 Workshops: Part III, 11–16 October 2016, Ams-
terdam, Netherlands, 47–54, https://doi.org/10.1007/978-3-319-
49409-8_7, 2016.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hub-
bard, W., and Jackel, L.: Handwritten digit recognition with
a back-propagation network, in: NIPS ’89, Proceedings of the
third International Conference on Neural Information Process-
ing Systems, Denver, Colorado, USA, 1 January 1989, 396–404,
https://dl.acm.org/doi/10.5555/2969830.2969879, 1989.

LeCun, Y., Huang, F. J., and Bottou, L.: Learning methods for
generic object recognition with invariance to pose and lighting,
in: CVPR 2004, Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR
2004, 27 June–2 July 2004, Washington, D.C., U.S., II-97–104,
https://doi.org/10.1109/CVPR.2004.1315150, 2004.

Lee, S.-Y., Fullerton, A. H., Sun, N., and Torgersen, C.
E.: Projecting spatiotemporally explicit effects of climate
change on stream temperature: A model comparison and
implications for coldwater fishes, J. Hydrol., 588, 125066,
https://doi.org/10.1016/j.jhydrol.2020.125066, 2020.

Legates, D. R. and McCabe, G. J.: Evaluating the use
of “goodness-of-fit” measures in hydrologic and hydrocli-
matic model validation, Water Resour. Res., 35, 233–241,
https://doi.org/10.1029/1998WR900018, 1999.

Liu, D., Xu, Y., Guo, S., Xiong, L., Liu, P., and Zhao, Q.: Stream
temperature response to climate change and water diversion
activities, Stoch. Environ. Res. Risk Assess., 32, 1397–1413,
https://doi.org/10.1007/s00477-017-1487-8, 2018.

Loh, W.-Y.: Classification and Regression Tree Methods. In
Encyclopedia of Statistics in Quality and Reliability, edited
by: Ruggeri, F., Kenett, R. S., and Faltin, F. W., 315–323,
https://doi.org/10.1002/9780470061572.eqr492, 2008.

Loinaz, M. C., Davidsen, H. K., Butts, M., and Bauer-
Gottwein, P.: Integrated flow and temperature model-
ing at the catchment scale, J. Hydrol., 495, 238–251,
https://doi.org/10.1016/j.jhydrol.2013.04.039, 2013.

https://doi.org/10.5194/hess-29-2521-2025 Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025

https://doi.org/10.13031/2013.42255
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/64.236478
https://doi.org/10.5370/KIEE.2016.65.12.2084
https://doi.org/10.3390/w14142146
https://doi.org/10.1139/f00-109
https://doi.org/10.1016/B978-0-12-374501-9.X0001-5
https://doi.org/10.1016/B978-0-12-374501-9.X0001-5
https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(201)
https://doi.org/10.3390/eng4030109
https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/hess-28-4187-2024
https://doi.org/10.1007/s10661-020-08624-4
https://doi.org/10.1145/3065386
https://doi.org/10.1080/02626667.2016.1174334
https://doi.org/10.1080/02626667.2016.1246799
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1007/978-3-319-49409-8_7
https://doi.org/10.1007/978-3-319-49409-8_7
https://doi.org/10.1109/CVPR.2004.1315150
https://doi.org/10.1016/j.jhydrol.2020.125066
https://doi.org/10.1029/1998WR900018
https://doi.org/10.1007/s00477-017-1487-8
https://doi.org/10.1002/9780470061572.eqr492
https://doi.org/10.1016/j.jhydrol.2013.04.039


2546 C. R. Corona and T. S. Hogue: Machine learning in stream and river water temperature modeling

Lu, H. and Ma, X.: Hybrid decision tree-based
machine learning models for short-term water
quality prediction, Chemosphere, 249, 126169,
https://doi.org/10.1016/j.chemosphere.2020.126169, 2020.

Maheu, A., Poff, N. L., and St-Hilaire, A.: A classification of stream
water temperature regimes in the conterminous USA, River Res.
Appl., 32, 896–906, https://doi.org/10.1002/rra.2906, 2016.

Majerska, M., Osuch, M., and Wawrzyniak, T.: Long-
term patterns and changes of unglaciated High Arctic
stream thermal regime, Sci. Total Environ., 923, 171298,
https://doi.org/10.1016/j.scitotenv.2024.171298, 2024.

Martínez-Estudillo, A., Martínez-Estudillo, F., Hervás-Martínez,
C., and García-Pedrajas, N.: Evolutionary product unit based
neural networks for regression, Neural Networks, 19, 477–486,
https://doi.org/10.1016/j.neunet.2005.11.001, 2006.

McCulloch, W. S. and Pitts, W.: A logical calculus of the ideas
immanent in nervous activity, The bulletin of mathematical bio-
physics, 5, 115–133, https://doi.org/10.1007/BF02478259, 1943.

Microsoft, Inc.: Microsoft Copilot, a large language model, https:
//copilot.microsoft.com, last access: 27 January 2025.

Møller, M. F.: A scaled conjugate gradient algorithm for
fast supervised learning, Neural networks, 6, 525–533,
https://doi.org/10.1016/S0893-6080(05)80056-5, 1993.

Moore, A. W., Schneider, J., and Deng, K.: Efficient locally
weighted polynomial regression predictions, in: ICML ’97, Pro-
ceedings of the Fourteenth International Machine Learning Con-
ference, 8–12 July 1997, San Francisco, California, USA, 9,
236–244, ISBN 978-1-55860-486-5, 1997.

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L.,
Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153,
2007.

Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.:
Hydrologic and water quality models: Performance mea-
sures and evaluation criteria, T. ASABE, 58, 1763–1785,
https://doi.org/10.13031/trans.58.10715, 2015.

Morse, W. L.: Stream temperature prediction model, Water Resour.
Res., 6, 290–302, https://doi.org/10.1029/WR006i001p00290,
1970.

Morshed, J. and Kaluarachchi, J. J.: Application of artifi-
cial neural network and genetic algorithm in flow and
transport simulations, Adv. Water Resour., 22, 145–158,
https://doi.org/10.1016/S0309-1708(98)00002-5, 1998.

Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., and Hum-
mels, D. M.: On the training of radial basis function classifiers,
Neural networks, 5, 595–603, https://doi.org/10.1016/S0893-
6080(05)80038-3, 1992.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models, part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C.
S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.:
What role does hydrological science play in the age of ma-
chine learning?, Water Resour. Res., 57, e2020WR028091,
https://doi.org/10.1029/2020WR028091, 2021.

OpenAI, Inc.: ChatGPT (27 Jan version), a large language model,
https://chat.openai.com/chat, last access: 27 January 2025.

Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M.,
Krause, S., and Proulx-Ouellet, S.: River temperature
research and practice: Recent challenges and emerging
opportunities for managing thermal habitat conditions
in stream ecosystems, Sci. Total Environ., 736, 139679,
https://doi.org/10.1016/j.scitotenv.2020.139679, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S.: PyTorch: An imperative style,
high-performance deep learning library, arXiv [preprint],
https://doi.org/10.48550/arXiv.1912.01703, 3 December 2019.

Patra, R. W., Chapman, J. C., Lim, R. P., Gehrke, P. C., and Sun-
deram, R. M.: Interactions between water temperature and con-
taminant toxicity to freshwater fish, Environ. Toxicol. Chem., 34,
1809–1817, https://doi.org/10.1002/etc.2990, 2015.

Philippus, D., Sytsma, A., Rust, A., and Hogue, T. S.: A machine
learning model for estimating the temperature of small rivers
using satellite-based spatial data, Remote Sens. Environ., 311,
114271, https://doi.org/10.1016/j.rse.2024.114271, 2024a.

Philippus, D., Corona, C. R., and Hogue, T. S.: Improved an-
nual temperature cycle function for stream seasonal thermal
regimes, J. American Water Resour. Assoc., 60, 1080–1094,
https://doi.org/10.1111/1752-1688.13228, 2024b.

Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia,
A., and Toffolon, M.: Prediction of river water tempera-
ture: a comparison between a new family of hybrid models
and statistical approaches, Hydrol. Process., 30, 3901–3917,
https://doi.org/10.1002/hyp.10913, 2016.

Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., and Os-
uch, M.: Comparing various artificial neural network types for
water temperature prediction in rivers, J. Hydrol., 529, 302–315,
https://doi.org/10.1016/j.jhydrol.2015.07.044, 2015.

Piotrowski, A. P., Napiorkowski, J. J., and Piotrowska, A. E.: Im-
pact of deep learning-based dropout on shallow neural networks
applied to stream temperature modelling, Earth-Sci. Rev., 201,
103076, https://doi.org/10.1016/j.earscirev.2019.103076, 2020.

Piotrowski, A. P., Marzena, O., and Napiorkowski, J. J.: Influ-
ence of the choice of stream temperature model on the pro-
jections of water temperature in rivers, J. Hydrol., 601, 1–21,
https://doi.org/10.1016/j.jhydrol.2021.126629, 2021.

Poff, N. L., Tokar, S., and Johnson, P.: Stream hydrological
and ecological responses to climate change assessed with an
artificial neural network, Limnol. Oceanogr., 41, 857–863,
https://doi.org/10.4319/lo.1996.41.5.0857, 1996.

Poole, G. C. and Berman, C. H.: An ecological perspective on in-
stream temperature: Natural heat dynamics and mechanisms of
human-caused thermal degradation, Environ. Manage, 27, 787–
802, https://doi.org/10.1007/s002670010188, 2001.

Portet, S.: A primer on model selection using the Akaike Infor-
mation Criterion, Infectious Disease Modelling, 5, 111–128,
https://doi.org/10.1016/j.idm.2019.12.010, 2020.

Qiu, R., Wang, Y., Wang, D., Qiu, W., Wu, J., and Tao,
Y.: Water temperature forecasting based on modi-
fied artificial neural network methods: Two cases of
the Yangtze River, Sci. Total Environ., 737, 139729,
https://doi.org/10.1016/j.scitotenv.2020.139729, 2020.

Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025 https://doi.org/10.5194/hess-29-2521-2025

https://doi.org/10.1016/j.chemosphere.2020.126169
https://doi.org/10.1002/rra.2906
https://doi.org/10.1016/j.scitotenv.2024.171298
https://doi.org/10.1016/j.neunet.2005.11.001
https://doi.org/10.1007/BF02478259
https://copilot.microsoft.com
https://copilot.microsoft.com
https://doi.org/10.1016/S0893-6080(05)80056-5
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/trans.58.10715
https://doi.org/10.1029/WR006i001p00290
https://doi.org/10.1016/S0309-1708(98)00002-5
https://doi.org/10.1016/S0893-6080(05)80038-3
https://doi.org/10.1016/S0893-6080(05)80038-3
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1029/2020WR028091
https://chat.openai.com/chat
https://doi.org/10.1016/j.scitotenv.2020.139679
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1002/etc.2990
https://doi.org/10.1016/j.rse.2024.114271
https://doi.org/10.1111/1752-1688.13228
https://doi.org/10.1002/hyp.10913
https://doi.org/10.1016/j.jhydrol.2015.07.044
https://doi.org/10.1016/j.earscirev.2019.103076
https://doi.org/10.1016/j.jhydrol.2021.126629
https://doi.org/10.4319/lo.1996.41.5.0857
https://doi.org/10.1007/s002670010188
https://doi.org/10.1016/j.idm.2019.12.010
https://doi.org/10.1016/j.scitotenv.2020.139729


C. R. Corona and T. S. Hogue: Machine learning in stream and river water temperature modeling 2547

Rabi, A., Hadzima-Nyarko, M., and Šperac, M.: Mod-
elling river temperature from air temperature: case of the
River Drava (Croatia), Hydrolog. Sci. J., 60, 1490–1507,
https://doi.org/10.1080/02626667.2014.914215, 2015.

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S.,
and Shen, C.: Exploring the exceptional performance of a deep
learning stream temperature model and the value of streamflow
data, Environ. Res. Lett., 16, 1–11, https://doi.org/10.1088/1748-
9326/abd501, 2020.

Rahmani, F., Shen, C., Oliver, S., Lawson, K., and Ap-
pling, A.: Deep learning approaches for improving predic-
tion of daily stream temperature in data-scarce, unmoni-
tored, and dammed basins, Hydrol. Process., 35, e14400,
https://doi.org/10.1002/hyp.14400, 2021.

Rahmani, F., Appling, A., Feng, D., Lawson, K., and Shen, C.:
Identifying structural priors in a hybrid differentiable model
for stream water temperature modeling, Water Resour. Res.,
59, e2023WR034420, https://doi.org/10.1029/2023WR034420,
2023.

Rajesh, M. and Rehana, S.: Prediction of river water temperature us-
ing machine learning algorithms: a tropical river system of India,
J. Hydroinform., 23, 605–626, 2021.

Rehana, S.: River water temperature modelling under climate
change using support vector regression, in: Hydrology in
a Changing World, edited by: Singh, S. K. and Dhanya,
C. T., Springer International Publishing, Cham, 171–183,
https://doi.org/10.1007/978-3-030-02197-9_8, 2019.

Rehana, S. and Rajesh, M.: Assessment of impacts of climate
change on indian riverine thermal regimes using hybrid deep
learning methods, Water Resour. Res., 59, e2021WR031347,
https://doi.org/10.1029/2021WR031347, 2023.

Risley, J. C., Roehl, E. A., and Conrads, P. A.: Estimat-
ing water temperatures in small streams in western Ore-
gon using neural network models, U.S. Geological Survey,
https://doi.org/10.3133/wri024218, 2003.

Risley, J. C., Constantz, J., Essaid, H., and Rounds, S.: Effects
of upstream dams versus groundwater pumping on stream tem-
perature under varying climate conditions: Upstream Dam and
Groundwater Pumping Impacts, Water Resour. Res., 46, 1–32,
https://doi.org/10.1029/2009WR008587, 2010.

Rogers, J. B., Stein, E. D., Beck, M. W., and Ambrose, R.
F.: The impact of climate change induced alterations
of streamflow and stream temperature on the distri-
bution of riparian species, PLoS ONE, 15, e0242682,
https://doi.org/10.1371/journal.pone.0242682, 2020.

Rozos, E.: Assessing hydrological simulations with ma-
chine learning and statistical models, Hydrology, 10, 49,
https://doi.org/10.3390/hydrology10020049, 2023.

Sadler, J. M., Appling, A. P., Read, J. S., Oliver, S. K., Jia,
X., Zwart, J. A., and Kumar, V.: Multi-task deep learning of
daily streamflow and water temperature, Water Resour. Res.,
58, e2021WR030138, https://doi.org/10.1029/2021WR030138,
2022.

Sahoo, G. B., Schladow, S. G., and Reuter, J. E.: Forecasting stream
water temperature using regression analysis, artificial neural net-
work, and chaotic non-linear dynamic models, J. Hydrol., 378,
325–342, https://doi.org/10.1016/j.jhydrol.2009.09.037, 2009.

Segura, C., Caldwell, P., Sun, G., McNulty, S., and Zhang,
Y.: A model to predict stream water temperature across

the conterminous USA, Hydrol. Process., 29, 2178–2195,
https://doi.org/10.1002/hyp.10357, 2015.

Shamseldin, A. Y.: Application of a neural network tech-
nique to rainfall-runoff modelling, J. Hydrol., 199, 272–294,
https://doi.org/10.1016/S0022-1694(96)03330-6, 1997.

Shen, C.: A transdisciplinary review of deep learning research and
its relevance for water resources scientists, Water Resour. Res.,
54, 8558–8593, https://doi.org/10.1029/2018WR022643, 2018.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and
Woo, W.: Convolutional LSTM network: A machine learning
approach for precipitation nowcasting, in: NIPS ’15, Proceed-
ings of the 29th International Conference on Neural Information
Processing Systems, 7–12 December 2015, Montreal, Canada,
802–810, https://dl.acm.org/doi/10.5555/2969239.2969329 (last
access: 12 June 2025), 2015.

Siegel, J. E., Fullerton, A. H., FitzGerald, A. M., Holzer, D., and
Jordan, C. E.: Daily stream temperature predictions for free-
flowing streams in the Pacific Northwest, USA, PloS Water, 2,
1–27, https://doi.org/10.1371/journal.pwat.0000119, 2023.

Sinokrot, B. A. and Stefan, H. G.: Stream temperature dynam-
ics: Measurements and modeling, Water Resour. Res., 29, 2299–
2312, https://doi.org/10.1029/93WR00540, 1993.

Sivri, N., Kilic, N., and Ucan, O. N.: Estimation of stream tem-
perature in Firtina Creek (Rize-Turkiye) using artificial neural
network model, J. Environ. Biol., 28, 67–72, 2007.

Skoulikaris, C., Venetsanou, P., Lazoglou, G., Anagnostopoulou,
C., and Voudouris, K.: Spatio-temporal interpolation and bias
correction ordering analysis for hydrological simulations: An
assessment on a mountainous river basin, Water, 14, 660,
https://doi.org/10.3390/w14040660, 2022.

Smith, K. and Lavis, M. E.: Environmental influences on
the temperature of a small upland stream, Oikos, 26, 228,
https://doi.org/10.2307/3543713, 1975.

Solomatine, D. P., Maskey, M., and Shrestha, D. L.: Instance-
based learning compared to other data-driven methods in
hydrological forecasting, Hydrol. Process., 22, 275–287,
https://doi.org/10.1002/hyp.6592, 2008.

Souaissi, Z., Ouarda, T. B. M. J., and St-Hilaire, A.:
Non-parametric, semi-parametric, and machine learn-
ing models for river temperature frequency analy-
sis at ungauged basins, Ecol. Inform., 75, 102107,
https://doi.org/10.1016/j.ecoinf.2023.102107, 2023.

Specht, D. F.: A general regression neural network, IEEE T. Neutral.
Networ., 2, 568–576, https://doi.org/10.1109/72.97934, 1991.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R.: Dropout: A simple way to prevent neural
net- works from overfitting, J. Mach. Learn. Res., 15, 1929–
1958, https://dl.acm.org/doi/10.5555/2627435.2670313 (last ac-
cess: 30 December 2024), 2014.

St-Hilaire, A., Morin, G., El-Jabi, N., and Caissie, D.: Water tem-
perature modelling in a small forested stream: implication of for-
est canopy and soil temperature, Can. J. Civil Eng., 27, 1095–
1108, https://doi.org/10.1139/l00-021, 2000.

St-Hilaire, A., Ouarda, T. B. M. J., Bargaoui, Z., Daigle, A., and
Bilodeau, L.: Daily river water temperature forecast model with a
k-nearest neighbour approach, Hydrol. Process., 26, 1302–1310,
https://doi.org/10.1002/hyp.8216, 2011.

https://doi.org/10.5194/hess-29-2521-2025 Hydrol. Earth Syst. Sci., 29, 2521–2549, 2025

https://doi.org/10.1080/02626667.2014.914215
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1002/hyp.14400
https://doi.org/10.1029/2023WR034420
https://doi.org/10.1007/978-3-030-02197-9_8
https://doi.org/10.1029/2021WR031347
https://doi.org/10.3133/wri024218
https://doi.org/10.1029/2009WR008587
https://doi.org/10.1371/journal.pone.0242682
https://doi.org/10.3390/hydrology10020049
https://doi.org/10.1029/2021WR030138
https://doi.org/10.1016/j.jhydrol.2009.09.037
https://doi.org/10.1002/hyp.10357
https://doi.org/10.1016/S0022-1694(96)03330-6
https://doi.org/10.1029/2018WR022643
https://dl.acm.org/doi/10.5555/2969239.2969329
https://doi.org/10.1371/journal.pwat.0000119
https://doi.org/10.1029/93WR00540
https://doi.org/10.3390/w14040660
https://doi.org/10.2307/3543713
https://doi.org/10.1002/hyp.6592
https://doi.org/10.1016/j.ecoinf.2023.102107
https://doi.org/10.1109/72.97934
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.1139/l00-021
https://doi.org/10.1002/hyp.8216


2548 C. R. Corona and T. S. Hogue: Machine learning in stream and river water temperature modeling

Suykens, J. A. and Vandewalle, J.: Least squares support vec-
tor machine classifiers, Neural. Process. Lett., 9, 293–300,
https://doi.org/10.1023/A:1018628609742, 1999.

Tao, Y., Wang, Y., Rhoads, B., Wang, D., Ni, L., and Wu, J.: Quan-
tifying the impacts of the Three Gorges Reservoir on water tem-
perature in the middle reach of the Yangtze River, J. Hydrol., 582,
124476, https://doi.org/10.1016/j.jhydrol.2019.124476, 2020.

Temizyurek, M. and Dadaser-Celik, F.: Modelling the effects
of meteorological parameters on water temperature using ar-
tificial neural networks, Water Sci. Technol., 77, 1724–1733,
https://doi.org/10.2166/wst.2018.058, 2018.

Theurer, F. D., Voos, K. A., and Miller, W. J.: Instream water tem-
perature model, Western Energy and Land Use Team, Division
of Biological Services, Research and Development, USDI, Fish
W., Instream Flow Information Paper, 16, 352 pp., 1984.

Thirumalaiah, K. and Deo, M. C.: Real-Time flood forecasting
using neural networks, Comput.-Aided Civ. Inf., 13, 101–111,
https://doi.org/10.1111/0885-9507.00090, 1998.

Tibshirani, R.: Regression shrinkage and selection via the lasso,
J. R. Stat. Soc., 58, 267–288, https://doi.org/10.1111/j.2517-
6161.1996.tb02080.x, 1996.

Tipping, M. E.: Sparse Bayesian learning and the rele-
vance vector machine, J. Mach. Learn. Res., 1, 211–244,
https://doi.org/10.1162/15324430152748236, 2001.

Toffolon, M. and Piccolroaz, S.: A hybrid model for river wa-
ter temperature as a function of air temperature and discharge,
Environ. Res. Lett., 10, 114011, https://doi.org/10.1088/1748-
9326/10/11/114011, 2015.

Topp, S. N., Barclay, J., Diaz, J., Sun, A. Y., Jia, X., Lu, D.,
Sadler, J. M., and Appling, A. P.: Stream temperature predic-
tion in a shifting environment: Explaining the influence of deep
learning architecture, Water Resour. Res., 59, e2022WR033880,
https://doi.org/10.1029/2022WR033880, 2023.

Ulaski, M. E., Warkentin, L., Naman, S. M., and Moore, J. W.: Spa-
tially variable effects of streamflow on water temperature and
thermal sensitivity within a salmon-bearing watershed in inte-
rior British Columbia, Canada, River Res. Appl., 39, 2036–2047,
https://doi.org/10.1002/rra.4200, 2023.

Varadharajan, C., Appling, A. P., Arora, B., Christianson, D. S.,
Hendrix, V. C., Kumar, V., Lima, A. R., Müller, J., Oliver,
S., Ombadi, M., Perciano, T., Sadler, J. M., Weierbach, H.,
Willard, J. D., Xu, Z., and Zwart, J.: Can machine learning
accelerate process understanding and decision-relevant predic-
tions of river water quality?, Hydrol. Process., 36, e14565,
https://doi.org/10.1002/hyp.14565, 2022.

Venkateswarlu, T. and Anmala, J.: Importance of land use fac-
tors in the prediction of water quality of the Upper Green River
watershed, Kentucky, USA, using random forest, Environ. Dev.
Sustain., 26, 23961–23984, https://doi.org/10.1007/s10668-023-
03630-1, 2023.
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