Articles | Volume 28, issue 8
https://doi.org/10.5194/hess-28-1853-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1853-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Ayenew D. Ayalew
CORRESPONDING AUTHOR
Department of Hydrology and Water Resources Management, Christian-Albrechts-University, Kiel, Germany
Paul D. Wagner
Department of Hydrology and Water Resources Management, Christian-Albrechts-University, Kiel, Germany
Dejene Sahlu
Institute of Disaster Risk Management and Food Security Studies, Bahir Dar University, Bahir Dar, Ethiopia
Nicola Fohrer
Department of Hydrology and Water Resources Management, Christian-Albrechts-University, Kiel, Germany
Related authors
No articles found.
Paul Daniel Wagner, Fatemeh Saba, Pedro Achanccaray, and Nicola Fohrer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3091, https://doi.org/10.5194/egusphere-2025-3091, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Recent drought conditions in Europe led to significant land use and land cover changes that affect the water balance. In the study area of the Harz mountains we found increasing areas of dead coniferous trees. The loss of trees potentially exacerbates floods and droughts. Therefore, afforestation with climate-resilient trees is needed to improve both flood and drought resilience in the future.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022, https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Cited articles
Alemayehu, T., Ayenew, T., and Kebede, S.: Hydrogeochemical and lake level changes in the Ethiopian Rift, J. Hydrol., 316, 290–300, https://doi.org/10.1016/j.jhydrol.2005.04.024, 2006.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development 1, J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Awulachew, S. B.: Investigation of physical and bathymetric characteristics of Lakes Abaya and Chamo, Ethiopia, and their management implications, Lakes Reserv.: Res. Manage., 11, 133–140, https://doi.org/10.1111/j.1440-1770.2006.00300.x, 2006.
Ayalew, L., Yamagishi, H., and Reik, G.: Ground cracks in Ethiopian Rift Valley: facts and uncertainties, Eng. Geol., 75, 309–324, https://doi.org/10.1016/j.enggeo.2004.06.018, 2004.
Ayalew, A. D., Wagner, P. D., Sahlu, D., and Fohrer, N.: Land use change and climate dynamics in the Rift Valley Lake Basin, Ethiopia, Environ. Monit. Assess., 194, 791, https://doi.org/10.1007/s10661-022-10393-1, 2022.
Ayalew, A. D., Wagner, P. D., Tigabu, T. B., Sahlu, D., and Fohrer, N.: Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia, J. Water Clim. Change, 14, 2788–2807, https://doi.org/10.2166/wcc.2023.138, 2023.
Ayenew, T.: Recent changes in the level of Lake Abiyata, central main Ethiopian Rift, Hydrolog. Sci. J., 47, 493–503, https://doi.org/10.1080/02626660209492949, 2002.
Ayenew, T.: Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970, Reg. Environm. Change, 4, 192–204, https://doi.org/10.1007/s10113-004-0083-x, 2004.
Beldring, S.: Multi-criteria validation of a precipitation–runoff model, J. Hydrol., 257, 189–211, https://doi.org/10.1016/S0022-1694(01)00541-8, 2002.
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, a completely restructured version of the soil and water assessment tool, J. Am. Water Resour. Assoc., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017.
Billi, P. and Caparrini, F.: Estimating land cover effects on evapotranspiration with remote sensing: a case study in Ethiopian Rift Valley, Hydrolog. Sci. J., 51, 655–670, https://doi.org/10.1623/hysj.51.4.655, 2006.
Cowx, I. G. and Ogutu-Owhayo, R.: Towards sustainable fisheries and aquaculture management in the African Great Lakes, Fish. Manage. Ecol., 26, 397–405, https://doi.org/10.1111/fme.12391, 2019.
de Sousa Lima, J. R., Antonino, A. C. D., de Souza, E. S., Hammecker, C., Montenegro, S. M. G. L., and de Oliveira Lira, C. A. B.: Calibration of Hargreaves-Samani equation for estimating reference evapotranspiration in sub-humid region of Brazil, J. Water Resour. Protect., 5, 1–5, https://doi.org/10.4236/jwarp.2013.512A001, 2013.
Dessie, G. andKleman, J.: Pattern and magnitude of deforestation in the South Central Rift Valley Region of Ethiopia, Mount. Res. Dev., 27, 162–168, https://doi.org/10.1659/mrd.0730, 2007.
Flörke, M., Schneider, C., and McDonald, R. I.: Water competition between cities and agriculture driven by climate change and urban growth, Nat. Sustainabil., 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Garedew, E., Sandewall, M., Söderberg, U., and Campbell, B. M.: Land-use and land-cover dynamics in the central rift valley of Ethiopia, Environ. Manage., 44, 683–694, https://doi.org/10.1016/j.apgeog.2015.10.002, 2009.
Getnet, M., Hengsdijk, H., and van Ittersum, M.: Disentangling the impacts of climate change, land use change and irrigation on the Central Rift Valley water system of Ethiopia, Agr. Water Manage., 137, 104–115, https://doi.org/10.1016/j.agwat.2014.02.014, 2014.
Gownaris, N. J., Pikitch, E. K., Ojwang, W. O., Michener, R., and Kaufman, L.: Predicting species' vulnerability in a massively perturbed system: The fishes of Lake Turkana, Kenya, PLoS One, 10, e0127027, https://doi.org/10.1371/journal.pone.0127027, 2015.
Gunawardana, S. K., Shrestha, S., Mohanasundaram, S., Salin, K. R., and Piman, T.: Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region, J. Environ. Manage., 278, 111524, https://doi.org/10.1016/j.jenvman.2020.111524, 2021.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, Appl. Eng. Agricult., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A regional parameter estimation scheme for a pan-European multi-basin model, J. Hydrol.: Reg. Stud., 6, 90—11, https://doi.org/10.1016/j.ejrh.2016.04.002, 2016.
Kebede, E., Mariam, Z. G., and Ahlgren, I.: The Ethiopian Rift Valley lakes: chemical characteristics of a salinity-alkalinity series, Hydrobiologia, 288, 1–12, https://doi.org/10.1007/BF00006801, 1994.
Kolding, J. and van Zwieten, P. A.: Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs, Fish. Res., 115, 99–109, https://doi.org/10.1016/j.fishres.2011.11.008, 2012.
Legesse, D. and Ayenew, T.: Effect of improper water and land resource utilization on the central Main Ethiopian Rift lakes, Quatern. Int., 148, 8–18, https://doi.org/10.1016/j.quaint.2005.11.003, 2006.
Lemma, B. and Desta, H.: Review of the natural conditions and anthropogenic threats to the Ethiopian Rift Valley rivers and lakes, Lakes Reserv.: Res. Manage., 21, 133–151, https://doi.org/10.1111/lre.12126, 2016.
Le Turdu, C., Tiercelin, J.-J., Gibert, E., Travi, Y., Lezzar, K.-E., Richert, J.-P., Massault, M., Gasse, F., Bonnefille, R., and Decobert, M.: The Ziway–Shala lake basin system, Main Ethiopian Rift: influence of volcanism, tectonics, and climatic forcing on basin formation and sedimentation, Palaeogeogr. Palaeoclim. Palaeoecol., 150, 135–177, https://doi.org/10.1016/S0031-0182(98)00220-X, 1999.
Mahmoodi, N., Kiesel, J., Wagner, P. D., and Fohrer, N.: Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system, Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, 2021a.
Mahmoodi, N., Wagner, P. D., Kiesel, J., and Fohrer, N.: Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system, J. Water Clim. Change, 12, 1598–1613, https://doi.org/10.2166/wcc.2020.098, 2021b.
McGinn, A. J., Wagner, P. D., Htike, H., Kyu, K. K., and Fohrer, N.: Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019, Sci. Total Environ., 798, 148766, https://doi.org/10.1016/j.scitotenv.2021.148766, 2021.
Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters, J. Hydrol., 287, 95–123, https://doi.org/10.1016/j.jhydrol.2003.09.028, 2004.
Meshesha, D. T., Tsunekawa, A., Tsubo, M., and Haregeweyn, N.: Dynamics and hotspots of soil erosion and management scenarios of the Central Rift Valley of Ethiopia, Int. J. Sediment Res., 27, 84–99, https://doi.org/10.1016/S1001-6279(12)60018-3, 2012.
Minale, A. S.: Water level fluctuations of Lake Tana and its implication on local communities livelihood, northwestern Ethiopia, Int. J. River Basin Manage., 18, 503–510, https://doi.org/10.1080/15715124.2019.1700512, 2020.
Moeletsi, M. E., Walker, S., and Hamandawana, H.: Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa, Phys. Chem. Earth Pt. A/B/C, 66, 4–15, https://doi.org/10.1016/j.pce.2013.08.003, 2013.
Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
O'Brien, G. C., Dickens, C., Hines, E., Wepener, V., Stassen, R., Quayle, L., Fouchy, K., MacKenzie, J., Graham, P. M., and Landis, W. G.: A regional-scale ecological risk framework for environmental flow evaluations, Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, 2018.
Olson, D. M. and Dinerstein, E.: The Global 200: Priority ecoregions for global conservation, JSTOR, 199–224, https://doi.org/10.2307/3298564, 2002.
Pati, A., Sen, S., and Perumal, M. J. J. H. E.: Modified channel-routing scheme for SWAT model, J. Hydrol. Eng., 23, 04018019, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001657, 2018.
Pfannerstill, M., Guse, B., and Fohrer, N.: Smart low flow signature metrics for an improved overall performance evaluation of hydrological models, J. Hydrol., 510, 447–458, https://doi.org/10.1016/j.jhydrol.2013.12.044, 2014.
Pool, S., Vis, M., and Seibert, J.: Regionalization for ungauged catchments – lessons learned from a comparative large-sample study, Water Resour. Res., 57, e2021WR030437, https://doi.org/10.1029/2021WR030437, 2021.
Richter, B. D., Baumgartner, J. V., Braun, D. P., and Powell, J.: A spatial assessment of hydrologic alteration within a river network, Regulat. Rivers: Res. Manage., 14, 329–340, https://doi.org/10.1002/(SICI)1099-1646(199807/08)14:4<329::AID-RRR505>3.0.CO;2-E, 1998.
Ryan, J. A. and Ulrich, J. M.: xts: Extensible time series, R package version 0.8-2, GitHub [code], https://joshuaulrich.github.io/xts/ (last access: 22 April 2024), 2011.
Sangin, E., Mishra, S. K., and Patil, P. R.: Analogy Between SCS-CN and Muskingum Methods, Water Resour. Manage., 38, 153–171, https://doi.org/10.1007/s11269-023-03660-4, 2024.
Scoon, R. N., Scoon, R. N., and Plateaus, R.: The east African rift system, Geology of National Parks of central/southern Kenya northern Tanzania: Geotourism of the Gregory Rift Valley, active volcanism, Springer, 19–28, https://doi.org/10.1007/978-3-319-73785-0_3, 2018.
Seibert, J.: Regionalisation of parameters for a conceptual rainfall-runoff model, Agr. Forest Meteorol., 98, 279–293, https://doi.org/10.1016/S0168-1923(99)00105-7, 1999.
Shieh, C.-L., Guh, Y.-R., and Wang, S.-Q.: The application of range of variability approach to the assessment of a check dam on riverine habitat alteration, Environ. Geol., 52, 427–435, https://doi.org/10.1007/s00254-006-0470-3, 2017.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Soetaert, K. and Petzoldt, T.: Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME, J. Stat. Softw., 33, 1–28, https://doi.org/10.18637/jss.v033.i03, 2010.
Stamps, D. S., Calais, E., Saria, E., Hartnady, C., Nocquet, J. M., Ebinger, C. J., and Fernandes, R. M.: A kinematic model for the East African Rift, Geophys. Res. Lett., 35, L05304, https://doi.org/10.1029/2007GL032781, 2008.
Street, F. A. and Grove, A.: Global maps of lake-level fluctuations since 30,000 yr BP, Quatern. Res., 12, 83–118, https://doi.org/10.1016/0033-5894(79)90092-9, 1979.
SWAT+: SWAT+ Model Compile Help, https://swatplus.gitbook.io/docs/source-code (last access: 22 April 2024), 2024.
Tigabu, T. B., Wagner, P. D., Hörmann, G., and Fohrer, N.: Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin, Ethiopia, Hydrol. Res., 50, 1376–1396, https://doi.org/10.2166/nh.2019.170, 2019.
Tigabu, T. B., Wagner, P. D., Narasimhan, B., and Fohrer, N.: Pitfalls in hydrologic model calibration in a data scarce environment with a strong seasonality: experience from the Adyar catchment, India, Environ. Earth Sci., 82, 367, https://doi.org/10.1007/s12665-023-11047-2, 2023.
Tsegaw, A. T., Alfredsen, K., Skaugen, T., and Muthanna, T. M.: Predicting hourly flows at ungauged small rural catchments using a parsimonious hydrological model, J. Hydrol., 573, 855–871, https://doi.org/10.1016/j.jhydrol.2019.03.090, 2019.
USGS: 3D elevation program 1-meter resolution digital elevation model, USGS, https://doi.org/10.5066/F7K072R7, 2019.
Vieceli, N., Bortolin, T. A., Mendes, L. A., Bacarim, G., Cemin, G., and Schneider, V. E.: Morphometric evaluation of watersheds in Caxias do Sul City, Brazil, using SRTM (DEM) data and GIS, Environ. Earth Sci., 73, 5677–5685, https://doi.org/10.1007/s12665-014-3823-3, 2015.
Viglione, A., Parajka, J., Rogger, M., Salinas, J., Laaha, G., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria, Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, 2013.
Vu, T. T., Kiesel, J., Guse, B., and Fohrer, N.: Analysis of the occurrence, robustness and characteristics of abrupt changes in streamflow time series under future climate change, Clim. Risk Manage., 26, 100198, https://doi.org/10.1016/j.crm.2019.100198, 2019.
Wagaw, S., Mengistou, S., and Getahun, A.: Review of anthropogenic threats and biodiversity assessment of an Ethiopian soda lake, Lake Abijata, Afr. J. Aquat. Sci., 44, 103–111, https://doi.org/10.2989/16085914.2019.1596065, 2019.
Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., and Schneider, K.: Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, J. Hydrol., 464, 388–400, https://doi.org/10.1016/j.jhydrol.2012.07.026, 2012.
Wagner, P. D., Bieger, K., Arnold, J. G., and Fohrer, N. J. E. M.: Representation of hydrological processes in a rural lowland catchment in Northern Germany using SWAT and SWAT+, Hydrol. Process., 36, e14589, https://doi.org/10.1002/hyp.14589, 2022.
Wagner, P. D., Kumar, S., and Fohrer, N.: Integrated modeling of global change impacts on land and water resources, Sci. Total Environ., 892, 164673, https://doi.org/10.1016/j.scitotenv.2023.164673, 2023.
White, G. F., Bradley, D. J., and White, A. U.: Drawers of water: domestic water use in East Africa, Bull. World Health Organiz., 80, 63–73, https://doi.org/10.2307/213928, 2002.
Wi, S., Yang, Y., Steinschneider, S., Khalil, A., and Brown, C.: Calibration approaches for distributed hydrologic models using high performance computing: implication for streamflow projections under climate change, Hydrol. Earth Syst. Sci. Discuss., 11, 10273–10317, https://doi.org/10.5194/hessd-11-10273-2014, 2014.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series, 2017, R package version 0.3-10, Zenodo [code], https://doi.org/10.5281/zenodo.839854, 2018.
Zeileis, A. and Grothendieck, G.: zoo: S3 infrastructure for regular and irregular time series, arXiv [preprint], math/0505527, https://doi.org/10.48550/arXiv.math/0505527, 2005.
Zhang, H., Wang, B., Lan, T., Shi, J., and Lu, S.: Change-point detection and variation assessment of the hydrologic regime of the Wenyu River, Toxicol. Environ. Chem., 98, 358–375, https://doi.org/10.1080/02772248.2015.1123480, 2016.
Zinabu, G.-M. and Elias, D.: Water resources and fisheries management in the Ethiopian rift valley lakes, Sinet, 12, 95–109, https://doi.org/10.1080/07900627.2013.843410, 1989.
Short summary
The study presents a pioneering comprehensive integrated approach to unravel hydrological complexities in data-scarce regions. By integrating diverse data sources and advanced analytics, we offer a holistic understanding of water systems, unveiling hidden patterns and driving factors. This innovative method holds immense promise for informed decision-making and sustainable water resource management, addressing a critical need in hydrological science.
The study presents a pioneering comprehensive integrated approach to unravel hydrological...