Articles | Volume 27, issue 3
https://doi.org/10.5194/hess-27-809-2023
https://doi.org/10.5194/hess-27-809-2023
Research article
 | 
15 Feb 2023
Research article |  | 15 Feb 2023

A hydrological framework for persistent pools along non-perennial rivers

Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci

Related authors

A hydrological framework for persistent river pools in semi-arid environments
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, and Shawan Dogramaci
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-133,https://doi.org/10.5194/hess-2020-133, 2020
Manuscript not accepted for further review
Short summary
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments
Sarah A. Bourke, Mike Iwanyshyn, Jacqueline Kohn, and M. Jim Hendry
Hydrol. Earth Syst. Sci., 23, 1355–1373, https://doi.org/10.5194/hess-23-1355-2019,https://doi.org/10.5194/hess-23-1355-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
HESS Opinions: Are soils overrated in hydrology?
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023,https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023,https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023,https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Droughts can reduce the nitrogen retention capacity of catchments
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023,https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary

Cited articles

Alaibakhsh, M., Emelyanova, I., Barron, O., Khiadani, M., and Warren, G.: Large-scale regional delineation of riparian vegetation in the arid and semi-arid Pilbara region, WA, Hydrol. Process., 31, 4269–4281, 2017. 
Alfaro, C. and Wallace, M.: Origin and classification of springs and historical review with current applications, Environ. Geol., 24, 112–124, https://doi.org/10.1007/bf00767884, 1994. 
Arthington, A. H., Balcombe, S. R., Wilson, G. A., Thoms, M. C., and Marshall, J.: Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia, Mar. Freshwater Res., 56, 25–35, https://doi.org/10.1071/MF04111, 2005. 
Ashley, G. M., Goman, M., Hover, V. C., Owen, R. B., Renaut, R. W., and Muasya, A. M.: Artesian blister wetlands, a perennial water resource in the semi-arid rift valley of East Africa, Wetlands, 22, 686–695, 2002. 
Banks, E. W., Shanafield, M. A., Noorduijn, S., McCallum, J., Lewandowski, J., and Batelaan, O.: Active heat pulse sensing of 3-D-flow fields in streambeds, Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, 2018. 
Download
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.