Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Ronan Abhervé
CORRESPONDING AUTHOR
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Centre for Hydrogeology and Geothermics (CHYN), Université de
Neuchâtel, 2000 Neuchâtel, Switzerland
Clément Roques
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Centre for Hydrogeology and Geothermics (CHYN), Université de
Neuchâtel, 2000 Neuchâtel, Switzerland
Alexandre Gauvain
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Laboratoire de Météorologie Dynamique – IPSL, CNRS, Sorbonne Université, 75005 Paris, France
Laurent Longuevergne
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Stéphane Louaisil
Eau du Bassin Rennais, 35000 Rennes, France
Luc Aquilina
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Jean-Raynald de Dreuzy
Geosciences Rennes – UMR 6118, Univ. Rennes, CNRS, 35000 Rennes,
France
Related authors
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
Hydrol. Earth Syst. Sci., 29, 1505–1523, https://doi.org/10.5194/hess-29-1505-2025, https://doi.org/10.5194/hess-29-1505-2025, 2025
Short summary
Short summary
We investigate the freeze–thaw cycles of a rock glacier located in Switzerland and their influence on subsurface hydrology. By analyzing aerial pictures, we estimate the evolution of its creeping velocity on an inter-annual scale. We use geochemical tracers measured at springs to identify the mixing of meltwater and deep groundwater on seasonal to diurnal timescales. This study provides new insights into the cryo-hydrogeological processes that regulate water fluxes in mountain regions.
Alex Naoki Asato Kobayashi, Clément Roques, Daniel Hunkeler, Edward Mitchell, Robin Calisti, and Philip Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-816, https://doi.org/10.5194/egusphere-2025-816, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
The increasing impact of climate change and human activities on greenhouse gas emissions highlights the need for effective monitoring, especially from the soil. Our design introduces a low-cost solution for measuring soil gas flux that is adaptable to various environments. Additionally, we propose a novel method for ensuring data quality before deploying these systems in the field.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Etienne Marti, Sarah Leray, and Clément Roques
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-381, https://doi.org/10.5194/hess-2024-381, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We show that the response of groundwater-dependent wetlands to recharge changes can be predicted based on landform properties, providing a practical approach for wetland vulnerability assessment. We reveal that mountain catchments are less sensitive to recharge changes than lowland catchments. It offers insights for evaluating the vulnerability of catchments to climate change impacts and has direct implications for water resource management and conservation planning in diverse landscapes.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Cited articles
Abhervé, R.: Python code to test the calibration method of a groundwater flow model using a stream network, Zenodo [code], https://doi.org/10.5281/zenodo.8311547, 2023.
Achtziger-Zupančič, P., Loew, S., and Mariéthoz, G.: A new
global database to improve predictions of permeability distribution in
crystalline rocks at site scale, J. Geophys. Res.-Solid, 122, 3513–3539, https://doi.org/10.1002/2017JB014106, 2017.
Alley, W. M., Healy, R. W., LaBaugh, J. W., and Reilly, T. E.: Flow and
storage in groundwater systems, Science, 296, 1985–1990,
https://doi.org/10.1126/science.1067123, 2002.
Anderson, M. P., Woessner, W. W., and Hunt, R. J.: Applied groundwater
modeling: simulation of flow and advective transport, in: 2nd Edn., Elsevier, AP Academic press is an imprint of Elsevier, Amsterdam, 564 pp., https://doi.org/10.1016/C2009-0-21563-7, 2015.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413, 2016.
Barclay, J. R., Starn, J. J., Briggs, M. A., and Helton, A. M.: Improved
Prediction of Management-Relevant Groundwater Discharge Characteristics
Throughout River Networks, Water Resour. Res., 56, 1–19, https://doi.org/10.1029/2020WR028027, 2020.
Beven, K., Asadullah, A., Bates, P., Blyth, E., Chappell, N., Child, S., Cloke, H., Dadson, S., Everard, N., Fowler, H. J., Freer, J., Hannah, D. M.,
Heppell, K., Holden, J., Lamb, R., Lewis, H., Morgan, G., Parry, L., and
Wagener, T.: Developing observational methods to drive future hydrological
science: Can we make a start as a community?, Hydrol. Process., 34, 868–873, https://doi.org/10.1002/hyp.13622, 2020.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission and Its Capabilities for Land Hydrology, Surv. Geophys., 37, 307–337,
https://doi.org/10.1007/s10712-015-9346-y, 2016.
Blazkova, S., Beven, K. J., and Kulasova, A.: On constraining TOPMODEL hydrograph simulations using partial saturated area information, Hydrol. Process., 16, 441–458, https://doi.org/10.1002/hyp.331, 2002.
Blöschl, G., Bierkens, M. F. P., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.
Bravo, H. R., Jiang, F., and Hunt, R. J.: Using groundwater temperature data
to constrain parameter estimation in a groundwater flow model of a wetland
system, Water Resour. Res., 38, 28-1–28-14, https://doi.org/10.1029/2000wr000172, 2002.
Bresciani, E., Davy, P., and De Dreuzy, J. R.: Is the Dupuit assumption
suitable for predicting the groundwater seepage area in hillslopes?, Water
Resour. Res., 50, 2394–2406, https://doi.org/10.1002/2013WR014284, 2014.
BRGM: Tectonic-lithostratigraphic log with evolution of hydrodynamic parameters according to lithological sets, SIGES Bretagne – Système d'information pour la Gestion des eaux Souterraine en Bretagne, https://sigesbre.brgm.fr/Comparaison-des-parametres-hydrodynamiques-avec-les.html (last access: 1 September 2023), 2018.
Brutsaert, W. and Nieber, J. L.: Regionalized Drought Flow Hydrographs From
a Mature Glaciated Plateau, Water Resour. Res., 13, 637–643, https://doi.org/10.1029/WR013i003p00637, 1977.
Burden, R. L. and Faires, J. D.: 2.1 The Bisection Algorithm, in: Numerical
Analysis, 3rd Edn., PWS Publishers, ISBN 0-87150-857-5, 1985.
Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., and Slooten, L. J.: Inverse problem in hydrogeology, Hydrogeol. J., 13, 206–222,
https://doi.org/10.1007/s10040-004-0404-7, 2005.
Chow, R., Frind, M. E., Frind, E. O., Jones, J. P., Sousa, M. R., Rudolph, D. L., Molson, J. W., and Nowak, W.: Delineating baseflow contribution areas for streams – A model and methods comparison, J. Contam. Hydrol., 195, 11–22, https://doi.org/10.1016/j.jconhyd.2016.11.001, 2016.
Comunian, A. and Renard, P.: Introducing wwhypda: A world-wide collaborative
hydrogeological parameters database, Hydrogeol. J., 17, 481–489,
https://doi.org/10.1007/s10040-008-0387-x, 2009.
Cornette, N., Roques, C., Boisson, A., Courtois, Q., Marçais, J., Launay, J., Pajot, G., Habets, F., and de Dreuzy, J. R.: Hillslope-scale exploration of the relative contribution of base flow, seepage flow and overland flow to streamflow dynamics, J. Hydrol., 610, 127992, https://doi.org/10.1016/j.jhydrol.2022.127992, 2022.
Cromwell, E., Shuai, P., Jiang, P., Coon, E. T., Painter, S. L., Moulton, J.
D., Lin, Y., and Chen, X.: Estimating Watershed Subsurface Permeability From
Stream Discharge Data Using Deep Neural Networks, Front. Earth Sci., 9, 1–13, https://doi.org/10.3389/feart.2021.613011, 2021.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019.
Day, D. G.: Lithologic controls of drainage density: a stud of six small
rural catchments in New England, N.S.W., CATENA, 7, 339–351, 1980.
de Graaf, I., Condon, L., and Maxwell, R.: Hyper-Resolution Continental-Scale 3-D Aquifer Parameterization for Groundwater Modeling, Water Resour. Res., 56, 1–14, https://doi.org/10.1029/2019WR026004, 2020.
Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G.,
and Schaefli, B.: Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets, Water Resour. Res., 56, 1–26, https://doi.org/10.1029/2019WR026085, 2020.
Devauchelle, O., Petroff, A. P., Seybold, H. F., and Rothman, D. H.: Ramification of stream networks, P. Natl. Acad. Sci. USA, 109, 20832–20836, https://doi.org/10.1073/pnas.1215218109, 2012.
De Vries, J. J.: Dynamics of the interface between streams and groundwater
systems in lowland areas, with reference to stream net evolution, J. Hydrol., 155, 39–56, https://doi.org/10.1016/0022-1694(94)90157-0, 1994.
Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., and Krishnamurthy, N. S.: A generalized 3-D geological and hydrogeological
conceptual model of granite aquifers controlled by single or multiphase
weathering, J. Hydrol., 330, 260–284, https://doi.org/10.1016/j.jhydrol.2006.03.026, 2006.
Dewandel, B., Boisson, A., Amraoui, N., Caballero, Y., Mougin, B., Baltassat, J. M., and Maréchal, J. C.: Improving our ability to model crystalline aquifers using field data combined with a regionalized approach for estimating the hydraulic conductivity field, J. Hydrol., 601,
126652, https://doi.org/10.1016/j.jhydrol.2021.126652, 2021.
Dietrich, W. E. and Dunne, T.: The Channel Head, in: Channel Network Hydrology, edited by: Beven, K. and Kirkby, M. J., Wiley, New York, 175–219, 1993.
Dohman, J. M., Godsey, S. E., and Hale, R. L.: Three-Dimensional Subsurface
Flow Path Controls on Flow Permanence, Water Resour. Res., 57, 1–18,
https://doi.org/10.1029/2020WR028270, 2021.
Domenico, P. A. and Schwartz, F. W.: Physical and Chemical Hydrogeology, 2nd Edn.,
John Wiley & Sons, Inc., ISBN 978-0-471-59762-9, 1990.
Dunne, T.: Formation and controls of channel networks, Prog. Phys. Geogr., 4, 211–239, https://doi.org/10.1177/030913338000400204, 1975.
Eckhardt, K. and Ulbrich, U.: Potential impacts of climate change on
groundwater recharge and streamflow in a central European low mountain range, J. Hydrol., 284, 244–252, https://doi.org/10.1016/j.jhydrol.2003.08.005, 2003.
Elshall, A. S., Arik, A. D., El-Kadi, A. I., Pierce, S., Ye, M., Burnett, K.
M., Wada, C. A., Bremer, L. L., and Chun, G.: Groundwater sustainability: a
review of the interactions between science and policy, Environ. Res. Lett.,
15, 093004, https://doi.org/10.1088/1748-9326/ab8e8c, 2020.
Etter, S., Strobl, B., Seibert, J., and van Meerveld, H. J. I.: Value of
Crowd-Based Water Level Class Observations for Hydrological Model Calibration, Water Resour. Res., 56, 1–17, https://doi.org/10.1029/2019WR026108, 2020.
Fan, Y.: Groundwater in the Earth's critical zone: Relevance to large-scale
patterns and processes, Water Resour. Res., 51, 3052–3069,
https://doi.org/10.1002/2015WR017037, 2015.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table
Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Fan, Y., Richard, S., Bristol, R. S., Peters, S. E., Ingebritsen, S. E.,
Moosdorf, N., Packman, A., Gleeson, T., Zaslavsky, I., Peckham, S., Murdoch,
L., Fienen, M., Cardiff, M., Tarboton, D., Jones, N., Hooper, R., Arrigo, J., Gochis, D., Olson, J., and Wolock, D.: DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow, Geofluids, 15, 372–379, https://doi.org/10.1111/gfl.12114, 2015.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope Hydrology in Global Change Research and Earth System Modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Fleckenstein, J. H., Niswonger, R. G., and Fogg, G. E.: River-aquifer interactions, geologic heterogeneity, and low-flow management, Ground Water,
44, 837–852, https://doi.org/10.1111/j.1745-6584.2006.00190.x, 2006.
Fovet, O., Belemtougri, A., Boithias, L., Marylise, J. C., Kevin, C., and
Braud, I.: Intermittent rivers and ephemeral streams: Perspectives for critical zone science and research on socio-ecosystems, 8, 1–33, https://doi.org/10.1002/wat2.1523, 2021.
Franks, S. W., Gineste, P., Beven, K. J., and Merot, P.: On constraining the
predictions of a distributed model: The incorporation of fuzzy estimates of
saturated areas into the calibration process, Water Resour. Res., 34, 787–797, https://doi.org/10.1029/97WR03041, 1998.
Freeze, R. A. and Cherry, J. A.: Groundwater, edited by: Prentice-Hall,
Englewood Cliffs, NJ, 604 pp., ISBN 978-0133653120, 1979.
Gauvain, A., Leray, S., Marçais, J., and Roques, C.: Geomorphological
Controls on Groundwater Transit Times: A Synthetic Analysis at the Hillslope Scale, Water Resour. Res., 57, e2020WR029463, https://doi.org/10.1029/2020WR029463, 2021.
Gleeson, T. and Manning, A. H.: Regional groundwater flow in mountainous
terrain: Three-dimensional simulations of topographic and hydrogeologic
controls, Water Resour. Res., 44, W10403, https://doi.org/10.1029/2008WR006848, 2008.
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse
beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability
and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.
Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y.,
Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M. H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., De Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: GMD perspective: The quest to improve the evaluation of
groundwater representation in continental-to global-scale models, Geosci.
Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, 2021.
Goderniaux, P., Davy, P., Bresciani, E., de Dreuzy, J. R., and Le Borgne, T.: Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments, Water Resour. Res., 49, 2274–2286,
https://doi.org/10.1002/wrcr.20186, 2013.
Godsey, S. E. and Kirchner, J. W.: Dynamic, discontinuous stream networks:
Hydrologically driven variations in active drainage density, flowing channels and stream order, Hydrol. Process., 28, 5791–5803, https://doi.org/10.1002/hyp.10310, 2014.
Grayson, R. B. and Blöschl, G. (Eds.): Spatial Patterns in Catchment Hydrology:
Observations and Modelling, Cambridge University Press, Cambridge, UK, 404 pp., ISBN 0 521 63316 8, 2000.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers, Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Güntner, A., Seibert, J., and Uhlenbrook, S.: Modeling spatial patterns
of saturated areas: An evaluation of different terrain indices, Water Resour. Res., 40, 1–19, https://doi.org/10.1029/2003WR002864, 2004.
Haitjema, H. M. and Mitchell-Bruker, S.: Are water tables a subdued replica
of the topography?, Ground Water, 43, 781–786, https://doi.org/10.1111/j.1745-6584.2005.00090.x, 2005.
Harbaugh, A. W.: MODFLOW-2005: the U.S. Geological Survey modular ground-water model–the ground-water flow process, Techniques and Methods,
USGS, https://doi.org/10.3133/tm6A16, 2005.
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, 1–37, https://doi.org/10.1029/2012GC004370, 2012.
Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal,
J.: A 30 m global map of elevation with forests and buildings removed, Environ. Res. Lett., 17, 024016, https://doi.org/10.1088/1748-9326/ac4d4f, 2022.
Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotiæ, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Holman, I. P., Allen, D. M., Cuthbert, M. O., and Goderniaux, P.: Towards best practice for assessing the impacts of climate change on groundwater,
Hydrogeol. J., 20, 1–4, https://doi.org/10.1007/s10040-011-0805-3, 2012.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J.,
Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret,
U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,
R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A
decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Hsieh, P. A., Bredehoeft, J. D., and Farr, J. M.: Determination of aquifer
transmissivity from Earth tide analysis, Water Resour. Res., 23, 1824–1832,
https://doi.org/10.1029/WR023i010p01824, 1987.
Huscroft, J., Gleeson, T., Hartmann, J., and Börker, J.: Compiling and
Mapping Global Permeability of the Unconsolidated and Consolidated Earth:
GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0), Geophys. Res. Lett., 45, 1897–1904, https://doi.org/10.1002/2017GL075860, 2018.
IGN: Le modèle numérique de terrain (MNT) maillé qui décrit
le relief du territoire français à moyenne échelle BD
ALTI® version 2021, Information Géographique sur l'Eau et Institut National de l'Information Géographique et Forestière [data set], https://geoservices.ign.fr/bdalti (last access: 1 September 2023), 2021.
IGN and OFB: Jeu de données des cours d'eau de France métropolitaine
BD TOPAGE®version 2019, Office Français de la Biodiversité (OFB) – Information Géographique sur l'Eau et Institut
National de l'Information Géographique et Forestière [data set], https://bdtopage.eaufrance.fr/ (last access: 1 September 2023), 2019.
Jefferson, A., Grant, G. E., Lewis, S. L., and Lancaster, S. T.: Coevolution
of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA, Earth Surf. Proc. Land., 35, 803–816, https://doi.org/10.1002/esp.1976, 2010.
Jiménez-Martínez, J., Longuevergne, L., Le Borgne, T., Davy, P.,
Russian, A., and Bour, O.: Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis, Water Resour. Res., 49, 3007–3023, https://doi.org/10.1002/wrcr.20260, 2013.
Kolbe, T., Marçais, J., Thomas, Z., Abbott, B. W., de Dreuzy, J.-R.,
Rousseau-Gueutin, P., Aquilina, L., Labasque, T., and Pinay, G.: Coupling 3D
groundwater modeling with CFC-based age dating to classify local groundwater
circulation in an unconfined crystalline aquifer, J. Hydrol., 543, 31–46,
https://doi.org/10.1016/j.jhydrol.2016.05.020, 2016.
Kuang, X. and Jiao, J. J.: An integrated permeability-depth model for Earth's crust, Geophys. Res. Lett., 2, 7539–7545, https://doi.org/10.1002/2014GL061999, 2014.
Laurent, A., Le Cozannet, G., Couëffé, R., Schroetter, J.-M., Croiset, N., and Lions, J.: Vulnérabilité des aquifères
côtiers face aux intrusions salines en Normandie occidentale, Rapp. Final BRGM/RP-66052-FR, 189 pp., BRGM, https://infoterre.brgm.fr/rapports/RP-66052-FR.pdf (last access: 1 September 2023), 2017.
Le Borgne, T., Bour, O., Paillet, F. L., and Caudal, J. P.: Assessment of
preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer, J. Hydrol., 328, 347–359, https://doi.org/10.1016/j.jhydrol.2005.12.029, 2006.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
Baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne
elevation data, T. EOS, 89, 93–94, 2013 (data available at: https://www.hydrosheds.org, last access: 1 September 2023)
Leibowitz, S. G., Wigington, P. J., Schofield, K. A., Alexander, L. C.,
Vanderhoof, M. K., and Golden, H. E.: Connectivity of Streams and Wetlands
to Downstream Waters: An Integrated Systems Framework, J. Am. Water Resour.
Assoc., 54, 298–322, https://doi.org/10.1111/1752-1688.12631, 2018.
Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des modèles pluie-débit?, Thèse de doctorat, Université Pierre et Marie Curie, 348 pp., 2008.
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020.
Leray, S., de Dreuzy, J. R., Bour, O., Labasque, T., and Aquilina, L.:
Contribution of age data to the characterization of complex aquifers, J.
Hydrol., 464–465, 54–68, https://doi.org/10.1016/J.JHYDROL.2012.06.052, 2012.
Levizzani, V. and Cattani, E.: Satellite Remote Sensing of Precipitation and
the Terrestrial Water Cycle in a Changing Climate, Remote Sens., 11,
2301, https://doi.org/10.3390/rs11192301, 2019.
Lindsay, J. B.: Whitebox GAT: A case study in geomorphometric analysis, Comput. Geosci., 95, 75–84, https://doi.org/10.1016/j.cageo.2016.07.003, 2016.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Sci. Data, 6, 1–16, https://doi.org/10.1038/s41597-019-0300-6, 2019.
Litwin, D. G., Tucker, G. E., Barnhart, K. R., and Harman, C. J.: Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes, J. Geophys. Res.-Earth, 127, 1–36, https://doi.org/10.1029/2021JF006239, 2022.
Lovill, S. M., Hahm, W. J., and Dietrich, W. E.: Drainage from the Critical Zone: Lithologic Controls on the Persistence and Spatial Extent of Wetted Channels during the Summer Dry Season, Water Resour. Res., 54, 5702–5726, https://doi.org/10.1029/2017WR021903, 2018.
Luijendijk, E.: Transmissivity and groundwater flow exert a strong influence on drainage density, Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, 2022.
Luo, W. and Stepinski, T.: Identification of geologic contrasts from landscape dissection pattern: An application to the Cascade Range, Oregon, USA, Geomorphology, 99, 90–98, https://doi.org/10.1016/j.geomorph.2007.10.014, 2008.
Luo, W., Grudzinski, B. P., and Pederson, D.: Estimating hydraulic conductivity from drainage patterns – a case study in the Oregon Cascades,
Geology, 38, 335–338, https://doi.org/10.1130/G30816.1, 2010.
Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., and Cang, X.: Spatial association between dissection density and environmental factors over the entire conterminous United States, Geophys. Res. Lett., 43, 692–700, https://doi.org/10.1002/2015GL066941, 2016.
Marçais, J. and de Dreuzy, J. R.: Prospective Interest of Deep Learning
for Hydrological Inference, Groundwater, 55, 688–692, https://doi.org/10.1111/gwat.12557, 2017.
Mardhel, V., Pinson, S., and Allier, D.: Description of an indirect method
(IDPR) to determine spatial distribution of infiltration and runoff and its
hydrogeological applications to the French territory, J. Hydrol., 592,
125609, https://doi.org/10.1016/j.jhydrol.2020.125609, 2021.
Mendoza, G. F., Steenhuis, T. S., Walter, M. T., and Parlange, J. Y.: Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis, J. Hydrol., 279, 57–69,
https://doi.org/10.1016/S0022-1694(03)00174-4, 2003.
Merot, P., Squividant, H., Aurousseau, P., Hefting, M., Burt, T., Maitre, V., Kruk, M., Butturini, A., Thenail, C., and Viaud, V.: Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient, Ecol. Model., 163, 51–71,
https://doi.org/10.1016/S0304-3800(02)00387-3, 2003.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.
Mougin, B., Allier, D., Blanchin, R., Carn, A., Courtois, N., Gateau, C.,
and Putot, E.: SILURES Bretagne (Système d'Information pour la
Localisation et l'Utilisation des Ressources en Eaux Souterraines), BRGM, http://infoterre.brgm.fr/rapports/RP-56457-FR.pdf (last access: 1 September 2023), 2008.
Niswonger, R. G., Panday, S., and Ibaraki, M.: MODFLOW-NWT, A Newton formulation for
MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6–A37, 44 pp., https://pubs.usgs.gov/tm/tm6a37/pdf/tm6a37.pdf (last access: 1 September 2023), 2011.
Noilhan, J. and Mahfouf, J. F.: The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145–159, https://doi.org/10.1016/0921-8181(95)00043-7, 1996.
Pasquet, S., Marçais, J., Hayes, J. L., Sak, P. B., Ma, L., and Gaillardet, J.: Catchment-scale architecture of the deep critical zone
revealed by seismic imaging, Geophys. Res. Lett., 49, 1–13, https://doi.org/10.1029/2022gl098433, 2022.
Pederson, D. T.: Stream Piracy Revisited: A Groundwater-Sapping Solution,
GSA Today, 4–10, https://doi.org/10.1130/1052-5173(2001)011<0004:SPRAGS>2.0.CO;2, 2001.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G. Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling, J. Adv. Model. Earth Syst., 8, 41–65, https://doi.org/10.1002/2015MS000526, 2016.
Prancevic, J. P. and Kirchner, J. W.: Topographic Controls on the Extension
and Retraction of Flowing Streams, Geophys. Res. Lett., 46, 2084–2092,
https://doi.org/10.1029/2018GL081799, 2019.
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of
near-surface atmospheric variables: Validation of the SAFRAN analysis over
France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008.
Ranjram, M., Gleeson, T., and Luijendijk, E.: Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting?, 15, 106–119, https://doi.org/10.1111/gfl.12098, 2015.
Rapinel, S., Panhelleux, L., Gayet, G., Vanacker, R., Lemercier, B., Laroche, B., Chambaud, F., Guelmami, A., and Hubert-Moy, L.: National wetland mapping using remote-sensing-derived environmental variables, archive field data, and artificial intelligence, Heliyon, 9, 1–17, https://doi.org/10.1016/j.heliyon.2023.e13482, 2023.
Refsgaard, J. C., Hojberg, A. L., Moller, I., Hansen, M., and Sondergaard, V.: Groundwater modeling in integrated water resources management – visions
for 2020, Ground Water, 48, 633–648, https://doi.org/10.1111/j.1745-6584.2009.00634.x, 2010.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, 2019.
Renard, P.: The future of hydraulic tests, Hydrogeol. J., 13, 259–262,
https://doi.org/10.1007/s10040-004-0406-5, 2005.
Roques, C., Aquilina, L., Bour, O., Maréchal, J. C., Dewandel, B., Pauwels, H., Labasque, T., Vergnaud-Ayraud, V., and Hochreutener, R.: Groundwater sources and geochemical processes in a crystalline fault aquifer, J. Hydrol., 519, 3110–3128, https://doi.org/10.1016/j.jhydrol.2014.10.052, 2014.
Roques, C., Bour, O., Aquilina, L., and Dewandel, B.: High-yielding aquifers
in crystalline basement: insights about the role of fault zones, exemplified
by Armorican Massif, France, Hydrogeol. J., 24, 2157–2170,
https://doi.org/10.1007/s10040-016-1451-6, 2016.
Rotzoll, K. and El-Kadi, A. I.: Estimating hydraulic properties of coastal
aquifers using wave setup, J. Hydrol., 353, 201–213, https://doi.org/10.1016/j.jhydrol.2008.02.005, 2008.
Schilling, O. S., Cook, P. G., and Brunner, P.: Beyond Classical Observations in Hydrogeology: The Advantages of Including Exchange Flux, Temperature, Tracer Concentration, Residence Time, and Soil Moisture Observations in Groundwater Model Calibration, Rev. Geophys., 57, 146–182,
https://doi.org/10.1029/2018RG000619, 2019.
Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., and Ducharne, A.: Global-scale river network extraction based on high-resolution
topography and constrained by lithology, climate, slope, and observed
drainage density, Geophys. Res. Lett., 44, 2773–2781, https://doi.org/10.1002/2016GL071844, 2017.
Schumm, S. A., Boyd, K. F., Wolff, C. G., and Spitz, W. J.: A ground-water
sapping landscape in the Florida Panhandle, Geomorphology, 12, 281–297, 1995.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H.,
Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880, https://doi.org/10.1623/hysj.48.6.857.51421, 2003.
Sophocleous, M.: Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002.
Stoll, S. and Weiler, M.: Explicit simulations of stream networks to guide
hydrological modelling in ungauged basins, Hydrol. Earth Syst. Sci., 14,
1435–1448, https://doi.org/10.5194/hess-14-1435-2010, 2010.
Strahler, A. N.: Quantitative geomorphology of drainage basins and channel
networks, in: Handb. Appl. Hydrol., edited by: Chow, V. T., McGraw-Hill, New York, 439–476, 1964.
Tashie, A., Pavelsky, T. M., Band, L., and Topp, S.: Watershed-Scale
Effective Hydraulic Properties of the Continental United States, J. Adv. Model. Earth Syst., 13, 1–18, https://doi.org/10.1029/2020MS002440, 2021.
Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L.,
Green, T. R., Chen, J. Y., Taniguchi, M., Bierkens, M. F. P., MacDonald, A.,
Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2013.
Tootchi, A., Jost, A., and Ducharne, A.: Multi-source global wetland maps
combining surface water imagery and groundwater constraints, Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, 2019.
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon, S. W., Paniconi, C., Pauwels, V. R. N., Rupp, D. E., Selker, J. S., Teuling,
A. J., Uijlenhoet, R., and Verhoest, N. E. C.: The importance of hydraulic
groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert
and Jean-Yves Parlange, Water Resour. Res., 49, 5099–5116, https://doi.org/10.1002/wrcr.20407, 2013.
Vannier, O., Braud, I., and Anquetin, S.: Regional estimation of catchment-scale soil properties by means of streamflow recession analysis
for use in distributed hydrological models, Hydrol. Process., 28, 6276–6291, https://doi.org/10.1002/hyp.10101, 2014.
Vautier, C., Abhervé, R., Labasque, T., Laverman, A. M., Guillou, A.,
Chatton, E., Dupont, P., Aquilina, L., and de Dreuzy, J.-R.: Mapping gas
exchanges in headwater streams with membrane inlet mass spectrometry, J.
Hydrol., 581, 124398, https://doi.org/10.1016/j.jhydrol.2019.124398, 2019.
Vergnes, J.-P., Roux, N., Habets, F., Ackerer, P., Amraoui, N., Besson, F.,
Caballero, Y., Courtois, Q., de Dreuzy, J.-R., Etchevers, P., Gallois, N.,
Leroux, D. J., Longuevergne, L., Le Moigne, P., Morel, T., Munier, S., Regimbeau, F., Thiéry, D., and Viennot, P.: The AquiFR hydrometeorological modelling platform as a tool for improving groundwater
resource monitoring over France: evaluation over a 60-year period, Hydrol.
Earth Syst. Sci., 24, 633–654, https://doi.org/10.5194/hess-24-633-2020, 2020.
Vergopolan, N., Chaney, N. W., Pan, M., Sheffield, J., Beck, H. E., Ferguson, C. R., Torres-Rojas, L., Sadri, S., and Wood, E. F.: SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US, Sci. Data, 8, 1–11, https://doi.org/10.1038/s41597-021-01050-2, 2021.
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J. M.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J., Vasak, S., and
Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res.
Lett., 37, L20402, https://doi.org/10.1029/2010gl044571, 2010.
Warix, S. R., Godsey, S. E., Lohse, K. A., and Hale, R. L.: Influence of groundwater and topography on stream drying in semi-arid headwater streams,
Hydrol. Process., 35, 1–18, https://doi.org/10.1002/hyp.14185, 2021.
Weiler, M. and McDonnell, J.: Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology, J. Hydrol., 285,
3–18, https://doi.org/10.1016/S0022-1694(03)00271-3, 2004.
Whiting, J. A. and Godsey, S. E.: Discontinuous headwater stream networks with stable flowheads, Salmon River basin, Idaho, Hydrol. Process., 30, 2305–2316, https://doi.org/10.1002/hyp.10790, 2016.
Wigmosta, M. S. and Lettenmaier, P.: A comparison of simplified methods for
routing topographically driven subsurface flow, Water Resour., 35, 255–264,
1999.
Winter, T. C.: Relation of streams, lakes, and wetlands to groundwater flow
systems, Hydrogeol. J., 7, 28–45, https://doi.org/10.1007/s100400050178, 1999.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yoshida, T. and Troch, P. A.: Coevolution of volcanic catchments in Japan,
Hydrol. Earth Syst. Sci., 20, 1133–1150, https://doi.org/10.5194/hess-20-1133-2016, 2016.
Zlotnik, V. A. and Zurbuchen, B. R.: Estimation of hydraulic conductivity
from borehole flowmeter tests considering head losses, J. Hydrol., 281, 115–128, https://doi.org/10.1016/S0022-1694(03)00204-X, 2003.
Executive editor
The characterization of subsurface hydraulic properties of catchments is one of the grand challenges in hydrology. This study explores the potential of using the stream network for this issue. The idea is very innovative and deserves to be highlighted.
The characterization of subsurface hydraulic properties of catchments is one of the grand...
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
We propose a model calibration method constraining groundwater seepage in the hydrographic...