Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1771-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1771-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, California, United States
Erica R. Siirila-Woodburn
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, California, United States
Alan M. Rhoades
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, California, United States
Daniel Feldman
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, California, United States
Related authors
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola-DiRosario, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Cited articles
Alder, J. R. and Hostetler, S. W.: The dependence of hydroclimate
projections in snow-dominated regions of the western United States on the
choice of statistically downscaled climate data, Water Resour. Res.,
55, 2279–2300, 2019.
Arthur, R. S., Lundquist, K. A., Mirocha, J. D., and Chow, F. K.:
Topographic effects on radiation in the WRF Model with the immersed boundary
method: Implementation, validation, and application to complex terrain,
Mon. Weather Rev., 146, 3277–3292,
https://doi.org/10.1175/MWR-D-18-0108.1, 2018.
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned
conjugate gradient algorithm for groundwater flow simulations, Nucl.
Sci. Eng., 124, 145–159,
https://doi.org/10.13182/NSE96-A24230, 1996.
Buban, M. S., Lee, T. R., and Baker, C. B.: A comparison of the US climate
reference network precipitation data to the parameter-elevation regressions
on independent slopes model (PRISM), J. Hydrometeorol., 21,
2391–2400, 2020.
Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., and Arnault, J.: Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system, Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, 2020.
Comin, A. N., Schumacher, V., Justino, F., and Fernandez, A.: Impact of
different microphysical parameterizations on extreme snowfall events in the
Southern Andes, Weather Climate Extremes, 21, 65–75,
https://doi.org/10.1016/j.wace.2018.07.001, 2018.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M.
G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W.,
Schlosser, C. A., and Yang, Z.: The Common Land Model, B.
Am. Meteorol. Soc., 84, 1013–1024,
https://doi.org/10.1175/BAMS-84-8-1013, 2003.
Davison, J. H., Hwang, H.-T., Sudicky, E. A., Mallia, D. V., and Lin, J. C.:
Full coupling between the atmosphere, surface, and subsurface for integrated
hydrologic simulation, J. Adv. Model. Earth Sy., 10,
43–53, 2018.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M.
K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically
sensitive mapping of climatological temperature and precipitation across the
conterminous United States, Int. J. Climatol., 28, 2031–2064,
https://doi.org/10.1002/joc.1688, 2008.
Fassnacht, S., Dressler, K., and Bales, R.: Snow water equivalent
interpolation for the Colorado River Basin from snow telemetry (SNOTEL)
data, Water Resour. Res., 39, 1208, https://doi.org/10.1029/2002WR001512,
2003.
Feldman, D., Aiken, A., Boos, W., Carroll, R., Chandrasekar, V., Collins, W., Collis, S., Deems, J., DeMott, P., Fan, J., and Flores, A.: Surface Atmosphere Integrated Field Laboratory (SAIL),
Science Plan, edited by: Stafford, R., ARM user facility,
DOE/SC-ARM-21-004, https://www.osti.gov/servlets/purl/1781024 (last access: 27 April 2023), 2021.
Forrester, M. M., Maxwell, R. M., Bearup, L. A., and Gochis, D. J.: Forest
disturbance feedbacks from bedrock to atmosphere using coupled
hydrometeorological simulations over the Rocky Mountain headwaters, J.
Geophys. Res.-Atmos., 123, 9026–9046,
https://doi.org/10.1029/2018JD028380, 2018.
Foster, M. and Maxwell, R.: Sensitivity analysis of hydraulic conductivity and Manning's n parameters lead to new method to scale effective hydraulic conductivity across model resolutions, Hydrol. Process., 33, 332–349, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan, K.:
The modern-era retrospective analysis for research and applications, version
2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Givati, A., Gochis, D., Rummler, T., and Kunstmann, H.: Comparing one-way
and two-way coupled hydrometeorological forecasting systems for flood
forecasting in the Mediterranean region, Hydrology, 3, 19,
https://doi.org/10.3390/hydrology3020019, 2016.
Gu, C., Huang, A., Wu, Y., Yang, B., Mu, X., Zhang, X., and Cai, S.: Effects
of subgrid terrain radiative forcing on the ability of RegCM4. 1 in the
simulation of summer precipitation over China, J. Geophys.
Res.-Atmos., 125, e2019JD032215,
https://doi.org/10.1029/2019JD032215, 2020.
Gutowski Jr., W. J., Ullrich, P. A., Hall, A., Leung, L. R., O'Brien, T. A.,
Patricola, C. M., Arritt, R. W., Bukovsky, M. S., Calvin, K. V., Feng, Z.,
Jones, A. D., Kooperman, G. J., Monier, E., Pritchard, M. S., Pryor, S. C.,
Qian, Y., Rhoades, A. M., Roberts, A. F., Sakaguchi, K., Urban, N., and
Zarzycki, C.: The Ongoing Need for High-Resolution Regional Climate Models:
Process Understanding and Stakeholder Information, B. Am.
Meteorol. Soc., 101, E664–E683,
https://doi.org/10.1175/BAMS-D-19-0113.1, 2020.
Hao, D., Bisht, G., Gu, Y., Lee, W.-L., Liou, K.-N., and Leung, L. R.: A parameterization of sub-grid topographical effects on solar radiation in the E3SM Land Model (version 1.0): implementation and evaluation over the Tibetan Plateau, Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and Simmons, A.: The ERA5 global reanalysis,
Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., and Auch, R.: Conterminous United States land cover change patterns
2001–2016 from the 2016 National Land Cover Database, ISPRS J.
Photogramm., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Huang, X., Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: An
evaluation of the variable-resolution CESM for modeling California's
climate, J. Adv. Model. Earth Sy., 8, 345–369,
https://doi.org/10.1002/2015MS000559, 2016.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., Brodie, E., Carroll, R., Dafflon, B., Dwivedi, D., and Falco, N.: The
East River, Colorado, Watershed: A mountainous community testbed for
improving predictive understanding of multiscale
hydrological–biogeochemical dynamics, Vadose Zone J., 17, 1–25,
https://doi.org/10.2136/vzj2018.03.0061, 2018.
James, T., Evans, A., Madly, E., and Kelly, C.: The economic importance of the Colorado River to the basin
region, Final Rep., L. William Seidman Research Institute, Arizona State
University, 54, https://businessforwater.org/wp-content/uploads/2016/12/PTF-Final-121814.pdf (last access: 20 April 2023),
2014.
Jeevanjee, N., Hassanzadeh, P., Hill, S., and Sheshadri, A.: A perspective
on climate model hierarchies, J. Adv. Model. Earth Sy.,
9, 1760–1771, 2017.
Jin, J., Miller, N. L., and Schlegel, N.: Sensitivity study of four land
surface schemes in the WRF model, Adv. Meteorol., 2010, 167436,
https://doi.org/10.1155/2010/167436, 2010.
Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems,
Adv. Water Resour., 24, 763–774,
https://doi.org/10.1016/S0309-1708(00)00075-0, 2001.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEP global data assimilation
system, Weather Forecast., 24, 1691–1705,
https://doi.org/10.1175/2009WAF2222201.1, 2009.
Lee, W.-L., Gu, Y., Liou, K. N., Leung, L. R., and Hsu, H.-H.: A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains, Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, 2015.
Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., and Dudhia, J.:
High-resolution simulations of wintertime precipitation in the Colorado
Headwaters region: Sensitivity to physics parameterizations, Mon. Weather
Rev., 139, 3533–3553, https://doi.org/10.1175/MWR-D-11-00009.1, 2011.
Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A. F., Chen, F., Chen, L., Clark, M., Dai, A., and Dudhia, J.: Continental-scale
convection-permitting modeling of the current and future climate of North
America, Clim. Dynam., 49, 71–95,
https://doi.org/10.1007/s00382-016-3327-9, 2017.
Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.: Our skill in
modeling mountain rain and snow is bypassing the skill of our observational
networks, B. Am. Meteorol. Soc., 100, 2473–2490,
https://doi.org/10.1175/BAMS-D-19-0001.1, 2019.
Maina, F. Z., Siirila-Woodburn, E. R., and Vahmani, P.: Sensitivity of meteorological-forcing resolution on hydrologic variables, Hydrol. Earth Syst. Sci., 24, 3451–3474, https://doi.org/10.5194/hess-24-3451-2020, 2020.
Mallard, M. S., Spero, T. L., and Taylor, S. M.: Examining WRF's sensitivity
to contemporary land-use datasets across the contiguous United States Using
Dynamical Downscaling, J. Appl. Meteorol. Climatol., 57,
2561–2583, https://doi.org/10.1175/JAMC-D-17-0328.1, 2018.
Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water
Resour., 53, 109–117, https://doi.org/10.1016/j.advwatres.2012.10.001,
2013.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H.,
Blasch, K. W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D. J., and
Flint, A. L.: Implications of projected climate change for groundwater
recharge in the western United States, J. Hydrol., 534,
124–138, 2016.
Milly, P. C. and Dunne, K. A.: Colorado River flow dwindles as
warming-driven loss of reflective snow energizes evaporation, Science, 367,
1252–1255, https://doi.org/10.1126/science.aay9187, 2020.
National Centers for Environmental Prediction: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6M043C6, 2000.
Oaida, C. M., Reager, J. T., Andreadis, K. M., David, C. H., Levoe, S. R.,
Painter, T. H., Bormann, K. J., Trangsrud, A. R., Girotto, M., and
Famiglietti, J. S.: A high-resolution data assimilation framework for snow
water equivalent estimation across the Western United States and validation
with the airborne snow observatory, J. Hydrometeorol., 20,
357–378, 2019.
Orr, A., Listowski, C., Couttet, M., Collier, E., Immerzeel, W., Deb, P.,
and Bannister, D.: Sensitivity of simulated summer monsoonal precipitation
in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF, J.
Geophys. Res.-Atmos., 122, 6298–6318, 2017.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., and Mattmann, C.: The
Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer,
and physically-based modeling for mapping snow water equivalent and snow
albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Palazzi, E., Mortarini, L., Terzago, S., and Von Hardenberg, J.:
Elevation-dependent warming in global climate model simulations at high
spatial resolution, Clim. Dynam., 52, 2685–2702,
https://doi.org/10.1007/s00382-018-4287-z, 2019.
Pohl, B., Crétat, J., and Camberlin, P.: Testing WRF capability in
simulating the atmospheric water cycle over Equatorial East Africa, Clim.
Dynam., 37, 1357–1379, 2011.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., and Grell, G. A.: The weather research and forecasting model: Overview, system efforts,
and future directions, B. Am. Meteorol. Soc., 98,
1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Pribulick, C. E., Foster, L. M., Bearup, L. A., Navarre‐Sitchler, A. K., Williams, K. H., Carroll, R. W. and Maxwell, R. M.: Contrasting the hydrologic response due to land cover and climate change in a mountain headwaters system, Ecohydrology, 9, 1431–1438, 2016.
Rahimi, S., Krantz, W., Lin, Y.-H., Bass, B., Goldenson, N., Hall, A., Lebo,
Z. J., and Norris, J.: Evaluation of a Reanalysis-Driven Configuration of
WRF4 Over the Western United States From 1980 to 2020, J.
Geophys. Res.-Atmos., 127, e2021JD035699,
https://doi.org/10.1029/2021JD035699, 2022.
Rasmussen, K. L., Prein, A. F., Rasmussen, R. M., Ikeda, K., and Liu, C.:
Changes in the convective population and thermodynamic environments in
convection-permitting regional climate simulations over the United States,
Clim. Dynam., 55, 383–408, https://doi.org/10.1007/s00382-017-4000-7,
2020.
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., and Miller, K.: High-resolution coupled climate
runoff simulations of seasonal snowfall over Colorado: A process study of
current and warmer climate, J. Climate, 24, 3015–3048,
https://doi.org/10.1175/2010JCLI3985.1, 2011.
Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., Dudhia, J., Chen, F., Barlage, M., and Yates, D.: Climate change impacts on the
water balance of the Colorado headwaters: high-resolution regional climate
model simulations, J. Hydrometeorol., 15, 1091–1116,
https://doi.org/10.1175/JHM-D-13-0118.1, 2014.
Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: Projecting 21st century
snowpack trends in western USA mountains using variable-resolution CESM,
Clim. Dynam., 50, 261–288, https://doi.org/10.1007/s00382-017-3606-0,
2018a.
Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S.
A., Morrison, H., Xu, Z., and Collins, W. D.: Sensitivity of mountain
hydroclimate simulations in variable-resolution CESM to microphysics and
horizontal resolution, J. Adv. Model. Earth Sy., 10,
1357–1380, https://doi.org/10.1029/2018MS001326, 2018b.
Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: Assessing mountains as
natural reservoirs with a multimetric framework, Earth's Future, 6, 1221–1241, https://doi.org/10.1002/2017EF000789, 2018c.
Rudisill, W., Flores, A., and McNamara, J.: The Impact of Initial Snow
Conditions on the Numerical Weather Simulation of a Northern Rockies
Atmospheric River, J. Hydrometeorol., 22, 155–167, 2021.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A
description of the advanced research WRF model version 4, National Center
for Atmospheric Research: Boulder, CO, USA, 145, p. 145, https://doi.org/10.5065/1dfh-6p97, 2019.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., and Liu, H.: The NCEP climate forecast
system reanalysis, B. Am. Meteorol. Soc., 91,
1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schreiner-McGraw, A. P. and Ajami, H.: Impact of uncertainty in
precipitation forcing data sets on the hydrologic budget of an integrated
hydrologic model in mountainous terrain, Water Resour. Res., 56,
e2020WR027639, https://doi.org/10.1029/2020WR027639, 2020.
Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and
Pulwarty, R. S.: Characteristics of the western United States snowpack from
snowpack telemetry (SNOTEL) data, Water Resour. Res., 35, 2145–2160,
https://doi.org/10.1029/1999WR900090, 1999.
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins, W. D., and Kaatz, L.: A low-to-no snow future and its impacts on water resources in
the western United States, Nat. Rev. Earth Environ., 2,
800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021.
Solman, S. A. and Pessacg, N. L.: Evaluating uncertainties in regional
climate simulations over South America at the seasonal scale, Clim.
Dynam., 39, 59–76, 2012.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
trillion dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Ullrich, P., Xu, Z., Rhoades, A., Dettinger, M., Mount, J., Jones, A., and
Vahmani, P.: California's drought of the future: A midcentury recreation of
the exceptional conditions of 2012–2017, Earth's Future, 6, 1568–1587,
https://doi.org/10.1029/2018EF001007, 2018.
Walser, A. and Schär, C.: Convection-resolving precipitation forecasting
and its predictability in Alpine river catchments, J. Hydrol.,
288, 57–73, https://doi.org/10.1016/j.jhydrol.2003.11.035, 2004.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50, 293–305,
2014.
Williams, A. P., Cook, B. I., and Smerdon, J. E.: Rapid intensification of
the emerging southwestern North American megadrought in 2020–2021, Nat.
Clim. Change, 12, 232–234, https://doi.org/10.1038/s41558-022-01290-z,
2022.
Xu, Y., Jones, A., and Rhoades, A.: A quantitative method to decompose SWE
differences between regional climate models and reanalysis datasets, Sci. Rep.,
9, 16520, https://doi.org/10.1038/s41598-019-52880-5, 2019.
Xu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., and Collins, W. D.: An
intercomparison of GCM and RCM dynamical downscaling for characterizing the
hydroclimatology of California and Nevada, J. Hydrometeorol., 19,
1485–1506, https://doi.org/10.1175/JHM-D-17-0181.1, 2018.
Xu, Z., Siirila-Woodburn, E. R., Rhoades, A. M., and Feldman D.: Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorada River basin, NERSC Science Gateway [data set], https://portal.nersc.gov/archive/home/z/zexuanxu/Shared/www/IPM, last access: 20 April 2023.
Zhuang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y., and Hao, F.:
Drought propagation under global warming: Characteristics, approaches,
processes, and controlling factors, Sci. Total Environ., 838,
156021, https://doi.org/10.1016/j.scitotenv.2022.156021, 2022.
Zhang, Y. Y., Shao, Q. X., Ye, A. Z., Xing, H. T., and Xia, J.: Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration, Hydrol. Earth Syst. Sci., 20, 529–553, https://doi.org/10.5194/hess-20-529-2016, 2016.
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
The goal of this study is to understand the uncertainties of different modeling configurations...