Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1771-2023
https://doi.org/10.5194/hess-27-1771-2023
Research article
 | 
05 May 2023
Research article |  | 05 May 2023

Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin

Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman

Related authors

Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks
Zexuan Xu, Bill X. Hu, and Ming Ye
Hydrol. Earth Syst. Sci., 22, 221–239, https://doi.org/10.5194/hess-22-221-2018,https://doi.org/10.5194/hess-22-221-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024,https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024,https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Global total precipitable water variations and trends over the period 1958–2021
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024,https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024,https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024,https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary

Cited articles

Alder, J. R. and Hostetler, S. W.: The dependence of hydroclimate projections in snow-dominated regions of the western United States on the choice of statistically downscaled climate data, Water Resour. Res., 55, 2279–2300, 2019. 
Arthur, R. S., Lundquist, K. A., Mirocha, J. D., and Chow, F. K.: Topographic effects on radiation in the WRF Model with the immersed boundary method: Implementation, validation, and application to complex terrain, Mon. Weather Rev., 146, 3277–3292, https://doi.org/10.1175/MWR-D-18-0108.1, 2018. 
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, https://doi.org/10.13182/NSE96-A24230, 1996. 
Buban, M. S., Lee, T. R., and Baker, C. B.: A comparison of the US climate reference network precipitation data to the parameter-elevation regressions on independent slopes model (PRISM), J. Hydrometeorol., 21, 2391–2400, 2020. 
Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., and Arnault, J.: Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system, Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, 2020. 
Download
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.