Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria
Marleen Schübl
CORRESPONDING AUTHOR
Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
Giuseppe Brunetti
Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
Gabriele Fuchs
Section I – Water Management, Division I/3 – Water Resources, Federal Ministry of Agriculture, Forestry, Regions and Water Management, Marxergasse 2, 1030 Vienna, Austria
Christine Stumpp
Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
Related authors
No articles found.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci., 29, 3935–3956, https://doi.org/10.5194/hess-29-3935-2025, https://doi.org/10.5194/hess-29-3935-2025, 2025
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or if they are also controlled by precipitation intensity. We used soil-moisture-dependent and precipitation-intensity-conditional transfer functions. We showed that a significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential-flow paths) in dry soil conditions for both low- and high-intensity precipitation.
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
Hydrol. Earth Syst. Sci., 29, 3853–3863, https://doi.org/10.5194/hess-29-3853-2025, https://doi.org/10.5194/hess-29-3853-2025, 2025
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between two components of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights into understanding different groundwater recharge patterns on a large scale and eventually for groundwater management.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Peter Strauss, Günter Blöschl, and Michael Stockinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2597, https://doi.org/10.5194/egusphere-2025-2597, 2025
Short summary
Short summary
This study shows that stream flow isotope data (δ2H) were inadequate for distinguishing preferential groundwater flow. Large passive groundwater storage dampened δ2H variations, obscuring signals of fast groundwater flow and complicating the estimation of older water fractions in the streams. Further, weekly-resolution δ2H sampling yielded deceptively high model performance, highlighting the need for complementary and groundwater-level data to improve catchment-scale transit-time estimates.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Cited articles
Assefa, K. A. and Woodbury, A. D.: Transient, spatially varied groundwater
recharge modeling, Water Resour. Res., 49, 4593–4606, https://doi.org/10.1002/wrcr.20332, 2013. a, b
Barkle, G., Wöhling, T., Stenger, R., Mertens, J., Moorhead, B., Wall,
A., and Clague, J.: Automated Equilibrium Tension Lysimeters for Measuring
Water Fluxes through a Layered, Volcanic Vadose Profile in New Zealand,
Vadose Zone J., 10, 747–759, https://doi.org/10.2136/vzj2010.0091, 2011. a
Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and Van Dam,
J. C.: Uncertainty in the determination of soil hydraulic parameters and its
influence on the performance of two hydrological models of different
complexity, Hydrol. Earth Syst. Sci., 14, 251–270,
https://doi.org/10.5194/hess-14-251-2010, 2010. a
Barron, O. V., Crosbie, R. S., Dawes, W. R., Charles, S. P., Pickett, T., and
Donn, M. J.: Climatic controls on diffuse groundwater recharge across Australia, Hydrol. Earth Syst. Sci., 16, 4557–4570,
https://doi.org/10.5194/hess-16-4557-2012, 2012. a, b
Berthelin, R., Rinderer, M., Andreo, B., Baker, A., Kilian, D., Leonhardt, G., Lotz, A., Lichtenwoehrer, K., Mudarra, M., Padilla, I. Y., Pantoja Agreda, F., Rosolem, R., Vale, A., and Hartmann, A.: A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe, Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, 2020. a
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, 2016. a
Boumaiza, L., Chesnaux, R., Walter, J., and Stumpp, C.: Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles, Hydrogeol. J., 28, 2315–2329,
https://doi.org/10.1007/s10040-020-02204-z, 2020. a
Bresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., Cook, P. G., and Batelaan, O.: Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers, Hydrol. Earth Syst. Sci., 22, 1629–1648,
https://doi.org/10.5194/hess-22-1629-2018, 2018. a
Brunetti, G., Šimůnek, J., Bogena, H., Baatz, R., Huisman, J. A.,
Dahlke, H., and Vereecken, H.: On the Information Content of Cosmic‐Ray
Neutron Data in the Inverse Estimation of Soil Hydraulic Properties, Vadose
Zone J., 18, 1–24, https://doi.org/10.2136/vzj2018.06.0123, 2019. a, b
Brunetti, G., Papagrigoriou, I. A., and Stumpp, C.: Disentangling model
complexity in green roof hydrological analysis: A Bayesian perspective, Water Res., 182, 115973, https://doi.org/10.1016/j.watres.2020.115973, 2020a. a, b
Brunetti, G., Šimůnek, J., Glöckler, D., and Stumpp, C.: Handling
model complexity with parsimony: Numerical analysis of the nitrogen turnover
in a controlled aquifer model setup, J. Hydrol., 584, 124681, https://doi.org/10.1016/j.jhydrol.2020.124681, 2020b. a, b, c
Brunetti, G., Schübl, M., Santner, K., and Stumpp, C.:
Sensitivitätsanalyse zu Infiltrationsprozessen in Böden, Österreich. Wasser Abfallwirt., 74, 179–186, https://doi.org/10.1007/s00506-022-00839-8, 2022. a
Buchner, J.: A statistical test for Nested Sampling algorithms, Stat. Comput., 26, 383–392, https://doi.org/10.1007/s11222-014-9512-y, 2016. a
Burri, N. M., Weatherl, R., Moeck, C., and Schirmer, M.: A review of threats
to groundwater quality in the anthropocene, Sci. Total Environ., 684, 136–154, https://doi.org/10.1016/j.scitotenv.2019.05.236, 2019. a
Cao, G., Scanlon, B. R., Han, D., and Zheng, C.: Impacts of thickening
unsaturated zone on groundwater recharge in the North China Plain, J. Hydrol., 537, 260–270, https://doi.org/10.1016/j.jhydrol.2016.03.049, 2016. a
Chesnaux, R. and Stumpp, C.: Advantages and challenges of using soil water
isotopes to assess groundwater recharge dominated by snowmelt at a field study located in Canada, Hydrolog. Sci. J., 63, 679–695, https://doi.org/10.1080/02626667.2018.1442577, 2018. a
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Estimation of
groundwater recharge from groundwater levels using nonlinear transfer
function noise models and comparison to lysimeter data, Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, 2021. a, b, c, d
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the applicability
of unimodal and bimodal van Genuchten-Mualem based models to peat and other
organic soils under evaporation conditions, J. Hydrol., 515, 103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047, 2014. a
Doble, R. C. and Crosbie, R. S.: Revue: Méthodes courantes et
émergentes pour la modélisation de la recharge à l'échelle du bassin versant et de l'évapotranspiration d'eaux souterraines peu profondes, Hydrogeol. J., 25, 3–23, https://doi.org/10.1007/s10040-016-1470-3, 2017. a
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008. a
Doorenbos, J. and Pruitt, W. O.: Crop evapotranspiration, FAO irrigation and
drainage Paper 24, FAO, 1–145, https://www.posmet.ufv.br/wp-content/uploads/2015/08/LIVRO-385-Doorenbos-e-Pruitt-Guidelines-for-predicting-crop (last access: 25 March 2023), 1977. a
Durner, W., Jansen, U., and Iden, S. C.: Effective hydraulic properties of
layered soils at the lysimeter scale determined by inverse modelling, Eur. J. Soil Sci., 59, 114–124, https://doi.org/10.1111/j.1365-2389.2007.00972.x, 2008. a
Dyck, M. and Kachanoski, R.: Spatial Scale-Dependence of Preferred Flow
Domains during Infiltration in a Layered Field Soil, Vadose Zone J., 9,
385–396, https://doi.org/10.2136/vzj2009.0093, 2010. a
Elsheikh, A. H., Wheeler, M. F., and Hoteit, I.: Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration, Water Resour. Res., 49, 8383–8399,
https://doi.org/10.1002/2012WR013406, 2013. a
Emerson, W. W.: Water retention, organic c and soil texture, Aust. J. Soil Res., 33, 241–251, https://doi.org/10.1071/SR9950241, 1995. a
Feddes, R. A., Kowalik, P. J., Zaradny, H., Taylor, S. A., Ashcroft, G. L.,
Vrugt, J. A., Diks, C. G., Gupta, H. V., Bouten, W., and Verstraten, J. M.: Physical edaphology. The physics of irrigated and nonirrigated soils, Monogr. PUDOC, Wageningen, 41, 1–17, https://doi.org/10.1029/2004WR003059, 1978. a
Feroz, F. and Hobson, M. P.: Multimodal nested sampling: An efficient and
robust alternative to Markov Chain Monte Carlo methods for astronomical data
analyses, Mon. Notice. Roy. Astron. Soc., 384, 449–463,
https://doi.org/10.1111/j.1365-2966.2007.12353.x, 2008. a, b, c
Feroz, F., Hobson, M. P., and Bridges, M.: MultiNest: An efficient and robust
Bayesian inference tool for cosmology and particle physics, Mon. Notice.
Roy. Astron. Soc., 398, 1601–1614, https://doi.org/10.1111/j.1365-2966.2009.14548.x, 2009. a, b, c, d
Feroz, F., Hobson, M. P., Cameron, E., and Pettitt, A. N.: Importance Nested
Sampling and the MultiNest Algorithm, Open J. Astrophys., 2, 1, https://doi.org/10.21105/astro.1306.2144, 2019. a
Finsterle, S.: Practical notes on local data-worth analysis, Water Resour.
Res., 51, 9904–9924, https://doi.org/10.1002/2015WR017445, 2015. a
Fuentes, C., Haverkamp, R., and Parlange, J. Y.: Parameter constraints on
closed-form soilwater relationships, J. Hydrol., 134, 117–142,
https://doi.org/10.1016/0022-1694(92)90032-Q, 1992. a
Gao, H., Zhang, J., Liu, C., Man, J., Chen, C., Wu, L., and Zeng, L.:
Efficient Bayesian Inverse Modeling of Water Infiltration in Layered Soils,
Vadose Zone J., 18, 1–13, https://doi.org/10.2136/vzj2019.03.0029, 2019. a
Groh, J., Vanderborght, J., Pütz, T., and Vereecken, H.: How to Control
the Lysimeter Bottom Boundary to Investigate the Effect of Climate Change on
Soil Processes?, Vadose Zone J., 15, vzj2015.08.0113,
https://doi.org/10.2136/vzj2015.08.0113, 2016. a
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and
Vereecken, H.: Inverse Estimation of Soil Hydraulic and Transport Parameters
of Layered Soils from Water Stable Isotope and Lysimeter Data, Vadose Zone J., 17, 170168, https://doi.org/10.2136/vzj2017.09.0168, 2018. a, b
Gupta, A., Govindaraju, R. S., Morbidelli, R., and Corradini, C.: The Role of
Prior Probabilities on Parameter Estimation in Hydrological Models, Water
Resour. Res., 58, e2021WR031291, https://doi.org/10.1029/2021WR031291, 2022. a
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst
water resources in a changing world: Review of hydrological modeling approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014. a
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater
recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847,
https://doi.org/10.1073/pnas.1614941114, 2017. a
Healy, R. W. and Cook, P. G.: Using groundwater levels to estimate recharge, Hydrogeol. J., 10, 91–109, https://doi.org/10.1007/s10040-001-0178-0, 2002. a
Heilig, A., Steenhuis, T. S., Walter, M. T., and Herbert, S. J.: Funneled flow mechanisms in layered soil: Field investigations, J. Hydrol., 279,
210–223, https://doi.org/10.1016/S0022-1694(03)00179-3, 2003. a
Heppner, C. S., Nimmo, J. R., Folmar, G. J., Gburek, W. J., and Risser, D. W.: Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA, Hydrogeol. J., 15, 915–927,
https://doi.org/10.1007/s10040-006-0149-6, 2007. a, b
Jarvis, N. J.: The MACRO model (Version 3.1) – Technical Description and
Sample Simulations, p. 51, https://agris.fao.org/agris-search/search.do?recordID=SE19950122727 (last access: 25 March 2023), 1994. a
Kaminsky, E., Plan, L., Wagner, T., Funk, B., and Oberender, P.: Flow dynamics in a vadose shaft – a case study from the hochschwab karst massif (Northern calcareous alps, austria), Int. J. Speleol., 50, 157–172, https://doi.org/10.5038/1827-806X.50.2.2375, 2021. a
Keese, K. E., Scanlon, B. R., and Reedy, R. C.: Assessing controls on diffuse
groundwater recharge using unsaturated flow modeling, Water Resour. Res., 41, 1–12, https://doi.org/10.1029/2004WR003841, 2005. a
Koeniger, P., Gaj, M., Beyer, M., and Himmelsbach, T.: Review on soil water
isotope-based groundwater recharge estimations, Hydrol. Process., 30, 2817–2834, https://doi.org/10.1002/hyp.10775, 2016. a
Lambot, S., Javaux, M., Hupet, F., and Vanclooster, M.: A global multilevel
coordinate search procedure for estimating the unsaturated soil hydraulic
properties, Water Resour. Res., 38, 6-1–6-15, https://doi.org/10.1029/2001wr001224, 2002. a
Land OÖ: Forschungsprojekt Lysimeter, Technischer Endbericht 2013,
Tech. rep., Amt der Oöo. Landesregierung, Abteilung Grund- und
Trinkwasserwirtschaft, Linz, https://www.land-oberoesterreich.gv.at/Mediendateien/Formulare/Dokumente UWD Abt_WW/2013_LysimeterO%C3%96_Jahresbericht13.pdf
(last access: 25 March 2023), 2013. a
Land OÖ: Forschungsprojekt Lysimeter, Technischer Endbericht 2014,
Tech. rep., Amt der Oö. Landesregierung, Abteilung Grund- und
Trinkwasserwirtschaft, Linz, https://www.land-oberoesterreich.gv.at/Mediendateien/Formulare/Dokumente UWD Abt_WW/2014_LysimeterO%C3%96_Jahresbericht14.pdf
(last access: 25 March 2023), 2014. a
Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., and Tan, Z.: Root-induced changes of soil hydraulic properties – A review, J. Hydrol.,
589, 125203, https://doi.org/10.1016/j.jhydrol.2020.125203, 2020. a
Minasny, B. and Field, D. J.: Estimating soil hydraulic properties and their
uncertainty: The use of stochastic simulation in the inverse modelling of the
evaporation method, Geoderma, 126, 277–290, https://doi.org/10.1016/j.geoderma.2004.09.015, 2005. a
Mishra, S., Parker, J. C., and Singhal, N.: Estimation of soil hydraulic
properties and their uncertainty from particle size distribution data, J. Hydrol., 108, 1–18, https://doi.org/10.1016/0022-1694(89)90275-8, 1989. a
Moeck, C., von Freyberg, J., and Schirmer, M.: Groundwater recharge
predictions in contrasted climate: The effect of model complexity and
calibration period on recharge rates, Environ. Model. Softw., 103, 74–89, https://doi.org/10.1016/j.envsoft.2018.02.005, 2018. a, b
Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J. J., Berg,
M., and Schirmer, M.: A global-scale dataset of direct natural groundwater
recharge rates: A review of variables, processes and relationships, Sci. Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020. a, b, c, d, e, f, g, h, i, j
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976. a
Mukherjee, P., Parkinson, D., and Liddle, A. R.: A Nested Sampling Algorithm
for Cosmological Model Selection, Astrophys. J., 638, L51–L54,
https://doi.org/10.1086/501068, 2006. a, b
Neukum, C. and Azzam, R.: Impact of climate change on groundwater recharge in
a small catchment in the Black Forest, Germany, Hydrogeol. J., 20, 547–560, https://doi.org/10.1007/s10040-011-0827-x, 2012. a
Neukum, C., Hötzl, H., and Himmelsbach, T.: Validation of vulnerability
mapping methods by field investigations and numerical modelling, Hydrogeol. J., 16, 641–658, https://doi.org/10.1007/s10040-007-0249-y, 2008. a
Nolan, B. T., Healy, R. W., Taber, P. E., Perkins, K., Hitt, K. J., and Wolock, D. M.: Factors influencing ground-water recharge in the eastern United States, J. Hydrol., 332, 187–205, https://doi.org/10.1016/j.jhydrol.2006.06.029, 2007. a, b
Nolz, R., Cepuder, P., and Eitzinger, J.: Comparison of lysimeter based and
calculated ASCE reference evapotranspiration in a subhumid climate, Theor. Appl. Climatol., 124, 315–324, https://doi.org/10.1007/s00704-015-1417-y, 2016. a
PC-PROGRESS: HYDRUS-1D, https://www.pc-progress.com, last access: 1 April 2023. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a, b
Pütz, T., Fank, J., and Flury, M.: Lysimeters in Vadose Zone Research,
Vadose Zone J., 17, 180035, https://doi.org/10.2136/vzj2018.02.0035, 2018. a
QGIS Development Team: QGIS Geographic Information System, QGIS Association,
https://www.qgis.org (last access: 25 March 2023), 2022. a
Rimon, Y., Dahan, O., Nativ, R., and Geyer, S.: Water percolation through the
deep vadose zone and groundwater recharge: Preliminary results based on a new
vadose zone monitoring system, Water Resour. Res., 43, W05402, https://doi.org/10.1029/2006WR004855, 2007. a
Ritter, A., Hupet, F., Muñoz-Carpena, R., Lambot, S., and Vanclooster,
M.: Using inverse methods for estimating soil hydraulic properties from
field data as an alternative to direct methods, Agr. Water Manage., 59, 77–96, https://doi.org/10.1016/S0378-3774(02)00160-9, 2003. a
Romano, N. and Santini, A.: Determining soil hydraulic functions from
evaporation experiments by a parameter estimation approach: Experimental
verifications and numerical studies, Water Resour. Res., 35, 3343–3359, https://doi.org/10.1029/1999WR900155, 1999. a
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39,
https://doi.org/10.1007/s10040-001-0176-2, 2002. a, b
Schaap, M. G. and Leij, F. J.: Using neural networks to predict soil water
retention and soil hydraulic conductivity, Soil Till. Res., 47, 37–42, https://doi.org/10.1016/S0167-1987(98)00070-1, 1998. a
Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M.: Inverse modelling
of in situ soil water dynamics: Investigating the effect of different prior
distributions of the soil hydraulic parameters, Hydrol. Earth Syst. Sci., 15, 3043–3059, https://doi.org/10.5194/hess-15-3043-2011, 2011. a, b, c
Schelle, H., Iden, S. C., Fank, J., and Durner, W.: Inverse Estimation of Soil Hydraulic and Root Distribution Parameters from Lysimeter Data, Vadose Zone J., 11, vzj2011.0169, https://doi.org/10.2136/vzj2011.0169, 2012. a, b
Schjønning, P., Munkholm, L. J., Moldrup, P., and Jacobsen, O. H.:
Modelling soil pore characteristics from measurements of air exchange: The
long-term effects of fertilization and crop rotation, Eur. J. Soil Sci., 53, 331–339, https://doi.org/10.1046/j.1365-2389.2002.00438.x, 2002. a
Schneider, S., Jacques, D., and Mallants, D.: Inverse modelling with a genetic algorithm to derive hydraulic properties of a multi-layered forest soil, Soil Res., 51, 372–389, https://doi.org/10.1071/SR13144, 2013. a
Seneviratne, S. I., Lehner, I., Gurtz, J., Teuling, A. J., Lang, H., Moser, U., Grebner, D., Menzel, L., Schroff, K., Vitvar, T., and Zappa, M.: Swiss
prealpine Rietholzbach research catchment and lysimeter: 32 year time series
and 2003 drought event, Water Resour. Res., 48, W06526, https://doi.org/10.1029/2011WR011749, 2012. a
Šimůnek, J.: Estimating groundwater recharge using HYDRUS-1D,
Geological Institute, Bulgarian Academy of Sciences, 29, 25–36,
https://www.pc-progress.com/Documents/Jirka/Simunek_EnginGeolHydrogeol_2016.pdf (last access: 25 March 2023), 2015. a
Šimůnek, J., Jarvis, N. J., Van Genuchten, M. T., and Gärdenäs, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14–35, https://doi.org/10.1016/S0022-1694(02)00252-4, 2003. a
Šimůnek, J., van Genuchten, M. T., and Šejna, M.: Recent Developments and Applications of the HYDRUS Computer Software Packages, Vadose Zone J., 15, vzj2016.04.0033, https://doi.org/10.2136/vzj2016.04.0033, 2016. a, b, c
Skilling, J.: Nested sampling for general Bayesian computation, Bayes. Anal., 1, 833–860, https://doi.org/10.1214/06-BA127, 2006. a, b
Stumpp, C., Maloszewski, P., Stichler, W., and Fank, J.: Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station “Wagna” (Austria), J. Hydrol., 369, 198–208, https://doi.org/10.1016/j.jhydrol.2009.02.047, 2009. a
Stumpp, C., Stichler, W., Kandolf, M., and Šimůnek, J.: Effects of Land
Cover and Fertilization Method on Water Flow and Solute Transport in Five
Lysimeters: A Long-Term Study Using Stable Water Isotopes, Vadose Zone J., 11, 1, https://doi.org/10.2136/vzj2011.0075, 2012. a, b
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada,
Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow,
L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F., Macdonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M.,
Shamsudduha, M., Hiscock, K., Yeh, P. J., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2013. a, b
Taylor, S. A. and Ashcroft, G. L.: Physical edaphology. The physics of irrigated and nonirrigated soils, https://www.cabdirect.org/cabdirect/abstract/19731901994 (last access: 25 March 2023), 1972. a
Tóth, G., Rman, N., Ágnes, R. S., Kerékgyártó, T., Szocs, T., Lapanje, A., Černák, R., Remsík, A., Schubert, G., and Nádor, A.: Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin, Renew. Sustain. Energ. Rev., 57, 439–454, https://doi.org/10.1016/j.rser.2015.12.021, 2016. a
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980. a
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil moisture measurements in vadose zone
hydrology: A review, Water Resour. Res., 46, W00D06, https://doi.org/10.1029/2008WR006829, 2008. a, b
Vereecken, H., Schnepf, A., Hopmans, J., Javaux, M., Or, D., Roose, T.,
Vanderborght, J., Young, M., Amelung, W., Aitkenhead, M., Allison, S.,
Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury,
M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen,
H., Heppell, J., Horn, R., Huisman, J., Jacques, D., Jonard, F., Kollet, S.,
Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka,
C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss,
Y., Rowe, E., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S., Vogel, H., Vrugt, J., Wöhling, T., and Young, I.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, vzj2015.09.0131, https://doi.org/10.2136/vzj2015.09.0131, 2016. a, b
Vogel, W.: Österreich – Vorreiter im Grundwasserschutz, Ländlicher Raum, p. 12, https://info.bml.gv.at/dam/jcr:e19e56b5-fc51-4b9e-b5f0-966d8f220bbf/41_Wilhelm ogel - %C3%96sterreich - Vorreiter im Grundwasserschutz.pdf
(last access: 25 March 2023), 2001. a
von Freyberg, J., Moeck, C., and Schirmer, M.: Estimation of groundwater
recharge and drought severity with varying model complexity, J. Hydrol., 527, 844–857, https://doi.org/10.1016/j.jhydrol.2015.05.025, 2015. a, b
Vrugt, J. A. and Sadegh, M.: Toward diagnostic model calibration and
evaluation: Approximate Bayesian computation, Water Resour. Res., 49,
4335–4345, https://doi.org/10.1002/wrcr.20354, 2013. a
Vrugt, J. A., Bouten, W., Gupta, H. V., and Hopmans, J. W.: Toward improved
identifiability of soil hydraulic parameters: On the selection of a suitable
parametric model, Vadose Zone J., 2, 98–113, 2003. a
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson,
B. A.: Treatment of input uncertainty in hydrologic modeling: Doing
hydrology backward with Markov chain Monte Carlo simulation, Water Resour.
Res., 44, W00B09, https://doi.org/10.1029/2007wr006720, 2008. a
Vrugt, J. A., de Oliveira, D. Y., Schoups, G., and Diks, C. G.: On the use of
distribution-adaptive likelihood functions: Generalized and universal likelihood functions, scoring rules and multi-criteria ranking, J. Hydrol., 615, 128542, https://doi.org/10.1016/j.jhydrol.2022.128542, 2022. a
Wareham, R.: rjw57/MultiNest, GitHub [code], https://github.com/rjw57/MultiNest, last access: 1 April 2023. a
Wang, T., Istanbulluoglu, E., Lenters, J., and Scott, D.: On the role of
groundwater and soil texture in the regional water balance: An investigation
of the Nebraska Sand Hills, USA, Water Resour. Res., 45, W10413, https://doi.org/10.1029/2009WR007733, 2009. a
Wesseling, J., Elbers, J., Kabat, P., and Van den Broek, B.: SWATRE:
Instructions for input, Internal Note, Winand Staring Centre, Wageningen, the
Netherlands, 1991. a
Whalley, W. R., Riseley, B., Leeds-Harrison, P. B., Bird, N. R., Leech, P. K., and Adderley, W. P.: Structural differences between bulk and rhizosphere
soil, Eur. J. Soil Sc., 56, 353–360, https://doi.org/10.1111/j.1365-2389.2004.00670.x, 2005. a
Wohling, D. L., Leaney, F. W., and Crosbie, R. S.: Deep drainage estimates
using multiple linear regression with percent clay content and rainfall,
Hydrol. Earth Syst. Sci., 16, 563–572, https://doi.org/10.5194/hess-16-563-2012, 2012. a
Wöhling, T., Vrugt, J. A., and Barkle, G. F.: Comparison of Three
Multiobjective Optimization Algorithms for Inverse Modeling of Vadose Zone
Hydraulic Properties, Soil Sci. Soc. Am. J., 72, 305–319,
https://doi.org/10.2136/sssaj2007.0176, 2008. a, b
Wöhling, T., Schöniger, A., Gayler, S., and Nowak, W.: Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction, Water Resour. Res., 51, 2825–2846, https://doi.org/10.1002/2014WR016292, 2015. a
Xie, Y., Cook, P. G., Simmons, C. T., Partington, D., Crosbie, R., and
Batelaan, O.: Uncertainty of groundwater recharge estimated from a water and
energy balance model, J. Hydrol., 561, 1081–1093, https://doi.org/10.1016/j.jhydrol.2017.08.010, 2018. a
Zhao, Y., Peth, S., Horn, R., Šimůnek, J., and Kodešová, R.:
Modeling of coupled water and heat fluxes in both unfrozen and frozen
soils, in: Proc. of HYDRUS Workshop, Czech University of Life Sciences, Prague, Czech, 55–60, http://pc-progress.com/Documents/Workshop_2008_Prague/Proceedings - Prague's HYDRUS Worskshop.pdf#page=59 (last access: 25 March 2023), 2008. a
Short summary
Estimating groundwater recharge through the unsaturated zone is a difficult task that is fundamentally associated with uncertainties. One of the few methods available is inverse modeling based on soil water measurements. Here, we used a nested sampling algorithm within a Bayesian probabilistic framework to assess model uncertainties at 14 sites in Austria. Further, we analyzed simulated recharge rates to identify factors influencing groundwater recharge rates and their temporal variability.
Estimating groundwater recharge through the unsaturated zone is a difficult task that is...