Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Qiaoyu Wang
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Ingo Heidbüchel
Department of
Hydrogeology, UFZ – Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
Hydrologic Modeling Unit, Bayreuth Center of Ecology and Environmental
Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Chunhui Lu
CORRESPONDING AUTHOR
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Yueqing Xie
School of Earth Sciences and Engineering, University of Nanjing,
Nanjing, China
Andreas Musolff
Department of
Hydrogeology, UFZ – Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
Jan H. Fleckenstein
Department of
Hydrogeology, UFZ – Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
Hydrologic Modeling Unit, Bayreuth Center of Ecology and Environmental
Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Related authors
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-318, https://doi.org/10.5194/essd-2024-318, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The CAMELS-DE dataset features data from 1555 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends, and supports the development of hydrological models.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Zhaoyang Luo, Jun Kong, Lili Yao, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-634, https://doi.org/10.5194/hess-2021-634, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watertable fluctuations and seawater intrusion are characteristic features of coastal unconfined aquifers. A modified expression is first proposed for the dynamic effective porosity due to watertable fluctuations. Then, the new expression is implemented in existing Boussinesq equations and a numerical model, allowing for examination of the effects of the dynamic effective porosity on watertable fluctuations and seawater intrusion in coastal unconfined aquifers, respectively.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Zhongbo Yu, Chunhui Lu, Jianyuan Cai, Dazheng Yu, Gil Mahe, Anil Mishra, Christophe Cudennec, Henny A. J. Van Lanen, Didier Orange, and Abou Amani
Proc. IAHS, 383, 3–4, https://doi.org/10.5194/piahs-383-3-2020, https://doi.org/10.5194/piahs-383-3-2020, 2020
Short summary
Short summary
The 8th Global FRIEND conference highlighted the advance in hydrological science and innovation in water management. 52 accepted papers cover study areas in precipitation and climate impact; observation, analysis and simulations of hydrologic processes; floods in the changing environments; drought monitoring and analysis; water resources and environmental impacts. The outcome of the conference presented in the proceedings will be shared and discussed widely among UNESCO IHP networks.
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
W. He, C. Beyer, J. H. Fleckenstein, E. Jang, O. Kolditz, D. Naumov, and T. Kalbacher
Geosci. Model Dev., 8, 3333–3348, https://doi.org/10.5194/gmd-8-3333-2015, https://doi.org/10.5194/gmd-8-3333-2015, 2015
Short summary
Short summary
This technical paper presents a new tool to simulate reactive transport processes in subsurface systems and which couples the open-source software packages OpenGeoSys and IPhreeqc. A flexible parallelization scheme was developed and implemented to enable an optimized allocation of computer resources. The performance tests of the coupling interface and parallelization scheme illustrate the promising efficiency of this generally valid approach to simulate reactive transport problems.
B. J. Kopp, J. H. Fleckenstein, N. T. Roulet, E. Humphreys, J. Talbot, and C. Blodau
Hydrol. Earth Syst. Sci., 17, 3485–3498, https://doi.org/10.5194/hess-17-3485-2013, https://doi.org/10.5194/hess-17-3485-2013, 2013
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Identification, mapping, and eco-hydrological signal analysis for groundwater-dependent ecosystems (GDEs) in Langxi River basin, north China
Solutions and case studies for thermally driven reactive transport and porosity evolution in geothermal systems (reactive Lauwerier problem)
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci., 28, 4623–4642, https://doi.org/10.5194/hess-28-4623-2024, https://doi.org/10.5194/hess-28-4623-2024, 2024
Short summary
Short summary
Research on groundwater-dependent ecosystems (GDEs) started earlier, but because there is no good identification and classification method, most of the related research is concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China, with well-developed karsts, was selected as the study area, and a four-diagnostic-criteria framework for identifying the GDEs based on remote sensing, GIS data dredging, and hydrogeological surveys was proposed.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci., 28, 4559–4576, https://doi.org/10.5194/hess-28-4559-2024, https://doi.org/10.5194/hess-28-4559-2024, 2024
Short summary
Short summary
Common practices in water resource management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void space. A mathematical model is developed to study the effects of such thermal fluid injection on the evolution of water composition, aquifer porosity, and permeability. The model is then applied to two important case studies.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Anis, M. R. and Rode, M.: Effect of climate change on overland flow
generation: A case study in central Germany, Hydrol. Proc., 29,
2478–2490, 2015.
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride
transport using travel time distributions at plynlimon, wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600,
2015.
Bishop, K., Seibert, J., Köhler, S., and Laudon, H.: Resolving the Double
Paradox of rapidly mobilized old water with highly variable responses in
runoff chemistry, Hydrol. Process., 18, 185–189,
https://doi.org/10.1002/hyp.5209, 2004.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic
response: Travel time distributions, soil moisture dynamics, and the old
water paradox, Water Resour. Res., 46, W03514,
https://doi.org/10.1029/2009WR008371, 2010.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Catchment residence and travel
time distributions: The master equation, Geophys. Res. Lett.,
38, L11403, https://doi.org/10.1029/2011GL047666, 2011.
Böhlke, J. K., O'Connell, M. E., and Prestegaard, K. L.: Ground water
stratification and delivery of nitrate to an incised stream under varying
flow conditions, J. Environ. Qual., 36, 664–80,
https://doi.org/10.2134/jeq2006.0084, 2007.
Broxton, P. D., Troch, P. A., and Lyon, S. W.: On the role of aspect to
quantify water transit times in small mountainous catchments, Water Resour.
Res., 45, W08427, https://doi.org/10.1029/2008WR007438, 2009.
Doherty, J. and Hunt, R.: Approaches to highly parameterized inversion – a
guide to using PEST for groundwater-model calibration, Technical Report,
USGS Survey Scientifi Investigations Report, 2010–5169, 2010.
Dupas, R., Musolff, A., Jawitz, J. W., Rao, P. S. C., Jäger, C. G., Fleckenstein, J. H., Rode, M., and Borchardt, D.: Carbon and nutrient export regimes from headwater catchments to downstream reaches, Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, 2017.
Evaristo, J., Kim, M., van Haren, J., Pangle, L. A., Harman, C. J., Troch,
P. A., and McDonnell, J. J.: Characterizing the fluxes and age distribution
of soil water, plant water, and deep percolation in a model tropical
ecosystem, Water Resour. Res., 55, 3307–3327, 2019.
Frei, S., Lischeid, G., and Fleckenstein, J. H.: Effects of micro-topography on
surface-subsurface exchange and runoff generation in a virtual riparian
wetland – a modeling study, Adv. Water Res., 33, 1388–1401,
2010.
Haag, D. and Kaupenjohann, M.: Landscape fate of nitrate fluxes and emissions
in central Europe: a critical review of concepts, data, and models for
transport and retention, Agr. Ecosyst. Environ., 86, 1–21, 2001.
Harman, C. J.: Time-variable transit time distributions and transport:
Theory and application to storage-dependent transport of chloride in a
watershed, Water Resour. Res., 51, 1–30,
https://doi.org/10.1002/2014WR015707, 2015.
Harman, C. J.: Age-Ranked Storage-Discharge Relations: A Unified Description
of Spatially Lumped Flow and Water Age in Hydrologic Systems, Water Resour. Res., 55, 7143–7165, 2019.
Heidbüchel, I., Troch, P. A., and Lyon, S. W.: Separating physical and
meteorological controls of variable transit times in zero-order catchments,
Water Resour. Res., 49, 7644–7657,
https://doi.org/10.1002/2012WR013149, 2013.
Heidbüchel, I., Yang, J., Musolff, A., Troch, P., Ferré, T., and Fleckenstein, J. H.: On the shape of forward transit time distributions in low-order catchments, Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, 2020.
Heumann, S., Ringe, H., and Böttcher, J.: Field-specific simulations of net
N mineralization based on digitally available soil and weather data, I.
Temperature and soil water dependency of the rate coefficients, Nutr. Cycl.
Agroecosyst., 91, 219–234, https://doi.org/10.1007/s10705-011-9457-x,
2011.
Hofstra, N. and Bouwman, A. F.: Denitrification in agricultural soils:
summarizing published data and estimating global annual rates, Nutr. Cycl.
Agroecosyst., 72, 267–278, https://doi.org/10.1007/s10705-005-3109-y,
2005.
Hrachowitz, M., Fovet, O., Ruiz, L., and Savenije, H. H. G.: Transit time
distributions, legacy contamination and variability in biogeochemical
1/fa scaling: how are hydrological response dynamics linked to
water quality at the catchment scale?, Hydrol. Proc., 29,
5241–5256, https://doi.org/10.1002/hyp.10546, 2015.
Hrachowitz, M., Benettin, P., Van Breukelen, B. M., Fovet, O., Howden, N. J., Ruiz, L.,
Van Der Velde, Y., and Wade, A. J.: Transit times-the link between
hydrology and water quality at the catchment scale, Wiley Interdisciplinary
Reviews, Water, 3, 629–657, 2016.
Jasechko, S., Kirchner, J., Welker, J., and McDonnell, J.: Substantial proportion of
global streamflow less than three months old, Nat. Geosci., 9, 126–129,
https://doi.org/10.1038/ngeo2636, 2016.
Kaandorp, V. P., Louw, P. G. B., Velde, Y., and Broers, H. P.: Transient
Groundwater Travel Time Distributions and Age Storage
Relationships of Three Lowland Catchments, Water Resour. Res., 54,
4519–4536, https://doi.org/10.1029/2017WR022461, 2018.
Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H., Wang, Y., Harman, C. J.,
and Troch, P. A.: Transit time distributions and storage selection
functions in a sloping soil lysimeter with time-varying flow paths: Direct
observation of internal and external transport variability, Water Resour. Res., 52, 7105–7129, 2016.
Knoll, L., Breuer, L., and Bach, M.: Nation-wide estimation of groundwater
redox conditions and nitrate concentrations through machine learning,
Environ. Res. Lett., 15, 064004,
https://doi.org/10.1088/1748-9326/ab7d5, 2020.
Kolbe, T., de Dreuzy, J. R., Abbott, B. W., Aquilina, L., Babey, T., Green, C. T., Fleckenstein, J. H., Labasque, T., Laverman, A. M., Marçais J., Peiffer S., Thomas, Z., and Pinay, G.: Stratification of reactivity determines nitrate removal in
groundwater, P. Natl. Acad. Sci. USA, 116,
2494–2499, https://doi.org/10.1073/pnas.1816892116, 2019.
Li, Y., Chen, Y., and Li, Z.: Dry/wet pattern changes in global dryland areas
over the past six decades, Glob. Planet. Chang. 178, 184–192,
https://doi.org/10.1016/j. gloplacha.2019.04.017, 2019.
Lindström, G., Pers, C. P., Rosberg, R., Stroömqvist, J.,
and Arheimer, B.: Development and test of the
HYPE (Hydrological Predictions for the Environment) model – A water quality
model for different spatial scales, Hydrol. Res., 41, 295–319, 2010.
Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear
parameters, J. Soc. Ind. Appl. Math., 11, 431–441, 1963.
McGlynn, B., McDonnell, J., Stewart, M., and Seibert, J.: On the relationships
between catchment scale and streamwater mean residence time, Hydrol.
Proc., 17, 175–181, https://doi.org/10.1002/hyp.5085, 2003.
Michael, H. A., Russoniello, C. J., and Byron, L. A.: Global assessment of
vulnerability to sea-level rise in topography-limited and recharge-limited
coastal groundwater systems, Water Resour. Res., 49, 1–13, 2013.
Musolff, A., Schmidt, C., Selle, B., and Fleckenstein, J. H.: Catchment
controls on solute export, Adv. Water Res., 86, 133–146, 2015.
Musolff, A., Fleckenstein, J. H., Rao, P. S. C., and Jawitz, J. W.: Emergent
archetype patterns of coupled hydrologic and biogeochemical responses in
catchments, Geophys. Res. Lett., 44, 4143–4151,
https://doi.org/10.1002/2017GL072630, 2017.
Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., and
Fleckenstein, J. H.: Modeling nitrate export from a mesoscale catchment
using storage selection functions, Water Resour. Res., 57,
e2020WR028490, https://doi.org/10.1029/2020WR028490, 2021.
Nguyen, T. V., Kumar, R., Musolff, A., Lutz, S. R., Sarrazin, F., Attinger,
S., and Fleckenstein, J. H.: Disparate seasonal nitrate export from nested
heterogeneous subcatchments revealed with StorAge Selection functions, Water Resour. Res., 58, e2021WR030797, https://doi.org/10.1029/2021WR030797,
2022.
Oldham, C. E., Farrow, D. E., and Peiffer, S.: A generalized Damköhler number for classifying material processing in hydrological systems, Hydrol. Earth Syst. Sci., 17, 1133–1148, https://doi.org/10.5194/hess-17-1133-2013, 2013.
Pierce, F. J., Shaffer, M. J., and Halvorson, A. D.: Chapter 12: Screening procedure for estimating potentially leachable nitratenitrogen below the root zone, Managing Nitrogen for groundwater Quality and Farm Profitability, edited by: Follett, R. F., Keeney, D. R., and Cruse, R. M., Soil Sci. Soc. Am. J., ISBN: 9780891187967, 259–283, https://doi.org/10.2136/1991.managingnitrogen.c12, 1991.
Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., Van
Der Velde, Y., Bertuzzo, E., and Botter, G.: Storage selection functions: A
coherent framework for quantifying how catchments store and release water
and solutes, Water Resour. Res., 51, 4840–4847, 2015.
Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., and Bemment, C.
D.: Nitrate attenuation in groundwater: A review of biogeochemical
controlling processes, Water Res., 42, 4215–4232,
https://doi.org/10.1016/j.watres.2008.07.020, 2008.
Rodriguez, N. B., McGuire, K. J., and Klaus, J.: Time-varying storage-water
age relationships in a catchment with a mediterranean climate, Water Resour. Res., 54, 3988–4008, 2018.
Sayama, T. and McDonnell, J. J.: A new time-space accounting scheme to
predict stream water residence time and hydrograph source components at the
watershed scale, Wat. Resour. Res. 45, W07401, https://doi.org/10.1029/2008WR007549, 2009.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Shaffer, M. J., Halvorson, A. D., and Pierce, F. J.: Chapter 13: Nitrate leaching and economic analysis package NLEAP: model description and application, Managing Nitrogen for groundwater Quality and Farm Profitability, edited by: Follett, R. F., Keeney, D. R., and Cruse, R. M., Soil Sci. Soc. Am. J., ISBN: 9780891187967, 285–322, https://doi.org/10.2136/1991.managingnitrogen.c13, 1991.
Smith, R. L., Böhlke, J. K., Garabedian, S. P., Revesz, K. M., and
Yoshinari, T.: Assessing denitrification in groundwater using natural
gradient tracer tests with 15∘ N: In situ measurement of a sequential
multistep reaction, Water Resour. Res., 40, W07101, https://doi.org/10.1029/2003WR002919, 2004.
Sprenger, M., Seeger, S., Blume, T., and Weiler, M.: Travel times in the
vadose zone: Variability in space and time, Water Resour. Res., 52,
5727–5754, 2016.
Stevenson, F. J.: Humus chemistry: genesis, composition, reactions, Second
Edition, Wiley, J. Chem. Educ., 512 pp., https://doi.org/10.1021/ed072pA93.6, 1995.
Stewart, M. K., Morgenstern, U., and McDonnell, J. J.: Truncation of stream
residence time: how the use of stable isotopes has skewed our concept of
streamwater age and origin, Hydrol. Proc., 24, 1646–1659, 2010.
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M.: Hydrogeosphere: A three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport [software manual], Groundwater Simulations Group, Waterloo, ON: University of Waterloo, 2010.
van der Velde, Y., De Rooij, G., Rozemeijer, J., Van Geer, F., and Broers, H.:
Nitrate response of a lowland catchment: On the relation between stream
concentration and travel time distribution dynamics, Water Resour. Res., 46, W11534, https://doi.org/10.1029/2010WR009105, 2010.
van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect on
time-varying travel time distributions, Water Resour. Res., 48, w06536, https://doi.org/10.1029/2011WR011310, 2012.
Van Meter, K. J., Basu, N. B., and Van Cappellen, P.: Two centuries of
nitrogen dynamics: Legacy sources and sinks in the mississippi and
susquehanna river basins, Global Biogeochem. Cy., 31, 2–23,
https://doi.org/10.1002/2016GB005498, 2017.
Werner, A. D. and Simmons, C. T.: Impact of sea-level rise on seawater
intrusion in coastal aquifers, Ground Water, 47, 197–204, 2009.
Wilusz, D. C., Harman, C. J., and Ball, W. P.: Sensitivity of catchment
transit times to rainfall variability under present and future climates,
Water Resour. Res., 53, 10231–10256, 2017.
Wijayantiati, Y., Budihardjo, K., Sakamoto, Y., and Setyandito, O.: Topsoil
N-budget model in orchard farming to evaluate groundwater nitrate
contamination, IOP Conf. Ser., 109,
012034, https://doi.org/10.1088/1755-1315/109/1/012034, 2017.
Yang, J.: DS2022-1YJ, HydroShare [data set],
http://www.hydroshare.org/resource/e266298e55834617a26242f6af9687e1, last access date: 18 July 2022.
Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., and Fleckenstein, J. H.: Exploring the dynamics of transit times and subsurface mixing
in a small agricultural catchment, Water Resour. Res., 54,
2317–2335, https://doi.org/10.1002/2017WR021896, 2018.
Yang, J., Heidbüchel, I., Musolff, A., Xie, Y., Lu, C., and Fleckenstein,
J. H.: Using nitrate as a tracer to constrain age selection preferences in
catchments with strong seasonality, J. Hydrol., 603, 126889,
https://doi.org/10.1016/j.jhydrol.2021.126889, 2021.
Yang, X., Jomaa, S., Zink, M., Fleckenstein, J. H., Borchardt, D., and
Rode, M.: A new fully distributed model of nitrate transport and removal at
catchment scale, Water Resour. Res., 54, 5856–5877,
https://doi.org/10.1029/2017WR022380, 2018.
Yang, X., Jomaa, S., and Rode, M.: Sensitivity analysis of fully
distributed parameterization reveals insights into heterogeneous catchment
responses for water quality modelling, Water Resour. Res., 55,
10935–10953, https://doi.org/10.1029/2019WR025575, 2019.
Zarlenga, A. and Fiori, A.: Physically based modelling of water age at the
hillslope scale: The Boussinesq age equations, Hydrol. Proc.,
34, 2694–2706, 2020.
Zarlenga, A., Fiori, A., and Cvetkovic, V.: On the interplay between
hillslope and drainage network flow dynamics in the catchment travel time
distribution, Hydrol. Proc., 36, e14530,
https://doi.org/10.1002/hyp.14530, 2022.
Zhi, W., Li, L., Dong, W., Brown, W., Kaye, J., Steefel, C., and Williams, K. H.:
Distinct source water chemistry shapes contrasting concentration-discharge
patterns, Water Resour. Res., 55, 4233–4251,
https://doi.org/10.1029/2018WR024257, 2019.
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms...