Articles | Volume 26, issue 14
https://doi.org/10.5194/hess-26-3785-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3785-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Fenner School of Environment and Society, Australian National
University, Canberra, ACT, Australia
Albert I. J. M. van Dijk
Fenner School of Environment and Society, Australian National
University, Canberra, ACT, Australia
Hylke E. Beck
Department of Civil and Environmental Engineering, Princeton
University, Princeton, NJ, United States of America
Luigi J. Renzullo
Fenner School of Environment and Society, Australian National
University, Canberra, ACT, Australia
Yoshihide Wada
International Institute for Applied Systems Analysis, Laxenburg,
Austria
Related authors
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Nicolas Pucino, Tim McVicar, Shaun Levick, and Albert van Dijk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1223–1227, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1223-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1223-2025, 2025
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Chad A. Burton, Sami W. Rifai, Luigi J. Renzullo, and Albert I. J. M. Van Dijk
Earth Syst. Sci. Data, 16, 4389–4416, https://doi.org/10.5194/essd-16-4389-2024, https://doi.org/10.5194/essd-16-4389-2024, 2024
Short summary
Short summary
Understanding vegetation response to environmental change requires accurate, long-term data on vegetation condition (VC). We evaluated existing satellite VC datasets over Australia and found them lacking, so we developed a new VC dataset for Australia, AusENDVI. It can be used for studying Australia's changing vegetation dynamics and downstream impacts on the carbon and water cycles, and it provides a reliable foundation for further research into the drivers of vegetation change.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Yi Y. Liu, Albert I. J. M. van Dijk, Patrick Meir, and Tim R. McVicar
Biogeosciences, 21, 2273–2295, https://doi.org/10.5194/bg-21-2273-2024, https://doi.org/10.5194/bg-21-2273-2024, 2024
Short summary
Short summary
Greenness of the Amazon forest fluctuated during the 2015–2016 drought, but no satisfactory explanation has been found. Based on water storage, temperature, and atmospheric moisture demand, we developed a method to delineate the regions where forests were under stress. These drought-affected regions were mainly identified at the beginning and end of the drought, resulting in below-average greenness. For the months in between, without stress, greenness responded positively to intense sunlight.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, and Albert I. J. M. Van Dijk
Biogeosciences, 20, 4109–4134, https://doi.org/10.5194/bg-20-4109-2023, https://doi.org/10.5194/bg-20-4109-2023, 2023
Short summary
Short summary
Australia's land-based ecosystems play a critical role in controlling the variability in the global land carbon sink. However, uncertainties in the methods used for quantifying carbon fluxes limit our understanding. We develop high-resolution estimates of Australia's land carbon fluxes using machine learning methods and find that Australia is, on average, a stronger carbon sink than previously thought and that the seasonal dynamics of the fluxes differ from those described by other methods.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu Sayeed Maroof, Jingying Zhu, Chenyu Fan, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, https://doi.org/10.5194/essd-14-1869-2022, 2022
Short summary
Short summary
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic modeling, energy planning, and environmental conservation. We present a new global dataset, GeoDAR, that includes nearly 25 000 georeferenced dam points and their associated reservoir boundaries. A majority of these features can be linked to the register of the International Commission on Large Dams, extending the potential of registered attribute information for spatially explicit applications.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Siyuan Tian, Luigi J. Renzullo, Robert C. Pipunic, Julien Lerat, Wendy Sharples, and Chantal Donnelly
Hydrol. Earth Syst. Sci., 25, 4567–4584, https://doi.org/10.5194/hess-25-4567-2021, https://doi.org/10.5194/hess-25-4567-2021, 2021
Short summary
Short summary
Accurate daily continental water balance predictions are valuable in monitoring and forecasting water availability and land surface conditions. A simple and robust method was developed for an operational water balance model to constrain model predictions temporally and spatially with satellite soil moisture observations. The improved soil water storage prediction can provide constraints in model forecasts that persist for several weeks.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Cited articles
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., and Karger, D.
N.: Bias correction of global high-resolution precipitation climatologies
using streamflow observations from 9372 catchments, J. Climate, 33, 1299–1315, 2020.
Birkett, C. M., Reynolds, C., Beckley, B., and Doorn, B.: From Research to
Operations: The USDA Global Reservoir and Lake Monitor, in: chapter 2 in
`Coastal Altimetry', edited by: Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J., Springer Publications, https://doi.org/10.1007/978-3-642-12796-0_2, 2010.
Bonnema, M. and Hossain, F.: Inferring reservoir operating patterns across
the Mekong Basin using only space observations, Water Resour. Res., 53, 3791–3810, 2017.
Bonnema, M., Sikder, S., Miao, Y., Chen, X., Hossain, F., Ara Pervin, I.,
Mahbubur Rahman, S., and Lee, H.: Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic
controls, Water Resour. Res., 52, 4095–4115, 2016.
Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry, Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, 2019.
Chao, B. F., Wu, Y., and Li, Y.: Impact of artificial reservoir water impoundment on global sea level, Science, 320, 212–214, 2008.
Cooley, S. W., Ryan, J. C., and Smith, L. C.: Human alteration of global
surface water storage variability, Nature, 591, 78–81, 2021.
Crétaux, J.-F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Del Rio, R. A., and Cazenave, A.: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data, Adv. Space Res., 47, 1497–1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011.
Crétaux, J.-F., Abarca-del-Río, R., Berge-Nguyen, M., Arsen, A., Drolon, V., Clos, G., and Maisongrande, P.: Lake volume monitoring from space, Surv. Geophys., 37, 269–305, 2016.
Crist, E., Mora, C., and Engelman, R.: The interaction of human population,
food production, and biodiversity protection, Science, 356, 260–264, 2017.
Duan, Z. and Bastiaanssen, W. G. M.: Estimating water volume variations in
lakes and reservoirs from four operational satellite altimetry databases and
satellite imagery data, Remote Sens. Environm., 134, 403–416,
https://doi.org/10.1016/j.rse.2013.03.010, 2013.
Eldardiry, H. and Hossain, F.: Understanding reservoir operating rules in the transboundary nile river basin using macroscale hydrologic modeling with satellite measurements, J. Hydrometeorol., 20, 2253–2269, 2019.
El Gammal, E. A., Salem, S. M., and El Gammal, A. E. A.: Change detection
studies on the world's biggest artificial lake (Lake Nasser, Egypt), Egypt. J. Remote Sens. Space Sci., 13, 89–99, 2010.
Escobar, H.: Drought triggers alarms in Brazil's biggest metropolis, Science, 347, 812–812, 2015.
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large
reservoir storage from satellite remote sensing, Water Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063, 2012.
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., and Liermann, C. R.: An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales, Environ. Res. Lett., 10, 015001, https://doi.org/10.1088/1748-9326/10/1/015001, 2015.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., and Crochetiere, H.: Mapping the world's
free-flowing rivers, Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G.,
Koutroulis, A. G., Leonard, M., Liu, J., Schmied, H. M., and Papadimitriou,
L.: Globally observed trends in mean and extreme river flow attributed to
climate change, Science, 371, 1159–1162, 2021.
Hashimoto, T., Stedinger, J. R., and Loucks, D. P.: Reliability, resiliency,
and vulnerability criteria for water resource system performance evaluation,
Water Resour. Res., 18, 14–20, 1982.
Hou, J., Van Dijk, A. I. J. M., Renzullo, L. J., and Vertessy, R. A.: Using
modelled discharge to develop satellite-based river gauging: a case study for the Amazon Basin, Hydrol. Earth Syst. Sci., 22, 6435–6448, https://doi.org/10.5194/hess-22-6435-2018, 2018.
Hou, J., Van Dijk, A. I. J. M., and Beck, H. E.: Global satellite-based river gauging and the influence of river morphology on its application, Remote Sens. Environ., 239, 111629, https://doi.org/10.1016/j.rse.2019.111629, 2020.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
ICOLD: The International Commission on Large Dams, https://www.icold-cigb.org/GB/world_register/general_synthesis.asp, last access: March 2020.
Khandelwal, A., Karpatne, A., Marlier, M. E., Kim, J., Lettenmaier, D. P., and Kumar, V.: An approach for global monitoring of surface water extent
variations in reservoirs using MODIS data, Remote Sens. Environ., 202, 113–128, 2017.
Kjeldsen, T. R. and Rosbjerg, D.: Choice of reliability, resilience and
vulnerability estimators for risk assessments of water resources systems,
Hydrolog. Sci. J., 49, 755–767,
https://doi.org/10.1623/hysj.49.5.755.55136, 2004.
Kraemer, B. M., Seimon, A., Adrian, R., and McIntyre, P. B.: Worldwide lake level trends and responses to background climate variation, Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, 2020.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, 2013.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., and Magome, J.:
High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., and
Zarfl, C.: River dam impacts on biogeochemical cycling, Nat. Rev. Earth Environ., 1, 103–116, https://doi.org/10.1038/s43017-019-0019-0, 2020.
Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small
seasonal reservoirs in semi-arid regions and associated evaporative losses,
Environ. Res. Commun., 2, 061002, https://doi.org/10.1088/2515-7620/ab92af, 2020.
March, H., Domenech, L., and Saurí, D.: Water conservation campaigns and citizen perceptions: the drought of 2007–2008 in the Metropolitan Area of Barcelona, Nat. Hazards, 65, 1951–1966, 2013.
Medina, C., Gomez-Enri, J., Alonso, J. J., and Villares, P.: Water volume
variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT
Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data
products, J. Hydrol., 382, 34–48, https://doi.org/10.1016/j.jhydrol.2009.12.016, 2010.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Mulligan, M., van Soesbergen, A., and Sáenz, L.: GOODD, a global dataset of more than 38,000 georeferenced dams, Scient. Data, 7, 1–8, 2020.
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.: Fragmentation and
flow regulation of the world's large river systems, Science, 308, 405–408,
2005.
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., and Calvez, R.: Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series, Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, 2018.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
REN21: Renewables 2016, Global Status Report, REN21, https://www.ren21.net/gsr-2016/ (last access: May 2020), 2016.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015.
Schwatke, C., Scherer, D., and Dettmering, D.: Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based on
landsat and sentinel-2, Remote Sens., 11, 1010, https://doi.org/10.3390/rs11091010, 2019.
Simonovic, S. P. and Arunkumar, R.: Comparison of static and dynamic resilience for a multipurpose reservoir operation, Water Resour. Res., 52, 8630–8649, 2016.
Solander, K. C., Reager, J. T., and Famiglietti, J. S.: How well will the
Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?, Water Resour. Res., 52, 2123–2140, 2016.
Sousa, P. M., Blamey, R. C., Reason, C. J., Ramos, A. M., and Trigo, R. M.:
The `Day Zero' Cape Town drought and the poleward migration of moisture
corridors, Environ. Res. Lett., 13, 124025, https://doi.org/10.1088/1748-9326/aaebc7, 2018.
Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty,
C. J., Wang, H., and Olago, D.: Earth's sediment cycle during the Anthropocene, Nat. Rev. Earth Environ., 3, 179–196, 2022.
Tong, X., Pan, H., Xie, H., Xu, X., Li, F., Chen, L., Luo, X., Liu, S., Chen, P., and Jin, Y.: Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images, Remote Sens. Environ., 187, 400–413, https://doi.org/10.1016/j.rse.2016.10.012, 2016.
Tortini, R., Noujdina, N., Yeo, S., Ricko, M., Birkett, C. M., Khandelwal, A., Kumar, V., Marlier, M. E., and Lettenmaier, D. P.: Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018, Earth Syst. Sci. Data, 12, 1141–1151, https://doi.org/10.5194/essd-12-1141-2020, 2020.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, 2014.
Udall, B. and Overpeck, J.: The twenty-first century Colorado River hot
drought and implications for the future, Water Resour. Res., 53, 2404–2418, 2017.
Van Dijk, A. I., Beck, H. E., Crosbie, R. S., de Jeu, R. A., Liu, Y. Y.,
Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in
southeast Australia (2001–2009): Natural and human causes and implications
for water resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057, 2013.
Van Dijk, A. I. J. M., Schellekens, J., Yebra, M., Beck, H. E., Renzullo, L.
J., Weerts, A., and Donchyts, G.: Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation, Hydrol. Earth Syst. Sci., 22, 4959–4980, https://doi.org/10.5194/hess-22-4959-2018, 2018.
Wang, B., Liu, J., Kim, H.-J., Webster, P. J., and Yim, S.-Y.: Recent change
of the global monsoon precipitation (1979–2008), Clim. Dynam., 39, 1123–1135, 2012.
Wang, J., Sheng, Y., and Wada, Y.: Little impact of the Three Gorges Dam on
recent decadal lake decline across China's Yangtze Plain, Water Resour. Res.,
53, 3854–3877, 2017.
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y.,
MacDonald, G. M., Brun, F., Schmied, H. M., and Marston, R. A.: Recent global decline in endorheic basin water storages, Nat. Geosci., 11, 926–932, 2018.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations, Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, 2022.
Wisser, D., Frolking, S., Hagen, S., and Bierkens, M. F.: Beyond peak
reservoir storage? A global estimate of declining water storage capacity in
large reservoirs, Water Resour. Res., 49, 5732–5739, 2013.
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., and Roy, D. P.: The global Landsat archive: Status, consolidation, and direction, Remote Sens. Environ., 185, 271–283, 2016.
Yao, F., Wang, J., Wang, C., and Crétaux, J.-F.: Constructing long-term
high-frequency time series of global lake and reservoir areas using Landsat
imagery, Remote Sens. Environ., 232, 111210, https://doi.org/10.1016/j.rse.2019.111210, 2019.
Yoshikawa, S., Cho, J., Yamada, H. G., Hanasaki, N., and Kanae, S.: An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2050), Hydrol. Earth Syst. Sci., 18, 4289–4310, https://doi.org/10.5194/hess-18-4289-2014, 2014.
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K.: A
global boom in hydropower dam construction, Aquat. Sci., 77, 161–170, 2015.
Zhang, S., Gao, H., and Naz, B. S.: Monitoring reservoir storage in South
Asia from multisatellite remote sensing, Water Resour. Res., 50, 8927–8943, https://doi.org/10.1002/2014WR015829, 2014.
Zhao, G. and Gao, H.: Automatic correction of contaminated images for
assessment of reservoir surface area dynamics, Geophys. Res. Lett., 45, 6092–6099, 2018.
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs...