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Abstract. Many thousands of large dam reservoirs have been
constructed worldwide during the last 70 years to increase re-
liable water supplies and support economic growth. Because
reservoir storage measurements are generally not publicly
available, so far there has been no global assessment of long-
term dynamic changes in reservoir water volumes. We over-
came this by using optical (Landsat) and altimetry remote
sensing to reconstruct monthly water storage for 6695 reser-
voirs worldwide between 1984 and 2015. We relate reservoir
storage to resilience and vulnerability and investigate inter-
actions between precipitation, streamflow, evaporation, and
reservoir water storage. This is based on a comprehensive
analysis of streamflow from a multi-model ensemble and as
observed at ca. 8000 gauging stations, precipitation from a
combination of station, satellite and forecast data, and open
water evaporation estimates. We find reservoir storage has di-
minished substantially for 23 % of reservoirs over the three
decades, but increased for 21 %. The greatest declines were
for dry basins in southeastern Australia (−29 %), southwest-
ern USA (−10 %), and eastern Brazil (−9 %). The greatest
gains occurred in the Nile Basin (+67 %), Mediterranean
basins (+31 %) and southern Africa (+22 %). Many of the
observed reservoir changes could be explained by changes in
precipitation and river inflows, emphasizing the importance
of multi-decadal precipitation changes for reservoir water
storage. Uncertainty in the analysis can come from, among
others, the relatively low Landsat imaging frequency for
parts of the Earth and the simple geo-statistical bathymetry
model used. Our results also show that there is generally lit-
tle impact from changes in net evaporation on storage trends.
Based on the reservoir water balance, we deduce it is unlikely

that water release trends dominate global trends in reservoir
storage dynamics. This inference is further supported by dif-
ferent spatial patterns in water withdrawal and storage trends
globally. A more definitive conclusion about the impact of
changes in water releases at the global or local scale would
require data that unfortunately are not publicly available for
the vast majority of reservoirs globally.

1 Introduction

Globally the number of large reservoirs – dams impound-
ing more than 3 million m3 (ICOLD, 2020) – reached 58 713
in 2020 with a combined capacity of more than 10 000 km3

(Chao et al., 2008). By 2015, reservoirs provided 30–40%
of global irrigation water requirements, 17 % of electricity
generated, and various other services, including domestic
and industrial water supply, recreation, fisheries, and flood
and pollution control (REN21, 2016; Maavara et al., 2020;
Yoshikawa et al., 2014). With a projected population in-
crease, the demands for water and electricity are also ex-
pected to increase substantially (Crist et al., 2017; Zarfl et
al., 2015). More dams will likely be built to support increased
irrigation for food production and to meet energy demands.
For example, by 2014, there were 3700 hydropower dams
either under construction or planned worldwide. The major-
ity of these are in developing countries, particularly in South
America, Southeast Asia, and Africa (Bonnema et al., 2016;
Zarfl et al., 2015; Mulligan et al., 2020; Wang et al., 2022).
However, constructing new reservoirs has become challeng-
ing due to a shortage of suitable construction sites and re-
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maining ‘underdeveloped’ water resources, and an increased
recognition of the profound impacts that impoundments have
on the local population and riverine ecosystem (Grill et al.,
2015, 2019; Lehner et al., 2011; Nilsson et al., 2005).

Adding to the challenge, evidence is emerging that exist-
ing reservoirs in some regions have experienced diminished
water storage. Recent water supply failures or near-failures
have occurred in the US Colorado River Basin since 2000
(Udall and Overpeck, 2017), southeast Australia between
2002–2009 (Van Dijk et al., 2013), Barcelona, Spain, in
2007–2008 (March et al., 2013), São Paulo, Brazil, in 2014–
2015 (Escobar, 2015), and Cape Town, South Africa, in
2015–2017 (Sousa et al., 2018). However, it is unclear if
these events are part of a global climate trend or due to lo-
cal supply or demand changes. The underlying causes are
also not necessarily the same in each case; reservoir stor-
age dynamics are the net result of river inflows, net evapo-
ration (i.e., evaporation minus direct precipitation onto the
reservoir), and dam water releases to water bodies and users
downstream. A change in the balance between these three
terms leads to a change in the storage level. There are also
interactions. The physical connection between precipitation,
streamflow generation, and atmospheric moisture demand
creates positive feedbacks in storage volume changes. For
example, assuming the entire water supply system experi-
ences comparable dry conditions, inflows will decrease while
net evaporation and downstream demand for water releases
for consumptive use will increase. To mitigate this feedback,
reservoir operation rules will typically aim to reduce dam re-
leases in response to lowering storage levels. Only a detailed
analysis of the water balance of an individual reservoir can
conclusively separate the contributions of these three pro-
cesses to a change in water storage. However, in practice,
a loss of reservoir water storage in the presence of a decrease
in upstream or downstream river flows within the river sys-
tem indicates that reduced precipitation conditions are the
most likely primary cause, whereas the absence of such a
precipitation and streamflow decrease, or even an increase,
points towards less prudent reservoir operation, possibly in
response to increased demand. Therefore, knowledge of tem-
poral trends in reservoir storage and river flow can be com-
bined to interpret whether trends in reservoir water storage
are widespread globally, and if so, whether they are likely to
be due to changing climate conditions or due to other factors.
For the majority of large reservoirs, operators keep records
of releases and estimated storage volume, inflows, and net
evaporation. Unfortunately, these data are typically not pub-
licly available for a variety of commercial, logistical, polit-
ical, and security reasons. Probably mainly because of this,
so far, there has been no attempt at a global assessment of
long-term dynamic changes and attribution of trends in wa-
ter reservoir storage.

Satellite remote sensing has been widely used to mea-
sure reservoir water height, extent, and storage. Mulligan et
al. (2020) developed a global georeferenced database con-

taining more than 38,000 georeferenced dams and their asso-
ciated catchments, but without any descriptive features and
measurement information. The Database for Hydrological
Time Series over Inland Waters (DAHITI) (Schwatke et al.,
2015) and the US Department of Agriculture’s Foreign Agri-
cultural Service (USDA-FAS) Global Reservoirs and Lakes
Monitor (G-REALM) (Birkett et al., 2010) are the two most
comprehensive datasets offering global surface water body
height variations derived from satellite altimetry, such as
Jason-1, Jason-2, Jason-3, TOPEX/Poseidon, and ENVISAT.
Several regional and global time series of reservoir water
extents have been produced based on MODIS, Landsat or
Sentinel-2 imagery (Khandelwal et al., 2017; Ogilvie et al.,
2018; Yao et al., 2019; Zhao and Gao, 2018; Schwatke et al.,
2019). Reservoir volume dynamics can be estimated at ei-
ther a regional or global scale using existing datasets and ap-
proaches to derive both height and extent from remote sens-
ing, but this approach is only suitable for a limited subset
number of reservoirs worldwide due to wide spacing of the
satellite altimetry tracks (Busker et al., 2019; Tong et al.,
2016; Medina et al., 2010; Crétaux et al., 2011; Duan and
Bastiaanssen, 2013; Gao et al., 2012; Zhang et al., 2014).
Messager et al. (2016) estimated the volume of lakes and
reservoirs with a surface area greater than 0.10 km2 at global
scale using a geo-statistical model based on surrounding to-
pography information. However, these estimates were not
dynamic time series and so do not enhance our understand-
ing of the influence of climate change and human activity on
global reservoir storage.

In this study, we combined Landsat-derived surface water
extents, satellite altimetry, and geo-statistical models to re-
construct monthly reservoir storage globally for 1984–2015,
and examined long-term trends of global reservoir water stor-
age and changes in reservoir resilience and vulnerability over
the past three decades. Part of our objective was to determine
the extent to which climate variability and human activity
each affected global reservoir dynamics over the past three
decades. It is currently impossible to analyze the influence of
human activity at a global scale directly as there are very few
in situ reservoir water release records available publicly, and
no hydrological models that can provide reliable estimates.
Instead, we consider all climate terms in the reservoir wa-
ter balance and infer the influence of the remaining unknown
term – water releases. First, we investigated trends in precipi-
tation, streamflow, and storage at both the reservoir and basin
level. If the trends between these variables show similar spa-
tial patterns globally, then this increases the likelihood that
climate variability mostly explains storage changes. Second,
we examined the temporal correlation between precipitation,
reservoir inflow, and storage change to further understand
potential causative relationships. Third, beyond reservoir re-
leases, net evaporation is the only other potential loss term,
and we examined what fraction of observed trends in stor-
age was attributable to net evaporation. Using the combined
insights, we deduced the role of human activity on reservoir
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storage changes, noting that a direct attribution would require
in situ records of reservoir water releases. To support our in-
ference, we analyzed the trends of global water withdrawal
to discuss whether it could be a significant factor in reservoir
storage changes.

2 Data and methods

2.1 Data

2.1.1 Surface water extent

The Landsat-derived Global Surface Water Dataset (GSWD)
(Pekel et al., 2016) provides statistics on the extent and
change of surface water at the global scale over the past
three decades at a spatial resolution of 30 m. Clouds, cloud
shadows, and terrain shadows cause errors or missing data
for individual months, but Zhao and Gao (2018) developed
an automated method to fill gaps in contaminated image
classifications and enhance the accuracy and consistency of
reservoir surface water extent estimates. They applied this
method to produce a monthly time series of a surface wa-
ter extent dataset for 6817 reservoirs worldwide, based on
mapping of the location and high-water mark as contained
in the Global Reservoir and Dam database (GRanD) (Lehner
et al., 2011). The average Pearson correlation (R) between
satellite-derived extent and observed elevation or volumes
was improved from 0.66 to 0.92 using the algorithm devel-
oped by Zhao and Gao (2018). The resulting data are avail-
able from 1984 to 2015, and there are 5917 reservoirs that
have continuous observations every month over the 32 years.
We used this data here as its temporal consistency fits the
purpose of this study for long-term trend analysis.

2.1.2 Surface water height

The US Department of Agriculture’s Foreign Agricultural
Service (USDA-FAS) provides near real-time surface wa-
ter height anomaly estimates every 10 d for 301 lakes and
reservoirs worldwide. The water surface height product (G-
REALM) was produced by a semi-automated process using
data from a series of altimetry missions, including Topex/Po-
seidon (1992–2002), Jason-1 (2002–2008), Jason-2 (2008–
2016), and Jason-3 (2016–present) (Birkett et al., 2010). The
root mean square error (RMSE) of G-REALM altimetry data
is expected to better than 10 cm for the largest water bodies
(e.g., Lake Victoria; 67 166 km2) and better than 20 cm for
smaller ones (e.g., Lake Chad; 18 751 km2) (Birkett et al.,
2010). The advantage of using a satellite radar altimeter to
measure surface water height is that it is not affected by the
weather, time of day and vegetation, or canopy cover. The G-
REALM data are currently only available for lakes and reser-
voirs with an extent greater than 100 km2, although observa-
tions for water bodies between 50–100 km2 are expected in
future.

2.1.3 Auxiliary data

Daily and monthly in situ river discharge observations were
collated as part of previous research (Beck et al., 2020)
from different national and international sources (Table S1 in
the Supplement). In total, we archived 22 710 river gauging
records. Global monthly surface runoff estimates for 1984–
2014 were derived from the eartH2Observe water resources
reanalysis version 2 (Schellekens et al., 2017), calculated
as the mean of an ensemble of eight state-of-the-art global
models, i.e., HTESSEL, SURFEX-TRIP, ORCHIDEE, Wa-
terGAP3, JULES, W3RA, and LISFLOOD (for model de-
tails refer to Schellekens et al., 2017). Precipitation esti-
mates were derived from a combination of station, satel-
lite, and reanalysis data (MSWEP v1.1) (Beck et al., 2017).
The representative maximum storage capacity reported in the
GRanD v1.1 database (Lehner et al., 2011) was used as a
reference value to calculate absolute storage changes. The
HydroBASINS (Lehner and Grill, 2013) dataset was used to
define basin boundaries. All the datasets used in this study
are summarized in Table 1.

2.2 Global reservoir storage estimation

In total, 132 large reservoirs had records of both the surface
water extent and height for the overlapping period 1993–
2015. The interpretation of the Pearson correlation depends
on the adopted p value and the number (N ) of samples.
Among these 132 reservoirs, the average number (N ) of
samples (i.e., the monthly pairs of extent and height) are
around 166. We used a significance level of p < 0.01 to
determine the corresponding Pearson correlation threshold
with the t test (Eq. S1 in the Supplement). The result sug-
gested that the linear relationship is significant when R is
above 0.19. In this context, we much more conservatively
considered R ≥ 0.7 as evidence of a strong correlation. Such
a strong correlation between extent and height was found for
58 reservoirs (Group A; Fig. 1). For these, we estimated the
height and area at capacity as the maximum observed surface
water height and extent, respectively, and calculated reservoir
storage volume (Vo in GL, MCM or 106 m3) as

Vo = Vc− (hmax−ho)(Amax+Ao)/2, (1)

where Ao (km2) is the satellite-observed water extent,
Amax the maximum value ofAo, ho (m) the satellite-observed
water height, hmax the maximum value of ho, and Vc (GL) the
storage volume at capacity. There were 53 reservoirs with a
relationship between Ao and Vo for this overlapping period
with a Pearson’s R ≥ 0.7. For these reservoirs, Vo was es-
timated from 1984 onwards using a cumulative distribution
function (CDF) matching method based on Ao.

For 6637 reservoirs with water extent observations only
(Group B; Fig. 1), we used the HydroLAKES method (Mes-
sager et al., 2016) to estimate storage. There are typically
two ways to estimate bathymetry based on the digital ele-
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Table 1. List of the spatial data used in the analyses with source, resolution, and temporal coverage of data.

Name and abbreviation Temporal Spatial Temporal Data source Notes
range resolution resolution

Global Reservoir Surface 1984–2015 30 m Monthly Zhao and Gao (2018) Surface water extent for 6817 reservoirs
Area Dataset (GRSAD) worldwide

Global Reservoirs and Lakes 1992–present n/a 10 d US Department of Near real-time surface water height
Monitor (G-REALM) Agriculture’s Foreign anomaly for 301 lakes and reservoirs

Agricultural Service worldwide
(USDA-FAS)
(Birkett et al., 2010)

eartH2Observe water 1980–2014 0.25◦ Daily/monthly Schellekens et al. Global surface runoff ensemble mean of
resources reanalysis (2017) eight state-of-the-art global models

Multi-Source Weighted- 1979–2015 0.25◦ 3 h/monthly Beck et al. (2017) Global precipitation by merging gauge,
Ensemble Precipitation satellite, and reanalysis data
(MSWEP)

The Worldwide Water (W3) 1980–2014 0.25◦ Daily/monthly Van Dijk et al. Global open water evaporation
model (2018) (Priestley–Taylor potential evaporation)

Global Reservoir and dam n/a n/a n/a Lehner et al. (2011) Global 6862 reservoir attributes
Database (GRanD)

HydroBASINS n/a n/a n/a Lehner and Grill Global watershed boundaries and
(2013) sub-basin delineations

Global sectoral water 1971–2010 0.5◦ Monthly Huang et al. (2018) Global water withdrawal estimates for
withdrawal dataset irrigation, hydroelectricity, domestic,

livestock, manufacturing and mining

n/a: not applicable

Figure 1. The total storage capacity in Group A (red) and
B (brown), that left unaccounted for (blue), and the combined ca-
pacity of reservoirs for which the data were suitable (teal) or unsuit-
able (pink) for long-term analysis.

vation model (DEM) for reservoirs that have no satellite al-
timetry measurements from space. The first approach is to
develop an area–elevation curve based on a DEM (Avisse et
al., 2017; Bonnema and Hossain, 2017). The second method
is to extrapolate surrounding topography from the DEM into
the reservoir to estimate the mean depth (Messager et al.,
2016). Although the accuracy of these methods depends on
errors inherent in DEM data, the latter one has been proven
to be a reliable and effective way to estimate the bathymetry
of global lakes and reservoirs. A Pearson correlation between

predicted and reference depths of R = 0.71 (N = 7049) has
been reported for global lakes and reservoirs (Messager et al.,
2016). Therefore, this geostatistical approach was considered
appropriate to estimate reservoir volumes for reservoirs that
had only satellite-derived water extent observations.

Messager et al. (2016) proposed a geo-statistical model
that provides the empirical relationship of the mean lake
or reservoir depth, with water surface area and the aver-
age slope within a 100 m buffer around the water body. The
main assumption of this model is that lake bathymetry can
be extrapolated from surrounding topography using slopes.
Four empirical equations to predict the depth from area and
slope were developed by Messager et al. (2016) for differ-
ent lake size classes (i.e., 0.1–1, 1–10, 10–100, and 100–
500 km2) (Table S2). For each reservoir, water depth dy-
namics (D in m) from 1984–2015 were calculated using the
surrounding average slope from HydroLAKES and surface
water extents (Zhao and Gao, 2018), based on the empiri-
cal equation appropriate for the reservoir size. In line with
Eq. (1), we assumed the maximum observed surface water
extent (Amax) as the area at capacity. Water depth (Dc in m)
at capacity was calculated as the ratio of volume (Vc) and
area (Ac = Amax) at capacity:

Dc =
Vc

Ac
. (2)
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A bias-corrected water depth (D∗ in m) was calculated by
solving D based on the ratio of water depth (Dc in m) at
capacity and maximum observed depth (Dmax in m):

D∗ =D×
Dc

Dmax
. (3)

Storage volume (Vo in GL) for 1984–2015 was subsequently
estimated based on surface water extent (Ao in m) and bias-
corrected water depth:

Vo =D
∗Ao. (4)

The time series of the in situ reservoir storage volume mea-
surements are publicly available for a small subset of reser-
voirs. They can be used to evaluate the uncertainty in the
satellite-based storage estimates. Furthermore, data records
for some storages can be found in the published literature, de-
rived from gray literature or proprietary data sources. Given
that the emphasis in trend analysis was on relative changes
between the pre and post-2000 periods, the evaluation of
satellite-derived reservoir storage focuses on Pearson’s cor-
relation (R) values as a measure of correspondence. In this
study, we regard R values ranging from 0.4–0.7 as robust,
and 0.7–1 as strong.

2.3 Trend analysis and attribution

There are 6862 reservoirs reported in the GRanD database
(Lehner et al., 2011), with a total 6196 km3 reported stor-
age capacity. In this study, we were able to estimate monthly
storage dynamics for 6695 or 97.6 % of the total number of
reservoirs, with 3941 km3 or 63.6 % of combined total ca-
pacity (Fig. 1). There were only 58 (0.8 %) reservoirs for
which storage dynamics could be estimated most directly,
by a combination of satellite extent and water level obser-
vations (Group A), but together, they already represent up
to 1394 km3 (22.5 %) of storage capacity (Fig. 1). The to-
tal capacity of the 172 (2.5 %) reservoirs not measured con-
stitutes 2255 km3 (36.4 %) of storage capacity. There were
6637 (96.7 %) reservoirs in Group B for which the geo-
statistical approach could be applied, and their total capacity
is 2547 km3 (41.1 %). To ensure consistency in the 1984–
2015 time series used for the long-term trend analysis, we
ignored reservoirs with less than 360 months (i.e., 30 years)
of Landsat-derived observations, or for which more than five
years of water extent observations were inter- or extrapo-
lated by Zhao and Gao (2018). Our focus was on interactions
between precipitation, streamflow, evaporation, and storage
in existing reservoirs, rather than the consequences of new
impoundments. Therefore, we excluded from consideration
all reservoirs that were destroyed, modified, planned, re-
placed, removed, subsumed, or constructed after 1984. This
left 4573 (66.6 %) reservoirs available, with a combined stor-
age capacity of 2583 km3 (41.7 %) (Fig. 1).

We calculated linear trends between 1984–2015 in annual
reservoir storage, observed streamflow, modeled streamflow,

and precipitation for each basin (HydroBASINS Level 3).
Trend significance was tested using the Mann–Kendall trend
test (p < 0.05). The linear trends in modeled streamflow
were validated by observed data. We also analyzed the cor-
relations between precipitation/streamflow and storage in
terms of both time series and linear trends. The net evapo-
ration was calculated for each reservoir as follows:

En = A(Eo−P), (5)

where En (mm) is the cumulative monthly net evapora-
tion loss (or gain, if negative), A is the reservoir surface
area (km2) from Zhao and Gao (2018), Eo (mm) is open wa-
ter evaporation (Priestley–Taylor potential evaporation from
the W3 model; Van Dijk et al., 2018), and P is precipita-
tion (mm) from MSWEP v1.1 (Beck et al., 2017). The reser-
voir net evaporation summed for each basin and the ratio of
the respective trends in net evaporation and storage were cal-
culated to determine whether the former could explain the
latter. Trends in storage and observed streamflow for individ-
ual reservoirs and rivers were also analyzed to provide ad-
ditional information about the spatial distribution of trends.
Unlike the analysis at the basin scale above, we do not relate
the trend of each individual reservoir to a corresponding river
gauge. This is because there is typically a limited number of
gauging stations upstream a reservoir and, as such, these river
flow gauging data cannot accurately represent overall reser-
voir inflows.

Changes in reservoir resilience and vulnerability between
1984–1999 and 2000–2015 were analyzed at the scale
of river basins. The reliability, resilience and vulnerabil-
ity (RRV) criteria can be used to evaluate the performance
of a water supply reservoir system (Hashimoto et al., 1982;
Kjeldsen and Rosbjerg, 2004). The calculation requires that
an unsatisfactory state can be defined, in which the reservoir
cannot meet all water demands, leading to a failure event.
“Reliability” indicates the probability that the system is in a
satisfactory state:

Reliability= 1−

M∑
j=1

d(j)

T
, (6)

where d(j) is the time length of the j th failure event, T is the
total time length, and M is the number of failure events. Un-
fortunately, a single threshold for failure events is not readily
determined, firstly, because we did not have access to water
demand and release data for each reservoir, and, secondly,
because reservoirs are typically operated in response to more
than a single threshold. Instead, we assumed that the reliabil-
ity of each reservoir is designed to be 90 %, leaving it in an
unsatisfactory state for the remaining 10 % of the time. This
assumption made it possible to calculate resilience and vul-
nerability for each reservoir for the assumed 90 % threshold.
“Resilience” is a measure of how fast a system can return to
a satisfactory state after entering a failure state:

https://doi.org/10.5194/hess-26-3785-2022 Hydrol. Earth Syst. Sci., 26, 3785–3803, 2022



3790 J. Hou et al.: Remotely sensed reservoir water storage dynamics (1984–2015)

Resilience=

{
1
M

M∑
j=1

d(j)

}−1

. (7)

“Vulnerability” (GL) describes the likely damage of failure
events:

Vulnerability=
1
M

M∑
j=1

v(j), (8)

where v(j) is the deficit volume of the j th failure events. The
change in vulnerability was expressed relative to the maxi-
mum deficit volume observed. A worked example is shown
for the Toledo Bend Reservoir (Texas, USA) (Fig. S5 and
Table S4). Four failure events occurred during 1984–2000
and three during 2000–2015. Before 2000, it took an aver-
age of 3 months to recover from failure, with an average
deficit volume of 357 GL. After 2000, it took an average of
10.5 months, with a larger average deficit volume of 498 GL
(Fig. S5). It follows that resilience was reduced (resilience in-
dex 0.12 vs. 0.33) and vulnerability increased (deficit volume
498 vs. 357 GL) when compared to the years before 2000
(Table S4).

3 Results

3.1 Validation of global reservoir storage estimates

In situ monthly storage records from the US Army Corps of
Engineers, US Bureau of Reclamation, and Australian Bu-
reau of Meteorology were used for error assessment. There
are a total of 131 reservoirs with at least a 20-year overlapped
time series between in situ data and satellite-derived data.
We did validation for all these 131 reservoirs (5 for Group A
and 126 for Group B). The averaged correlation between ob-
served and estimated volumes is 0.82 and R ≥ 0.7 for 82 %
of the 131 reservoirs. Messager et al. (2016) reported that
the symmetric mean absolute percent error (SMAPE) of the
geo-statistical model is 48.8 % globally. In our study, the
average SMAPE between predicted and reference volumes
was 32.13 %, lower mainly because we adjusted reservoir
storage estimates by reported reservoir capacity. Some cases
are shown in Fig. 2. Annual average water levels for Lake
Aswan, one of the largest reservoirs in the world, were pub-
lished only as a graph (El Gammal et al., 2010). A compar-
ison showed strong agreement between the satellite-derived
storage and in situ measurements (R = 0.97, Fig. S1 in the
Supplement). In addition, we did a cross-validation between
Group A and Group B. The results show that 25 of the total
33 overlapping estimated reservoirs show strong agreement
(R ≥ 0.9) between the two methods, and the average SMAPE
between them is 13.1 %. This implies good consistency of
reservoir storage estimates from Group A and B. Some cross-
validation examples are shown in Fig. 3. We investigated the

influence of Landsat image quality on the volume time series
estimation by comparing time series derived from images
with different contamination ratios (0 %–95 %) against the
MODIS-derived lake product (Tortini et al., 2020). The tem-
poral accuracy slightly decreases as the contamination ratio
increases (Table S3). However, the overall performance of
lake volume estimations using images with a contaminated
ratio ranging from 5 % to 95 % is commensurate to using
only good-quality images, thanks to the gap-filling method.

3.2 Changes in global reservoir storage, resilience, and
vulnerability

The trends (p < 0.05) of water volume dynamics for
4573 reservoirs and river discharge time series from around
8000 gauging stations between 1984 and 2015 were ana-
lyzed (Fig. 4). We found no systematic global decline in
reservoir water availability. Overall, there was a positive
trend in combined global reservoir storage of+3.1 km3 yr−1,
but this was almost entirely explained by positive trends
for the two largest reservoirs constructed before 1984, Lake
Kariba (+0.8 km3 yr−1) on the Zambezi River and Lake
Aswan (+1.9 km3 yr−1) on the Nile River (Fig. S2). Reser-
voirs with increasing storage trends are nearly as common as
declines. 1033 reservoirs showed decreasing trends, mainly
concentrated in southwest America, eastern South America,
southeast Australia, and parts of Eurasia, while 944 reser-
voirs showed increasing trends distributed in northern North
America and southern Africa (Fig. 4a). The global reser-
voir storage trending pattern is similar to that in the global
river discharge tendency. In particular, a majority of rivers
in southwest America, eastern South America, and south-
east Australia have reduced river flows (Fig. 4b). There was
no apparent relationship between the primary reservoir pur-
pose (i.e., irrigation, hydroelectric power generation, domes-
tic water supply) and overall trends, arguably a first tentative
indication that climatological influences dominate changes in
release management.

The resilience of reservoirs in southwest America (in-
cluding the Mississippi Basin), central Chile, eastern South
America, southeastern Australia, the coast of southeastern
Africa, and central Eurasia has reduced sharply between
1984 and 2015, and the vulnerability of these reservoirs has
increased by more than 30 % (Fig. 5). In contrast, reservoirs
in western Mediterranean basins, the Nile Basin, and south-
ern Africa have stronger resilience and less vulnerability than
before (Fig. 5). All these changes are attributed to changes in
reservoir storage, as we found there is a robust positive re-
lationship (R = 0.64) between changes from the pre-2000 to
the post-2000 period in storage and resilience, and a strong
negative relationship (R =−0.79) between resilience and
vulnerability (Fig. 6). This means that if a reservoir has de-
creasing storage, there would be a risk of falling to low ca-
pacity more often and enduring larger deficits than before. In-
creasing storage has the potential to create other issues, such
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Figure 2. Validation of monthly reservoir storage time series reconstruction against in situ storage data.

Figure 3. Validation of monthly reservoir storage time series reconstruction for Group B against results obtained using the method for
Group A.
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Figure 4. The trends of storage (a) and observed streamflow (b) for individual reservoirs and rivers globally (p < 0.05; increasing: blue; no
change: gray; decreasing: red).

as overtopping, dam collapse, downstream flooding caused
by untimely releases during the wet season, etc. (Simonovic
and Arunkumar, 2016).

3.3 The influence of precipitation and river flow on
global reservoir storage

We summed the storage for individual reservoirs to calculate
the combined storage in 134 river basins worldwide. Basins
losing or gaining more than 5 % of their combined storage
over the three decades could be found on every continent
(Fig. 7c). Among these, 27 (20 %) showed a significant de-
creasing and 37 (28 %) a significant increasing trend in reser-
voir storage (Fig. 7c). If precipitation and runoff trends show
the same direction as reservoir storage trends, then it is plau-
sible that climate variations play an important role in reser-
voir storage trends. On the other hand, if rainfall and runoff
show opposite trends to those in reservoir storage, then that
could suggest a dominant influence from either net evapo-
ration or water releases. For the majority of the 64 basins
with a significant trend, the trends were of the equal sign

for storage, runoff, and precipitation, suggesting that precip-
itation changes are commonly the most likely explanation
for observed trends (Fig. 7a and b). Opposite trends in pre-
cipitation (or runoff) and storage were found for 12 out of
134 basins, with six showing decreasing and six increasing
storage trends. Most of these could be explained by spa-
tial variations in runoff trends within the respective basins
(Fig. S3). The linear changes in modeled streamflow were
validated against changes in observed streamflow, and the
Pearson’s correlation between them is 0.77. This indicated
that modeled streamflow can reliably represent trends in river
flow globally (Fig. 8b). There is a robust positive relationship
(R = 0.77) between linear changes from 1984–2015 in pre-
cipitation and streamflow (basin characteristics are assumed
to be largely unchanged in the models) (Fig. 8a). A cor-
relation above 0.6 between them can be found in all these
134 basins, except the Niger Basin in Africa and the Parana
Basin in South America (Fig. 9b). Linear changes in reser-
voir storage also have a meaningfully positive relationship
(R = 0.38, p < 0.01, ρ = 0.51) with streamflow (Fig. 8c)
given the heterogeneous nature of human activities. It means
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Figure 5. The change in resilience (a) and vulnerability (b) between pre-2000 and post-2000 (gray shade: no reservoir data).

Figure 6. The relationship (dashed gray line: 1 : 1 line) between changes from the pre-2000 to the post-2000 period in (a) vulnerabil-
ity (1Vulnerability) and resilience (1Resilience) and (b) mean storage (1Storage) and resilience (1Resilience).

a decreasing trend in streamflow (typically due to precipita-
tion changes) generally leads to a decreasing trend in storage
and vice versa, but not necessarily proportionally. Figure 9a
also shows that there are 61 basins that have a robust relation-
ship between annual storage change and inflow, with R rang-
ing from 0.4–0.8. They are mainly located in North America,

southern South America, the Mediterranean, southeastern
Australia, and parts of Eurasia. These regions coincide with
a large number of measured reservoirs (Fig. 4a) and a large
total number of Landsat images over three decades (Pekel
et al., 2016; Wulder et al., 2016), and vice versa. The over-
all relationship between reservoir storage and inflow might,
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Figure 7. Linear trends in annual, basin-average (a) precipitation, (b) simulated streamflow, and (c) reservoir storage between 1984–2015
(gray shade: no reservoir data; black outlines: trend significant at p < 0.05).

therefore, be expected to be stronger if more reservoirs were
measured and more usable Landsat imagery were available
for the basins lacking them in our present analysis. We also
found that changes in net evaporation accounted for well be-
low 10 % of the overall trends in storage for each of those
64 basins, reflecting that net evaporation rarely explains more
than a few per cent in observed storage changes (Fig. 10). In

summary, we did not find evidence for widespread reductions
in reservoir water storage due to increased releases.

The greatest storage gains occurred in the Nile Basin
(+67 %), western Mediterranean (+31 %), and southern
Africa (+22 %), and were attributed to very high inflows
during 1996–2008, 2008–2010, and 1996–2000, respectively
(Fig. S4). Substantial decreases were found for arid to
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Figure 8. The relationship (dashed gray line: 1 : 1 line) between linear changes from 1984–2015 in (a) annual precipitation (1Rainfall)
and modeled streamflow (1Modelled Streamflow), (b) observed streamflow (1Observed Streamflow) and modeled streamflow (1Modelled
Streamflow), and (c) reservoir storage (1Reservoir Storage) and modeled streamflow (1Modelled Streamflow).

Figure 9. The correlations of annual storage changes and reservoir inflow (as approximated by basin-modeled streamflow) (a) and reservoir
inflow and precipitation (b) in each basin.

sub-humid basins in southeastern Australia (−29 %), south-
western USA (−10 %), and Brazil (−9 %) (Fig. 11). Both
simulated and observed river discharge data show similar
trends and explain the observed storage declines (Figs. 4
and 7). During Australia’s Millennium Drought (2001–2009)
(Van Dijk et al., 2013), river flows in the Murray–Darling
Basin fell to about half that for 1984–1999 (Fig. 11a), caus-
ing a halving of combined storage, before recovering due to

high inflows during 2009–2011. In the southwestern USA,
three distinct dry periods occurred (Fig. 11b). Sharp de-
creases in river flows after 2011 in eastern Brazil led to the
lowest reservoir storage levels, with combined losses of al-
most 18 % in 2015 (Fig. 11c). Reservoirs in these basins
with reduced storage also predominantly showed reduced re-
silience and increased vulnerability (Fig. 5).
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Figure 10. The ratio of the linear trends in net evaporation and storage for each basin.

Figure 11. Time series (a–c) of annual combined storage (blue shaded) along with simulated (solid) and observed (dashed line) streamflow,
indexed to the reference period 1984–1999, trends in storage (middle column panels), and observed streamflow (right column panels) during
1984–2015 (p < 0.05; increasing: blue; no change: gray; declining: red). Shown are (top row panels) southeastern Australia, (second row
panels) southwestern USA, and (third row panels) Brazil.

4 Discussion

This study reconstructed monthly reservoir water storage dy-
namics from 1984–2015 at the global scale based on satellite-
derived water extent (Zhao and Gao, 2018) and altimetry
measurements (Birkett et al., 2010). Where no altimetry data
were available, geo-statistical models (Messager et al., 2016)
were applied to the satellite-derived water extent for reservoir
water volume estimations. About a quarter (22.5 %, includ-
ing most large reservoirs worldwide) of the total reported to-

tal combined reservoir capacity (Lehner et al., 2011) around
the world was measured by combining satellite-derived ex-
tent and height, while 41.1 % was estimated based on geo-
statistical models using remotely sensed surface area. There
does not appear to be any systematic global decline in global
reservoir water availability, but we found significantly de-
creasing trends in reservoir water volumes in southeastern
Australia, southwestern USA, and eastern Brazil, creating
the risk that storages fall to low capacity more often (i.e.,
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weakened resilience) and endure larger deficits (i.e., higher
vulnerability).

To understand the influence of the reservoir size distri-
bution on the total basin storage trends, we compared the
trend directions of total storage in all reservoirs, the top three
largest reservoirs, and the remaining small reservoirs, respec-
tively. We did this for 42 basins with more than 20 reservoirs
(4003 reservoirs in total). Combined storage in these three
groups all showed the same trend direction in 27 (62.8 %) of
basins. The trend in the combined storage for all reservoirs
had the same direction as that for the largest few reservoirs
for eight more basins and the same direction as the combined
remaining smaller reservoirs for another eight basins. This
indicates that the largest reservoirs do not always dominate
the combined total storage dynamics.

Trends in reservoir storage and river flow showed spa-
tial consistency at both individual and basin scales globally.
There was a reasonably strong temporal correlation between
precipitation, streamflow, and storage. Changes in net evapo-
ration only accounted for a small fraction of reservoir volume
changes. Mady et al. (2020) and various other authors found
that evaporative losses can account for much of the loss of
water from small reservoirs (e.g.,< 0.1 km2) in semi-arid re-
gions. However, this does not necessarily mean that trends
in evaporation can explain long-term trends in storage, es-
pecially for the mostly larger (and deeper) reservoirs con-
sidered here. Reservoir storage dynamics (1V ) are the net
result of river inflows (Qin), net evaporation (En), and dam
(demand-related) water releases (Qout) as:

1V =Qin−En−Qout. (9)

We found that 1V responds primarily to Qin and that
En does not seem to have affected 1V . This indicates that
dam (demand-related) water releases (Qout) are less likely
to be the main driver of storage changes (1V ). Evidence
that the impact of human activity is less than that of cli-
mate variability is also found in other recent studies. For
example, Wang et al. (2017) found that climate variability
was the dominant driver of the decreasing trend in lake ar-
eas across China’s Yangtze Plain; human activities only ac-
counted for 10 %–20 % of trends despite construction of the
Three Gorges Dam upstream. Furthermore, Gudmundsson
et al. (2021) demonstrated that climate change dominated
changes in river flow from 1971–2010 worldwide, rather than
water and land management.

There is currently no global hydrological model capable
of estimating the impact of historical operational water man-
agement at the reservoir or basin level with meaningful ac-
curacy. However, to get an indication of the potential impact
of human activity and associated reservoir water releases on
reservoir storage changes, we analyzed the global water with-
drawal estimates produced by Huang et al. (2018). The grid-
ded monthly withdrawal time series for 1971–2010 were spa-
tially and temporal downscaled from 5-year temporal reso-
lution estimates from FAO AQUASTAT and USGS, which

were based on national assessments and surveys (Huang et
al., 2018). Their estimates provide separate water withdrawal
estimates for irrigation, hydroelectricity, domestic, livestock,
manufacturing, and mining, respectively. The withdrawals
are from reservoirs, rivers, and groundwater and, as such,
cannot be compared directly to reservoir water release, but
may provide useful context. We calculated total withdrawals
from the six sectors combined and examined trends from
1984–2010 at the basin scale. The results show significant in-
creasing trends in withdrawals in 78 basins, mainly in South
America, Africa, and Asia, and significant decreasing trends
in 29 basins in Europe, Australia, and parts of Northern
America, noting, however, that the magnitude of withdrawals
varied widely compared to, for example, total river inflows
or reservoir capacity (Figs. 12 and S6). The global pattern in
water withdrawal trends is different from the spatial patterns
in precipitation, inflow, and storage (Fig. 7). We calculate
that (either significant or non-significant) water withdrawal
trends are associated with about equal numbers of increasing
and decreasing water storage trends (Table 2). By contrast,
rainfall and inflow trends lead to a change in storage in the
same direction for around 80 % of basins (Table 2). These
observations further support the notion that climate trends
rather than water withdrawals are primarily responsible for
the observed trends in reservoir storage. Nonetheless, there
are basins where storage trends may have been influenced by
water withdrawals. For example, inflows increased by 43 %
in northern Venezuela, while total reservoir storage deceased
by 15 %, conceivably because water withdrawals tripled from
1984–2010 (Figs. 7 and 12). A comparable scenario also oc-
curred in coastal basins in Angola, Mozambique, Tanzania,
and Kenya. Storages in Iran, Turkmenistan, and northern In-
dia decreased by an average 33 %, which may be attributed
to an unknown combination of reduced inflows (−6 % to
−21 %) and increased withdrawals (+42 % to +50 %), al-
though it is noted that a large fraction of withdrawals is from
groundwater in some of these basins.

Accurate temporal pattern estimates were the main pur-
pose in this study because relative water storage and long-
term change are more relevant information for water resource
management. Our validation results show that 82 % of the
reservoirs evaluated show a strong correlation (R ≥ 0.7) with
water volume measured in situ. In terms of absolute value,
water volume estimates were bias-corrected by representa-
tive maximum storage capacity from GRanD (Lehner et al.,
2011), by assuming that the maximum observed surface wa-
ter extent coincides with the area at full capacity. Biases re-
main in some reservoirs due to uncertainties in this maxi-
mum storage capacity. Representative maximum storage ca-
pacity values reported in GRanD were collected from dif-
ferent sources in the following order of priority: reported
maximum or gross capacity, reported normal capacity, and
reported live or minimum capacity. These uncertainties in re-
ported maximum capacity may have influenced our results
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Figure 12. Linear trends in annual water withdrawal between 1984–2010 (gray shade: no reservoir data; black outlines: trend significant at
p < 0.05). Note that the magnitude of withdrawals varies strongly between basins.

Table 2. Comparison of trends in reservoir storage reconstruction against climate variability and human activities.

Drivers Reservoir storage

Trend (number of basins) Significant Significant Increase Decrease
increase decrease

Water withdrawal Significant increase (78) 18 9 36 42
Significant decrease (29) 6 6 12 17
Increase (93) 21 10 43 50
Decrease (41) 10 10 19 23

Climate Significant increase (23) 11 0 21 2
(precipitation Significant decrease (14) 2 4 5 9
and inflow) Increase (70) 31 6 54 16

Decrease (64) 6 21 11 53

for individual reservoirs. This could be solved easily if more
accurate reservoir storage or capacity data were available.

The uncertainties and limitations of reservoir storage es-
timates are mainly from the errors in satellite altimetry data
and satellite-derived water extent data. The quality and ac-
curacy of these altimetry measurements depend on the size
and shape of the water body, surrounding topography, surface
waves, major wind events, heavy precipitation, tidal effects,
the presence of ice, and the position of the altimeter track
(Birkett et al., 2010; Busker et al., 2019). The RMSE of wa-
ter level estimations of a narrow reservoir in steep terrain will
be many tens of centimeters (Birkett et al., 2010; Schwatke
et al., 2015). DAHITI altimetry data, with RMSE between 4–
36 cm for lakes (Schwatke et al., 2015), should have a sim-
ilar accuracy as G-REALM, although its water level obser-
vations have so far received less evaluation. The classifier
used to produce GSWD surface water data performed quite
well, with less than 1 % commission error and less than 5 %
omission error (Pekel et al., 2016). But no-data classifica-
tions in GSWD data caused by cloud, ice, snow, and sensor-
related issues could lead to large data gaps in time series and

an underestimation of actual reservoir extents (Busker et al.,
2019). In general, a no-data threshold is applied to monthly
GSWD data to remove imagery with a large percentage of
contamination before deriving lake and reservoir water ex-
tents. It helps reduce the issue to some extent, but contami-
nated imagery would still remain in the rest of GSWD data.
Zhao and Gao (2018) developed an automatic algorithm to
repair contaminated Landsat imagery. This has increased the
number of effective images by 81 % on average and produces
continuous reservoir surface area dynamics.

The higher hypsometric correlation we used, the less un-
certainties volume estimations would have (Crétaux et al.,
2016). We selected a correlation threshold of 0.7 in this
study, which is lower than Tortini et al. (2020) (R ≥ 0.85)
and Busker et al. (2019) (R ≥ 0.9), but higher than Gao et
al. (2012) (R ≥0.5). The selection of an appropriate cor-
relation threshold can also depend on the purpose of the
study. Tortini et al. (2020), Busker et al. (2019), and Gao
et al. (2012) aimed to provide accurate measurements for
an individual reservoir. Here, our priority is to understand
the 32-year volume trend at the basin scale. The uncertain-
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ties from the individual hypsometry (0.9≥ R ≥ 0.7; total
29 reservoirs), therefore, average out by temporal (i.e., an-
nual) and spatial (i.e., basin) aggregation.

The total number of Landsat images over North Amer-
ica, southern South America, southern Africa, central Eura-
sia, and Australia over the past three decades is much larger
than in the rest of the world, and particularly in tropical re-
gions (Pekel et al., 2016; Wulder et al., 2016). Regions with
sparse Landsat observations can have additional uncertain-
ties in their long-term trend analyses, although this issue
has been mitigated to some extent by the approach devel-
oped by Zhao and Gao (2018). In principle, the inflow of
sediments into reservoirs could contribute to decreasing stor-
age. However, Wisser et al. (2013) showed that sedimenta-
tion caused a total decrease of global reservoir water storage
of only 5 % over a century (1901 to 2010) and, hence, we ex-
pect the effect of sedimentation on our 32-year analysis to be
small. There are studies showing higher sedimentation rates
(e.g., Syvitski et al., 2022), so the impact of sedimentation
on reservoir trend analyses cannot be discounted entirely.
Thus, decreasing storage volumes could be exacerbated by
sedimentation, while increasing storage volumes could po-
tentially be (partly) explained by it.

Regional storage trends in the dam reservoirs found here
are consistent with trends reported in a previous study for
200 lakes (including a few reservoirs) across North America,
Europe, Asia, and Africa during 1992–2019 (Kraemer et al.,
2020). Both lakes and reservoirs are influenced by changing
inflow and net evaporation in response to climate variability.
Although human regulation has more influence on reservoirs
than on natural lakes, our results suggest that for the major-
ity of basins, natural influences dominate human impacts, al-
though human impacts on the hydrological regime still exist,
of course. For example, Cooley et al. (2021) found that hu-
man interventions have resulted in larger seasonal variability
in reservoirs than in lakes globally. In line with the study
carried out by Kraemer et al. (2020), we also found that the
distribution of global lake and reservoir storage or level long-
term trends do not fully reflect the “wet gets wetter and dry
gets dryer” paradigm that some have predicted to occur due
to anthropogenic climate change (Wang et al., 2012). Reser-
voirs in dry regions, such as southwest America, southeastern
Australia, and central Eurasia, have indeed seen deceasing
combined storage, while those in wet regions, such as north-
ern North America, have increasing storage. However, we
found increasing storage in dry southern Africa and decreas-
ing storages in wet southeastern South America. Addition-
ally, total terrestrial water storage (i.e., the sum of groundwa-
ter, soil water, and surface water) derived from GRACE satel-
lite gravimetry for the shorter period 2002–2016 showed de-
creases in endorheic basins in Central Eurasia and the south-
western USA, and increases in Southern Africa consistent
with our storage changes (Wang et al., 2018).

Reservoir storage dynamics are the net result of river in-
flows, net evaporation, and dam water releases. We found a

reasonably strong relationship between changes in river flow
and reservoir storage, while changes in net evaporation do
not seem to have affected storage trends significantly. We in-
fer that reservoir water releases are unlikely to be the dom-
inant driver of the three-decadal trends in reservoir storage
for the majority of basins. However, we acknowledge that
this particular conclusion is based on deductive rather than
observational evidence, and would benefit from corrobora-
tion for any individual reservoir using actual release records,
which often exist but are not publicly available. Although
there are no water demand and supply or dam operation data
available globally that could serve as direct evidence, there
have been local studies. For example, reservoir operating
rules (i.e., reservoir outflow) were inferred from a combina-
tion hydrologic modeling and satellite measurements for the
Nile Basin, the Mekong Basin, northwest America, and a re-
gion of Bangladesh (Bonnema and Hossain, 2017; Bonnema
et al., 2016; Eldardiry and Hossain, 2019). It was not pos-
sible to apply the techniques used in these studies at global
scale because of the resulting uncertainties in inferred reser-
voir inflows. To distinguish the respective influences of hu-
man activity and climate variability on reservoir dynamics,
greater collaboration and public sharing of in situ data on
reservoir storage, water release, and downstream water use
would be required. In some basins, satellite-derived upstream
and downstream river discharge dynamics (Hou et al., 2018,
2020) and changes in irrigation area or evaporation (Van Dijk
et al., 2018) may be able to provide additional information to
better understand the drivers of reservoir water security. The
algorithm from Zhao and Gao (2018) could, in principle, be
used to calculate reservoir surface water extent time series
beyond 2015, but is reliant on the availability of Landsat-
derived GSWD (Pekel et al., 2016). These data could also be
derived from MODIS or Sentinel 2 and help understand how
reservoir water storage changes from 2015 onwards. The new
NASA Surface Water and Ocean Topography (SWOT) satel-
lite mission should also provide new opportunities to cover
a larger number of reservoirs (> 250 m2) with both surface
water extent and height observations for storage estimations
(Solander et al., 2016).

5 Conclusions

We reconstructed monthly storage dynamics between 1984–
2015 for 6695 reservoirs using satellite-derived water height
and extent. For reservoirs with water extent data only, the
storage was estimated from the surrounding topography us-
ing a geo-statistical model. This approach introduces uncer-
tainty but is inevitable as lake bathymetry data based on sur-
veys are typically unavailable, at least in the public domain.
The estimated reservoir storage dynamics show strong cor-
relations with averaged R = 0.82 against publicly available
observed storage volume estimates for several reservoirs in
the US, Australia, and Egypt. Based on the developed global
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dataset, we found that reservoir storage changed significantly
in nearly half of all basins worldwide between 1984–2015,
with increases and decreases similarly common and mostly
explained by corresponding precipitation and runoff changes.
Increases appeared slightly more common in cooler regions
and decreases more common in drier regions. With lower-
frequency observations, Landsat may not always have fully
or accurately captured the storage variability for each reser-
voir, which could have had an effect on trend analysis. We
provided four lines of evidence to explore which factor (pre-
cipitation, net evaporation, or dam (demand-related) water
releases) drives the global reservoir storage trends. First, we
found a trend consistency between precipitation, streamflow,
and reservoir storage. Second, we found a robust tempo-
ral correlation between precipitation, streamflow, and reser-
voir storage. Third, we inferred the role of human activity
based on the reservoir water balance equation; because we
found that the changes in net evaporation only accounted
for a small fraction of reservoir volume changes, together
with the first two lines of evidence, we can infer that dam
(demand-related) water releases are less likely to be the
main driver of storage changes. Fourth, we examined wa-
ter use data and did not find that increasing water use cor-
responded to decreasing reservoir storage or vice versa in
the majority of basins. Therefore, we conclude that reservoir
volume changes are dominated by (multi-decadal) precipita-
tion changes. Changes in reservoir water storage appear to
be predominantly determined by periods of low inflow in re-
sponse to low precipitation. Future changes in precipitation
variability are among the most uncertain predictions by cli-
mate models (Trenberth et al., 2014). Therefore, a prudent
approach to reservoir water management appears the only
available means to avoid water supply failure for individual
river systems.
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