Articles | Volume 26, issue 6
https://doi.org/10.5194/hess-26-1579-2022
https://doi.org/10.5194/hess-26-1579-2022
Research article
 | Highlight paper
 | 
23 Mar 2022
Research article | Highlight paper |  | 23 Mar 2022

Towards hybrid modeling of the global hydrological cycle

Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein

Related authors

On the added value of sequential deep learning for upscaling evapotranspiration
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Mahmoud Hamdi, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2896,https://doi.org/10.5194/egusphere-2024-2896, 2024
Short summary
H2MV (v1.0): Global Physically-Constrained Deep Learning Water Cycle Model with Vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
EGUsphere, https://doi.org/10.5194/egusphere-2024-2044,https://doi.org/10.5194/egusphere-2024-2044, 2024
Short summary
CH-RUN: A data-driven spatially contiguous runoff monitoring product for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993,https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Constraining biospheric carbon dioxide fluxes by combined top-down and bottom-up approaches
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024,https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023,https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
Hydrol. Earth Syst. Sci., 29, 291–312, https://doi.org/10.5194/hess-29-291-2025,https://doi.org/10.5194/hess-29-291-2025, 2025
Short summary
Drivers of global irrigation expansion: the role of discrete global grid choice
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024,https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024,https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Impact of Runoff Schemes on Global Flow Discharge: A Comprehensive Analysis Using the Noah-MP and CaMa-Flood Models
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264,https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript accepted for HESS
Short summary
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024,https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary

Cited articles

Andrew, R., Guan, H., and Batelaan, O.: Estimation of GRACE water storage components by temporal decomposition, J. Hydrol., 552, 341–350, https://doi.org/10.1016/j.jhydrol.2017.06.016, 2017. a, b, c, d
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Mayers, T., Munger, W., Walt, O., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesla, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. a
Beck, H. E., van Dijk, A. I., Miralles, D. G., de Jeu, R. A., Bruijnzeel, L. S., McVicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, https://doi.org/10.1002/2013WR013918, 2013. a, b
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of hydrologic model parameters, Water Resour. Res., 52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016. a, b, c, d
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017. a, b
Download
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.