Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4585-2021
https://doi.org/10.5194/hess-25-4585-2021
Research article
 | 
26 Aug 2021
Research article |  | 26 Aug 2021

Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?

Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli

Related authors

Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023,https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary

Cited articles

Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, https://doi.org/10.1016/j.enggeo.2004.01.007, 2004. 
Anagnostopoulos, G. G., Fatichi, S., and Burlando, P.: An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions, Water Resour. Res., 51, 7501–7523, https://doi.org/10.1002/2015WR016909, 2015. 
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and Tuller, M.: Ground, Proximal and Satellite Remote Sensing of Soil Moisture, Rev. Geophys., 57, 2018RG000618, https://doi.org/10.1029/2018RG000618, 2019. 
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res, 115, 3013, https://doi.org/10.1029/2009JF001321, 2010. 
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. 
Download
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Share