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Abstract. The inclusion of soil wetness information in em-
pirical landslide prediction models was shown to improve the
forecast goodness of regional landslide early warning sys-
tems (LEWSs). However, it is still unclear which source of
information – numerical models or in situ measurements – is
of higher value for this purpose. In this study, soil moisture
dynamics at 133 grassland sites in Switzerland were simu-
lated for the period of 1981 to 2019, using a physically based
1D soil moisture transfer model. A common parameteriza-
tion set was defined for all sites, except for site-specific soil
hydrological properties, and the model performance was as-
sessed at a subset of 14 sites where in situ soil moisture mea-
surements were available on the same plot. A previously de-
veloped statistical framework was applied to fit an empirical
landslide forecast model, and receiver operating character-
istic analysis (ROC) was used to assess the forecast good-
ness. To assess the sensitivity of the landslide forecasts, the
statistical framework was applied to different model parame-
terizations, to various distances between simulation sites and
landslides and to measured soil moisture from a subset of
35 sites for comparison with a measurement-based forecast
model. We found that (i) simulated soil moisture is a skil-
ful predictor for regional landslide activity, (ii) that it is sen-
sitive to the formulation of the upper and lower boundary
conditions, and (iii) that the information content is strongly
distance dependent. Compared to a measurement-based land-
slide forecast model, the model-based forecast performs bet-
ter as the homogenization of hydrological processes, and the
site representation can lead to a better representation of trig-

gering event conditions. However, it is limited in reproducing
critical antecedent saturation conditions due to an inadequate
representation of the long-term water storage.

1 Introduction

Landslides are a major natural hazard causing fatalities and
damage in mountainous regions worldwide (Froude and
Petley, 2018). The term “landslide” includes various types
of mass movements spanning over different source ma-
terials (e.g. soil and rock), process dynamics (e.g. slide,
flow and fall) and trigger types (e.g. water infiltration,
earthquakes and human interaction; Hungr et al., 2014;
Varnes, 1978; Wieczorek, 1996). Here, we focus on rainfall-
and snowmelt-triggered shallow landslides which occur fre-
quently in Switzerland (Hess et al., 2014). The landslide pro-
cess can be analysed by “cause” and “trigger” factors (Bo-
gaard and Greco, 2016). Factors that precondition the slope
to sliding (cause factors) include the long-term weathering of
the slope material, the topographic disposition, the character-
istics of the vegetation cover and the hydrological prewetting
of the slope. The eventual failure of a slope along a shear
plane is connected to a local and short-duration decrease in
shear strength (trigger factors) due to pore water pressure
increase from direct rainfall or snowmelt water infiltration
or due to the indirect build-up of a perched water table or
groundwater (GW) table (Bogaard and Greco, 2016; Terlien,
1998; Terzaghi, 1943).
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Risk awareness and the corresponding response of people
is a significant factor for mortality, particularly during shal-
low landslide events (Pollock and Wartman, 2020). In this
respect, landslide early warning systems (LEWSs), which al-
low the prediction of the landslide hazard, have become an
essential part of risk management in many places around the
world (e.g. Baum et al., 2010; Guzzetti et al., 2020; Stähli
et al., 2015). Regional LEWSs, also referred to as territorial
(Piciullo et al., 2018) or geographical (Guzzetti et al., 2020)
LEWSs, make predictions for multiple landslides and oper-
ate at the regional to national scale. Statistical landslide fore-
cast models relate environmental variables, such as rainfall
characteristics or soil wetness variation, to the occurrence of
landslides. They are fundamentally based on the time series
of environmental data and a comprehensive landslide inven-
tory (Guzzetti et al., 2020; Terlien, 1998).

In the past, many regional LEWSs have been based on sta-
tistical forecast models that describe empirical relationships
between rainfall events and landslide occurrence (Caine,
1980; Guzzetti et al., 2008; Segoni et al., 2018a). While this
approach benefits from widely available rainfall data, the fo-
cus on triggering factors disregards the influence of the an-
tecedent wetness conditions (cause factors), which could be
represented by including soil wetness information (Bogaard
and Greco, 2018). In fact, forecast goodness improvement
was reported after the incorporation of in situ soil moisture
measurements (Mirus et al., 2018a, b; Thomas et al., 2020),
remotely sensed soil moisture (Bordoni et al., 2020; Brocca
et al., 2016; Thomas et al., 2019; Zhao et al., 2019a; Zhuo
et al., 2019b) or simulated soil moisture using physically
based models (e.g. Ponziani et al., 2012; Segoni et al., 2018b;
Zhuo et al., 2019a). Other landslide forecast models exist that
express antecedent wetness conditions in terms of accumu-
lated pre-event precipitation (e.g. Aleotti, 2004; Martelloni
et al., 2012), or antecedent soil wetness or precipitation in-
dices (e.g. Crozier, 1999; Glade, 2000; Godt et al., 2006).

At the point scale, in situ soil moisture sensors (time and
frequency domain reflectometry, i.e. TDR and FDR, respec-
tively, or capacitance based) estimate dielectric permittivity
(Babaeian et al., 2019) from which soil moisture is deduced,
using an empirical calibration function (e.g. the equation of
Topp et al., 1980). They are representative for a specific vol-
ume of soil and are usually integrated to depth profiles. While
sensor networks deliver soil moisture estimates at high tem-
poral resolution, installation and long-term maintenance are
costly and difficult, and the representativeness for regional
landslide activity decreases significantly with distance from
the soil moisture site (Wicki et al., 2020). Larger spatial in-
tegration is achieved by using remotely sensed soil moisture
information derived from microwave emissions (Reichle et
al., 2017). However, the spatial and temporal resolution are
coarse and the sensing depth is shallow, limiting the poten-
tial for LEWS applications in mountainous regions (Thomas
et al., 2019; Zhuo et al., 2019a).

Numerical models for the simulation of soil water dynam-
ics may help in this regard as they provide cheap, contin-
uous and spatially and temporally consistent soil moisture
estimates. Such models typically simulate the accumulation
and redistribution of water (and heat) either in specific soil
profiles (in one dimension) or for larger areas (pixels or hy-
drological response units) for time resolutions from minutes
to days. Physically based models explicitly represent hydro-
logic state variables and fluxes by mathematical formulations
(Fatichi et al., 2016), where the variably saturated water flow
is often described by the Richards’ equation (1931), and the
mathematical expressions in the form of partial differential
equations are solved with a numerical method (Feddes et
al., 1988). In comparison to simpler conceptual or bucket
models, physically based models are more time-consuming
in calculation and require more parameter settings. How-
ever, they are less dependent on specific calibration pro-
cedures, since parameter values can be constrained by ob-
servable quantities or expert decisions (Gharari et al., 2014;
Gupta and Nearing, 2014), or they can be inferred from easily
measured quantities by means of pedotransfer functions (Van
Looy et al., 2017; Schaap et al., 2001). The one-dimensional
coupled water and heat transfer models go back to the pio-
neering work of Harlan (1973) and were further developed
and implemented in computer codes for example by Van
Genuchten (WORM, 1987), Jansson (CoupModel, 2012) or
Šimůnek et al. (Hydrus-1D, 2012). The two-dimensional soil
hydrological models, such as PREVAH (Viviroli et al., 2009),
WaSiM-ETH (Klok et al., 2001), TOPKAPI (TOPographic
Kinematic APproximation and Integration; Liu and Todini,
2002) or Tethys–Chloris (Fatichi et al., 2012), to name a few,
are typically applied at catchment or regional scale. Due to
the larger coverage, they are restricted by computational re-
sources and often have to simplify the modelling process
(e.g. by reducing the temporal resolution or the number of
modelling layers or the number of processes represented),
but they have the advantage of lateral connectivity and basin-
wide coverage (Fatichi et al., 2016). Common limitations of
all physically based models are mainly related to the avail-
ability of appropriate soil physical properties to describe the
soil hydraulic characteristics, simplifications of the model
boundary conditions and the mathematical description of the
hydrological processes, and the quality of the dynamic input
data (Feddes et al., 1988; Paniconi and Putti, 2015).

Ultimately, the question arises to what extent landslide
forecast models that are based on simulated soil moisture are
reliable and representative in comparison to models based
on actual soil moisture measurements. In this study, we aim
(i) to clarify the skill of a LEWS based on simulated soil
moisture from a 1D soil moisture model compared to one
based on in situ soil moisture measurements, (ii) to assess
the sensitivity of this skill to model assumptions and pa-
rameters and (iii) to evaluate the potential of extending a
measurement-based LEWSs to sites with no soil moisture
measurements. This study assesses the potential and limita-
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tions of using a 1D soil water transfer model for regional
landslide early warning and highlights the strengths and
weaknesses compared to using soil moisture measurements.
We use plot-scale soil hydrological simulations to be able
to directly compare the results to a landslide forecast model
based on in situ soil moisture measurements.

2 Material and methods

2.1 Study design

The following section summarizes the design of this study.
In a first step, soil moisture was simulated at 133 sites in
Switzerland using a 1D soil moisture transfer model. Sec-
ond, the forecast goodness for regional landslide activity was
assessed by fitting and evaluating a statistical landslide fore-
cast model to observed shallow landslides. Finally, the land-
slide forecast goodness was compared with a landslide fore-
cast model based on in situ soil moisture measurements avail-
able at a subset of the modelled sites. We applied a statistical
framework previously developed to assess the information
content of in situ soil wetness information for regional land-
slide activity (Wicki et al., 2020), and we used the same soil
moisture monitoring data set compiled in the named study
for comparison with a measurement-based forecast model.
We focused on 1D soil moisture modelling because these
models permit high temporal resolution, detailed depth in-
tegration and a good representation of physical infiltration
processes, while still meeting the computational restraints.

2.2 Study area

The study area covers the entire country of Switzerland
(Fig. 1) and, thus, an area of approximately 41 300 km2. The
climate in Switzerland transitions from an oceanic (wet) cli-
mate in the west to a more continental (dry) climate in the
east of the country, and the presence of the Alps strongly
impacts the regional weather patterns. Hence, yearly precip-
itation amounts are highly variable and range from less than
600 mm in some inner alpine valleys to more than 3000 mm
at high altitudes in the Alps. Precipitation falls throughout
the year, with peaks during the summer months in most re-
gions, whereas the fraction of snow strongly depends on the
altitude (CH2018, 2018). Yearly evapotranspiration is high-
est in lowlands (up to 600 mm over grasslands) and continu-
ously decreases to less than 250 mm at elevations higher than
2500 m a.s.l. (Menzel et al., 1999).

Landslides in Switzerland occur mostly along the northern
pre-Alps and south of the Alps (Ticino) due to the presence of
susceptible geological formations (flysch, schist or Bündner
schist and phyllite), thick soil and debris covers n the mod-
erately steep hillslopes and the occurrence of intense rainfall
events (Schmid et al., 2004). Most landslides occur during
the summer months due to short-term thunderstorm cells or
long-standing precipitation events often caused by impinge-

ment of moist air masses on the Alps (CH2018, 2018; Hess
et al., 2014; Hilker et al., 2009).

2.3 Soil moisture model

In this study, the heat and mass transfer model CoupModel
(Jansson, 2012) was used to simulate soil water transfer
along a 1D virtual soil profile. The CoupModel has been used
extensively to simulate temporal soil moisture dynamics (e.g.
Okkonen et al., 2017; Pellet et al., 2016; Scherler et al., 2010;
Wu et al., 2020; Wu and Jansson, 2013) and soil water bal-
ance variations (e.g. Christiansen et al., 2006; Madani et al.,
2018; Walthert et al., 2015). In the context of landslide early
warning, parts of the CoupModel were used for soil moisture
simulations within the Norwegian national forecasting ser-
vice for predicting rainfall-induced landslides (Krøgli et al.,
2018).

At the core of the model, two coupled differential equa-
tions for water and heat transport are solved, assuming that
flows are the result of gradients (Jansson and Karlberg,
2011). The soil water flow, qw, follows Darcy’s law as gen-
eralized for unsaturated flow by Buckingham (1907).

qw =−Kw

(
δψ

δz
− 1

)
, (1)

where Kw is the unsaturated hydraulic conductivity, ψ is
the matric potential head, and z is the depth. Formulations to
simulate vapour flow and bypass flow in macropores are im-
plemented in the CoupModel as well but were not included
in this study.

From Eq. (1) and the law of mass conservation, the unsat-
urated water flow equation follows:

∂θ

∂t
=−

∂qw

∂z
+ sw, (2)

where θ is the soil water content, and sw is a source or sink
term.

To solve the water flow equation, two soil characteris-
tic hydraulic properties need to be defined for each model
layer, both of which are considered to be functions of the wa-
ter content, i.e. the soil water retention curve, characterizing
the relationship between matric potential and water content,
the unsaturated hydraulic conductivity function, describing
the hydraulic conductivity as a function of water saturation
(or matric potential), and the saturated soil hydraulic con-
ductivity. In this study, they were defined by the Mualem
and Van Genuchten closed-form equations (Van Genuchten,
1980; Mualem, 1976) as follows:

θ = θr+
θs− θr[

1+ (αψ)n
]m , (3)

Kw =Ks

(
1− (αψ)n−1(1+ (αψ)n)−m)2

(
1+ (αψ)n

)m
2

, (4)
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Figure 1. Map of Switzerland showing the locations of the soil moisture modelling sites (coloured points) and the landslide locations (black
points), including (a) all sites and all landslides of the entire study period from 1981 to 2019 and (b) a subset of sites and landslides that were
triggered during a series of rainfall events between 30 April and 3 May 2005.

where θr is the residual water content, θs is saturated water
content (equal to porosity), α, n and m= 1− (1/n) are em-
pirical parameters, and Ks is the saturated hydraulic conduc-
tivity. The heat flow equation follows Fourier’s law and ac-
counts for conduction and convection of heat (Appendix A).
The differential equations are solved with a finite difference
method (Euler integration), which requires a soil profile with
a discrete number of layers having homogenous soil proper-
ties (Jansson and Karlberg, 2011).

In the following, all other main processes represented in
the CoupModel set-up are described. For a detailed descrip-
tion of the associated mathematical expressions, see Ap-
pendix A. At the lower boundary, water may leave the soil
column by deep percolation. In the present study, two differ-
ent lower boundary conditions were applied; the first bound-
ary condition assumes a nonsaturated soil profile. If a pre-
defined pressure head is surpassed in the lowest layer, out-
flow occurs as a function of the hydraulic conductivity (free
drainage), whereas no flow occurs if the pressure head is be-
low the specified limit. The second boundary condition may
represent saturated conditions and a variable groundwater ta-
ble. Here, outflow is calculated with a seepage equation de-
pendent on the depth and spacing distance to a drain (Jansson
and Karlberg, 2011).

Infiltration capacity governs the infiltration of water at the
upper boundary, and it is a function of the top-most layer’s
saturated hydraulic conductivity and the pressure gradient to
the surface. If the infiltration rate is exceeded by the wa-
ter available for infiltration, or if over-saturation leads to
an upward movement of the soil water, water may run off
laterally. Water loss by evapotranspiration consists of bare
soil evaporation and vegetation transpiration, which, in the
present study, was a mowed lawn. The individual evapotran-

spiration components were calculated using the Penman–
Monteith equation (Monteith, 1965), which is mainly gov-
erned by aerodynamic and surface resistances (evaporation),
as well as stomatal resistance (transpiration). The potential
transpiration is limited by the availability of soil water within
the rooting depth of the plants and is reduced by low ground
temperatures. Finally, a snow cover may be built up based
on the air temperature at times of precipitation. Snowmelt
and refreezing were calculated with an empirical function de-
pending on air temperature, global radiation and surface heat
flow (Jansson and Karlberg, 2011).

2.4 Model set-up and parameterization

Soil moisture was simulated at 133 sites in Switzerland
where meteorological data was available from an on-site or
nearby meteorological station, and each site was parame-
terized as a grassland location (all sites; Fig. 1a; Table 1).
At a subset of 35 sites (monitoring sites), in situ soil mois-
ture measurements were available, which were used for
benchmarking the statistical landslide forecast model (see
Sect. 2.6). At a subset of 14 selected sites (reference sites), in
situ soil moisture measurements were used to assess the soil
moisture simulations from the CoupModel. They were se-
lected because they were located on the same plot as the me-
teorological station and below grassland vegetation, i.e. the
soil moisture sites which were disregarded for model assess-
ment were located at far distance from the meteorological
site (>2 km) and/or located in a forest and, thus, not repre-
sentative for the grassland parameterization.

The goal of this study was to define a common param-
eterization set for all sites (i.e. no site-specific calibration
was conducted) to be able to apply the model at sites where
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Table 1. Sets of sites, available data sets and number of sites.

Sites set Texture and bulk density information Co-located soil moisture measurements N sites

SoilGrids Soil samples

All sites Yes No No 133
Monitoring sites Yes Yes Yes 35
Reference sites Yes Yes Yes (grassland only at <2 km distance) 14

no site-specific calibration is possible because soil moisture
measurements are missing. Most parameter values were left
at the default values of the CoupModel (documented in de-
tail by Jansson and Karlberg, 2011), whereas others were
(i) adjusted to fit observed soil moisture dynamics, (ii) were
taken from literature values or (iii) were defined at the au-
thor’s discretion. A description of the key parameters and
chosen values are given in Appendix A. The plant properties
for the grassland cover were defined by the literature val-
ues (leaf area index= 0.6 m2 m−2; canopy height= 0.25 m;
maximum root depth= 0.6 m), and they were defined as ho-
mogenous throughout the season. The values for the maximal
conductance of fully open stomata (gmax = 0.03 m s−1) and
the critical pressure head for reduction of potential water up-
take (ψc = 1500 cm water) were chosen by comparison with
observed soil moisture variation. Seasonal snow cover dy-
namics were compared with snow depth measurements avail-
able at some of the sites and tuned by adjusting the empiri-
cal snowmelt coefficients (mT = 1.5 kg ◦C−1 m−2 d−1;mf =

0.1 m−1,mRmin = 1.5e−8 kg J−1). Different lower boundary
conditions were tested, including both saturated and unsatu-
rated conditions, and best parameter values (ψMax = 10 cm
for unsaturated conditions; zp2 = 7.5 m and dp2 = 100 m for
saturated conditions) were defined by comparison with ob-
served soil moisture variation.

Soil profiles were defined by 11 model layers of increas-
ing thickness with depth and a total thickness of 300 cm. To
reflect regional geological differences, soil hydraulic prop-
erties were varied for each site. Since no laboratory or field
data were available to measure or fit the soil hydraulic pa-
rameters (α, n, θr, θs and Ks), they were predicted from
easier available soil texture and bulk density values using
the Rosetta3 H3w pedotransfer function (Zhang and Schaap,
2017). Rosetta3 was derived from a data set containing 2134
soil samples from North America and Europe (Schaap et
al., 2001). The underlying data set also includes data from
Switzerland, giving confidence that the pedotransfer func-
tion is suitable for the application to soils in Switzerland.
The required soil texture and bulk density values were de-
rived from two sources. (1) At the 35 monitoring sites, tex-
ture and bulk density measurements were available from soil
samples taken at various depths along the soil profiles where
soil moisture sensors were installed (referred to as soil sam-
ples). The data were provided by the operators of the soil
moisture monitoring sites (see Sect. 2.6). (2) At all 133 sites,

texture and bulk density estimates were extracted from the
SoilGrids system (referred to as SoilGrids), which provides
global predictions of various soil properties based on ma-
chine learning techniques (Hengl et al., 2017). SoilGrids is
available in 250 m resolution at seven standard depths (0, 5,
15, 30, 60, 100 and 200 cm) and permits estimates of texture
and bulk density on a global scale. Comparison of the tex-
ture split values between the soil samples and SoilGrids data
sets for the 35 common monitoring sites and two depth bands
(0.0–0.4 m and 0.4–1.0 m) reveals a narrower value distribu-
tion of SoilGrids with particularly coarse fractions missing
(Fig. 2a, e).

To further test the model sensitivity to the soil hydraulic
properties, four soil profiles with uniform texture (referred
to as uniform texture profiles) were defined, and soil hy-
draulic properties were defined based on the literature val-
ues. The profiles include homogeneous parameter values at
all depths and correspond to extreme and typical coarse- and
fine-grained soils. If the derived soil hydrological properties
are compared between all sources, a narrower value distri-
bution is again visible for the SoilGrids data set compared
to the soil samples; however, median values are similar or
of the same order of magnitude (Fig. 2b–d, f–h). Parame-
ter values of the four uniform texture profiles vary consider-
ably, whereas the normal, fine-grained uniform texture pro-
file shows similar parameter values o the median values de-
rived from the soil samples and SoilGrids.

2.5 Meteorological input data

The CoupModel was run at hourly time steps, using mea-
surements of the five properties precipitation, air temper-
ature, wind speed, relative humidity and global radiation.
Data were available from meteorological stations of var-
ious monitoring networks. (1) SwissMetNet is the auto-
matic monitoring network of the national meteorological
agency MeteoSwiss. Data from 114 monitoring sites were
used in this study dating back up to 1981. (2) DTN (for-
merly MeteoGroup) is a provider of meteorological measure-
ments and a partner network of MeteoSwiss, and two sites
were included in this study (https://www.dtn.com, last ac-
cess: 16 February 2021). (3) The Long-Term Forest Ecosys-
tem Research Programme (LWF) of the Swiss Federal Re-
search Institute WSL conducts research on forest ecosys-
tem processes on forested monitoring plots in Switzer-
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Figure 2. Soil texture splits (a, e) and soil hydraulic properties Ks(saturated hydraulic conductivity), n(Van Genuchten coefficient) and α
(Van Genuchten coefficient) (b–d, f–h) of the 35 monitoring sites averaged for the model layers in 0–40 cm (a–d) and 40–100 cm depth (e–h).
The point and box plot colours indicate different sources of information (soil samples, SoilGrids and uniform texture profiles).

land and Europe. At 14 sites, of which eight were in-
cluded in this study, co-located meteorological measure-
ments are taken in an open-field at less than 2 km dis-
tance from the plots (Rebetez et al., 2018). (4) The
Swiss FluxNet initiative includes eight long-term ecosystem
sites with eddy covariance flux measurements in Switzer-
land (http://www.swissfluxnet.ch/, last access: 16 Febru-
ary 2021). In this study, meteorological measurements from
two sites were included. (5) Finally, meteorological mea-
surements from one site at the Rietholzbach research catch-
ment were included, which is operated by the Land-Climate
Dynamics Group (ETH Zurich; https://iac.ethz.ch/group/
land-climate-dynamics/research/rietholzbach.html, last ac-
cess: 16 February 2021).

At each site, all available meteorological data were in-
cluded from the first point at which all five parameters were
available (as early as 1981) until the end of 2019. Data gaps
are generally short (hours to days) and were linearly in-
terpolated in the CoupModel, except for precipitation, for
which zero precipitation was assumed. Each complete time
series was replicated prior to the first measurement by 2 ran-
domly selected consecutive hydrological years (spin-up pe-

riod). Both data gaps and spin-up periods, as well as the first
3 months after the spin-up period, were removed for the sta-
tistical analysis.

2.6 Soil moisture data

For assessing the CoupModel performance and for compar-
ison of the simulation-based forecast model with a forecast
model based on measurements (see Sect. 2.8), soil moisture
measurements from 35 sites in Switzerland were included in
the study (monitoring sites; Fig. 1a; Table 1). Soil moisture
is measured with TDR or capacitance-based sensors at vari-
ous depths along a soil profile, with the lowest sensors typ-
ically located at depths of 80–120 cm. The data set includes
sites from monitoring networks of various research institu-
tions and authorities, and measurements were available at the
earliest from 2008 until end of 2018. The data set was com-
piled and described in detail in a previous study (Wicki et al.,
2020).
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2.7 Landslide data

Landslide records from the Swiss flood and landslide damage
database (Swiss Federal Research Institute WSL; Hilker et
al., 2009) were used to fit the landslide forecast model (see
Sect. 2.8). The database includes landslide events which were
identified from news articles in all of Switzerland since 1972.
Records include coordinates, the date and time of the event
(if known), and an event description.

For this study, events recorded from 1981 until end of 2019
were included. Following the approach of Wicki et al. (2020),
deep-seated and human-induced landslides (e.g. pipe breaks
and road embankment slips) were removed if explicitly men-
tioned in the event description. Furthermore, if no time of oc-
currence was specified, it was set to 12:00 Central European
Time (CET), or, if the approximate timing was given in the
event description, the timing was assumed (e.g. 09:00 CET
for “in the morning”). In total, 2969 events were included in
this study (Fig. 1a), 1041 of which contained a precise time
information.

2.8 Statistical landslide forecast model

To assess the information content of the simulated soil mois-
ture dynamics for regional landslide warning, a statistical
framework was applied to the simulated soil moisture time
series. This framework was developed in a previous study,
where it was applied to in situ measured soil moisture in
Switzerland (for a detailed description, see Wicki et al.,
2020). It included first a normalization of soil moisture val-
ues by the minimum and the 99.5 percentile values to repre-
sent soil saturation, and the calculation of mean and standard
deviation saturation at each soil profile for all model layers
until 140 cm depth. At each profile, periods of continuous
saturation increase (infiltration events) were then identified
automatically based on the mean saturation time series. Each
infiltration event was characterized by a set of event proper-
ties derived from both the mean and standard deviation time
series (see Table 2). Finally, infiltration events were flagged
as either landslide triggering or landslide nontriggering, pro-
vided that a landslide was observed or not observed, respec-
tively, during the event period and within a specific distance
from the modelling site (forecast distance).

A multiple logistic regression model was then fitted to the
set of infiltration events where the binary outcome variable
(i.e. the landslide triggering class of “yes” or “no”) was mod-
elled as a function of the independent infiltration event prop-
erties (explanatory variables). The logistic regression model
yields a probability for each infiltration event to belong to
the landslide triggering class (triggering probability). A five-
fold cross-validation (CV) scheme was applied to assess the
robustness of the model fit with equally sized folds and ran-
domly selected infiltration events. A total of four folds were
used to fit the model, and the remaining fold was used as the
to make predictions. This approach is referred to as the vali-

dation set approach, as opposed to the all data set approach,
where the statistical model is fit to all the infiltration events.

2.9 Skill of the landslide forecast

To assess the forecast goodness of each specific statistical
model fit, receiver operating characteristic analysis (ROC)
was performed according to Fawcett (2006). First, a thresh-
old was applied to reclassify the triggering probabilities of
the infiltration events into the binary triggering classes land-
slide triggering or landslide nontriggering. A confusion ma-
trix was constructed between observed and modelled trig-
gering classes counting the number of true positives (TPs),
true negatives (TNs), false positives (FPs) and false nega-
tives (FNs). The true positive rate, TPR=TP / (TP+FN),
and false positive rate, FPR=FP / (FP+TN), were com-
puted accordingly. To assess the overall potential of a model
fit for multiple thresholds, the threshold was varied 5000
times in equal steps between the minimum and maximum
triggering probability, thus resulting in 5000 confusion ma-
trices. The 5000 TPR and FPR pairs were then plotted in a
2D plot (ROC space), resulting in a cumulative curve (ROC
curve) for which the area under the curve (AUC) was com-
puted.

The forecast goodness of different model fits was assessed
qualitatively by comparing the ROC curve and quantitatively
by comparing the AUC value, which corresponds to the prob-
ability of listing a positive instance higher than a negative
instance if sorted by the observed triggering class. A per-
fect classifier plots near the top left corner of the ROC space
(AUC= 1.0), whereas it is no better than random guessing
if it plots along the (0/0) to (1/1) diagonal (AUC= 0.5). To
assess the distance dependence of the forecast models, each
model set-up was fit using eight different forecast distances
ranging in equal steps from 5 to 40 km. We chose the ROC
curve and AUC value as performance indicators because they
assess the general forecast goodness of a statistical model in
contrast to many other performance indicators that quantify
the forecast goodness of specific threshold values (Piciullo et
al., 2020).

3 Results

3.1 General model performance

The performance of the soil moisture model and the corre-
sponding triggering probabilities according to the landslide
forecast model are illustrated for a model set-up using a
lower boundary condition, with groundwater and soil hy-
drological information from SoilGrids during a sample pe-
riod from mid-April to mid-May 2015 (Fig. 3a). During this
time period, a series of intense precipitation events led to
widespread landslide activity in central Switzerland, with nu-
merous landslides observed from 30 April until 4 May 2015
(black dots in Fig. 1b and colour-filled background in Fig. 3a,
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Table 2. List of event properties to describe infiltration events. To classify between triggering and nontriggering infiltration events, the nine
event properties marked with “x” are used. Time series of the mean of water saturation and standard deviation (SD) of saturation were used.

Process domain Event property description Name Profile mean Profile SD

Antecedent conditions Saturation at the onset of infiltration event Antecedent sat. x x
A 2-week preceding maximum saturation 2 week-prec. max sat. x
A 2-week preceding mean saturation 2 week-prec. mean sat. x

Event dynamics Saturation change during an infiltration event Sat. change x x
Infiltration rate Infiltration rate x
Maximum 3 h infiltration rate Max inf. rate x
Event duration Duration x

b). Profile saturation for a subset of 11 sites in the region of
interest (coloured points in Fig. 1b) remained low and in-
homogeneous prior to the landslide period. It increased to
near-saturated conditions and remained very wet for a couple
of days, which coincides with the period of landslide activ-
ity. This development is confirmed by the landslide forecast
model (fitted here for the 15 km forecast distance), which
shows a low triggering probability at the beginning of the
period (red horizontal lines; note that landslide probability is
only computed for periods of saturation increase). Triggering
probability increased significantly across all sites during the
period of landslide activity and descended again after that.
While the relative triggering probability increases are con-
siderable, absolute probability values remain low even during
landslide-triggering events. This is the case for all infiltration
events and can be attributed to an unbalanced data set (i.e. the
ratio of landslide triggering to landslide nontriggering events
is very low; ratio not shown). It is commonly reported for lo-
gistic regression models with these types of data sets (King
and Zeng, 2001).

These patterns can be compared to in situ soil moisture
measurements at the same sites and the corresponding land-
slide forecasts of a forecast model fitted to the soil moisture
measurements (Fig. 3b). Temporal evolution of the profile
saturation shows similar regional-scale patterns with variably
saturated conditions during the first half of the sample pe-
riod followed by an increased saturation during the period
of landslide activity. Furthermore, the measurement-based
landslide forecast model shows a similar triggering proba-
bility development to the simulation-based model, with sig-
nificantly higher triggering probabilities for all sites during
the days of observed landslide events compared to the peri-
ods prior to and after that. Yet, distinct differences are appar-
ent. The temporal evolution of simulated profile saturation
appears to be more homogeneous between different sites; the
desaturation immediately after an infiltration event is slower,
and it reaches drier conditions after sustained periods of no
infiltration. Triggering probabilities are generally lower for
the measurement-based landslide forecast model.

3.2 Performance assessment of the soil hydrological
model

The agreement between simulated and observed soil wet-
ness was analysed for the 14 reference sites by the mean
error (ME) and coefficient of determination (R2) statistics
computed for the hourly soil moisture values. The skill of
the model set-up was generally solid but strongly varied
from site to site and with the depth of the sensors (Fig. 4a).
Best agreement was found for the top-most sensors (median
ME= 0.00 m3 m−3; median R2

= 0.55–0.60). At depths of
30 and 50 cm, ME values were similar, but R2 values were
lowest across all depths (median R2

= 0.40–0.45). R2 statis-
tics were better at 80 cm depth (median R2

= 0.50–0.55);
however, mean error was greater than at all other depths (me-
dian ME= 0.02–0.05 m3 m−3), indicating too dry conditions
at the lower boundary, probably due to overestimation of
deep percolation. This skill is comparable to or slightly lower
than reported skills for other soil moisture models used in
landslide early warning (e.g. Brocca et al., 2008; Thomas et
al., 2018) or for CoupModel set-ups with different purposes
(e.g. Conrad and Fohrer, 2009; He et al., 2016). However,
it has to be noted that these models are mostly validated for
one or two sites only and were partially calibrated site specif-
ically.

Not much difference in model skill was found between
using a lower boundary condition without groundwater
(Fig. 4a) and with groundwater (Fig. 4b). When a lower
boundary with groundwater was defined, ME statistics re-
mained very similar (median ME= 0.00–0.05 m3 m−3), and
R2 statistics slightly improved at the lowest depths (median
R2
= 0.45 at 50 cm; medianR2

= 0.60 at 80 cm). Best model
fit of the groundwater-based model set-up was found for a
parameterization indicative of a well-drained site.

Another important part in the parameterization is the site-
specific definition of the soil hydrological properties. Since
texture and bulk density information from soil samples were
available for the monitoring sites only, they were derived
from a gridded product (SoilGrids) in order to be able to ap-
ply the CoupModel with the same general set-up at all sites.
Comparison of a soil-samples-based model set-up (Fig. 4a, b)
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Figure 3. Profile saturation (grey lines) of a selection of 11 sites in central Switzerland (as depicted in Fig. 1b), with the mean profile
saturation across all selected sites (black line), during a period of increased landslide activity in April and May 2015 for (a) simulated (lower
boundary with groundwater and soil hydrological properties from SoilGrids) and (b) measured soil moisture. The colour-filled background
denotes days with observed landslide events within 15 km of any of the sites, with the colour indicating the number of landslide records. The
red lines show the associated landslide triggering probability from the statistical model (based on the nine infiltration event properties listed
in Table 2) at each site, which was computed for periods of saturation increase only.

Figure 4. Goodness of fit of simulated versus measured soil moisture variation at the 14 reference sites, with the mean error (ME; top panels)
and coefficient of determination (R2; bottom panels) indicated by sensor depths (different colours) for various CoupModel parameterizations
(a–h). Lower boundary conditions with and without groundwater (GW) are distinguished.
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with a model set-up based on SoilGrids information (Fig. 4c,
d) revealed very similar model skill, with a slightly decreased
mean error (median ME= 0.00 m3 m−3 at all depths) and
slightly larger range of R2 values for the SoilGrids-derived
model set-up. This indicates that SoilGrids adequately rep-
resents the regional variation in soil hydrological variability
and can be used to extend the model to all other sites. Fur-
thermore, the effect of having no regional variation in soil
hydrological properties was tested by deriving them from
the normal, fine-grained uniform texture profile (Fig. 4g).
Mean error statistics remained in a similar range (median
ME= 0 m3 m−3 at all depths); however, R2 values were sig-
nificantly lower at all depths (median R2

= 0.30–0.55). This
demonstrates the value of including regionally varying soil
hydrological properties.

Finally, large sensitivity of the model skill was found for
variation in the saturated hydraulic conductivity, which was
tested by deriving the soil hydrological properties from the
other, more extreme uniform texture profiles. Above-average
Ks values were defined for profiles representing extreme
coarse-grained and normal, coarse-grained soils (Fig. 4e, f),
and Ks values were below average for the extreme fine-
grained uniform texture profile (Fig. 4h). Model skill showed
a very poor model fit for the coarse-grained profiles (me-
dian R2

= 0.05–0.20) and very high mean error values in-
dicative for too dry conditions (median ME= 0.25 m3 m−3

at all depths). Model fit was better for the extreme fine-
grained profile (median R2

= 0.40–0.50), but ME statistics
showed too wet conditions (median ME=−0.10 m3 m−3 at
all depths). This indicates that the SoilGrids and soil samples
derived saturated hydraulic conductivity values are of an ad-
equate order of magnitude.

One important result of our soil moisture model assess-
ment was the fact that the deviation between model and mea-
surement, i.e. the residuals, were not varying randomly, but
had a seasonal trend (Fig. 5a, b; residuals were computed as
mean daily values across all 14 sites). With a CoupModel
set-up using SoilGrids information and a bottom boundary
condition with groundwater, winter months showed posi-
tive anomalies (i.e. modelled soil moisture was drier than
observed), whereas negative anomalies (i.e. wetter than ob-
served) were apparent during summer months. Both effects
were more pronounced in near-surface layers. Furthermore,
near-surface layers showed wetter than observed anomalies,
after the exceptionally dry summer in 2015, and negative
trends not seen in the modelling. We explain the underes-
timation of the seasonal variation with an underestimation
of evapotranspiration in summer (too wet conditions in sum-
mer when evapotranspiration is high) and a generally faster
drainage than observed (too dry conditions in winter when
evapotranspiration is low). The overall negative trend in the
anomalies (dashed lines in Fig. 5c) may be explained by
an underrepresentation of evapotranspiration in exception-
ally dry summers. However, it might as well be related to
data quality issues and reduced homogeneity of the long-

Table 3. Percentage of country (area of Switzerland) and number
of landslides (percentage of all landslides recorded from 1981 to
2019) covered by the soil moisture simulations and measurements
as a function of the forecast distance used.

All sites (133 sites) Monitoring sites (35 sites)

Forecast Percent of Percent of Percent of Percent of
distance total area all landslides total area all landslides

5 km 22.6 26.8 6.4 7.1
10 km 65.6 73.7 22.1 26.0
15 km 91.4 95.4 41.5 49.6
20 km 98.6 99.2 58.0 65.8
25 km 99.7 99.8 70.3 76.4
30 km 100.0 100.0 79.3 83.1
35 km 100.0 100.0 87.0 88.6
40 km 100.0 100.0 92.6 93.7

term soil moisture measurements which have been partially
running for up to 10 years (e.g. due to compaction of the soil
or enhanced root development around the sensors towards
the end of the monitoring period). Furthermore, the differ-
ent sites each have different lengths of records which may
impact the homogeneity of the aggregated signal.

3.3 Performance of the statistical landslide forecast
model

3.3.1 Simulated versus observed soil moisture;
35 monitoring sites

ROC curves and AUC values for a CoupModel set-up with
groundwater and, using soil hydrological properties derived
from soil samples, are shown in Fig. 6a. For comparison
with a measurement-based statistical model fit, the data set
contains the 35 monitoring sites only, and modelling peri-
ods were limited to the same periods for which soil mois-
ture measurements were available (2008–2018). ROC curves
of all forecast distances clearly deviated from the (0/0) to
(1/1) line, and most AUC values were larger than 0.8, in-
dicating that all forecast distances bore some information
content on the regional landslide activity. Forecast good-
ness was strongly distance dependent, with short forecast
distances having a better forecast goodness (AUC= 0.86 at
5 km; AUC= 0.79 at 40 km; all data set approach). This is in
good agreement to the results of Wicki et al. (2020) for mea-
sured soil moisture. The robustness of the statistical model
fit was assessed by comparison with the AUC values and
ROC curves of the validation set approach (Fig. 6e). Values
were very similar for most forecast distances, indicating a
robust model fit; however, robustness was slightly lower at
short forecast distances, probably due to the low number of
landslide records (7 % of all landslides were within the 5 km
radius of the 35 sites; see Table 3).

Compared to a statistical model derived from mea-
sured soil moisture (Fig. 6d, h), the number of infiltration
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Figure 5. Temporal evolution of, and seasonal variation in, mean daily residual volumetric water content (VWC) (a, b), i.e. the deviation
between simulated and observed soil water content, and mean daily measured (c, d) and simulated VWC (e, f). Means are calculated across
all 14 reference sites by sensor depths (different colours) for a CoupModel set-up using soil hydrological properties derived from SoilGrids
and a lower boundary condition with groundwater.

events was similar, yet the overall forecast goodness of the
measurement-based forecast model was lower at all forecast
distances (AUC= 0.83 at 5 km; AUC= 0.72 at 40 km; all
data set approach). This is remarkable as the simulated soil
moisture was shown to contain specific uncertainty, partic-
ularly related to the long-term water storage in the soil. We
explain the better forecast goodness of the simulation-based
landslide forecast model by a more homogeneous represen-
tation of infiltration characteristics in space (less influence
of local conditions, such as groundwater influence or prefer-
ential infiltration) and in time (no drift or trend as might be
observed for some erroneous or badly coupled soil moisture
sensors), as well as a more homogeneous site representation
(number of sensors and depth levels included in the analysis).

3.3.2 Simulated soil moisture using in situ soil physical
properties versus using SoilGrids

A similar forecast goodness resulted for a simulation with
SoilGrids-derived soil hydrological properties compared to
a simulation with soil hydrological properties derived from
soil samples (Fig. 6b, f). AUC values and number of infil-
tration events were in the same range (AUC= 0.87 at 5 km;

AUC= 0.78 at 40 km; all data set approach), and ROC curves
followed a similar shape with more robust model fits at large
forecast distances. This finding is in line with the similar
goodness of fit as shown in the previous section and demon-
strates the validity of using soil hydrological properties de-
rived from SoilGrids. It permits the extension of the approach
to all 133 sites, most of which had no in situ soil sample in-
formation available.

3.3.3 Increase in number of soil moisture sites

Extending the analysis to all 133 sites and to the entire in-
put data time period (1981–2019) resulted in a considerably
higher number of infiltration events (N = 142311) and, thus,
much smoother ROC curves (Fig. 6c, g). Furthermore, the
model fits became very robust even at short forecast dis-
tances (i.e. same AUC values for the all data set and vali-
dation set approaches). AUC values were slightly lower than
when the 35 monitoring sites were used, but were in the same
range (AUC= 0.87 at 5 km; AUC= 0.76 at 40 km), and ROC
curves bulged slightly less to the top, indicating a worse per-
formance for optimistic thresholds.
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Figure 6. ROC plots and AUC values of landslide forecast model fits based on simulated soil moisture (SM) at the 35 monitoring sites,
including soil hydrological properties from soil samples (a, e) and SoilGrids (b, f) at all 133 sites and including soil hydrological properties
from SoilGrids (c, g), and based on measured soil moisture at the 35 monitoring sites (d, h). All CoupModel set-ups include a lower boundary
condition with groundwater. Panels (a)–(d) show landslide forecast model fits using all the data sets, whereas panels (e)–(h) show model fits
based on the fivefold cross-validation scheme.

Increasing the number of sites also increased the area and
number of landslides covered, as illustrated with Table 3.
When all 133 sites were used, almost the whole country
and all landslides were covered by using a 15 km forecast
distance. When the 35 monitoring sites were used only (as
was the case for the measurement-based forecast model), the
same coverage is only possible when a 40 km forecast dis-
tance is used. This is due to the lower number of sites and
because the available sites are distributed inhomogeneously,
including large gaps in alpine areas and in the eastern part of
the country (Fig. 1a).

3.3.4 Sensitivity of the landslide forecast model to the
definition of the lower boundary condition and
soil properties

The sensitivity of the landslide forecast model to changes in
the lower boundary condition was assessed by testing differ-
ent lower boundary parameterizations for CoupModel set-up
using all 133 sites (Fig. 7; grey boxes highlight the model pa-
rameterization that was chosen for the goodness of fit anal-
ysis). Low sensitivity of the landslide forecast goodness was
found for variations in the lower boundary conditions with-
out groundwater (Fig. 7a), which was defined by the max-
imum pressure head of the lowest layer above which out-
flow occurs as gravitational outflow. In contrast, when the
lower boundary was defined with a seepage function, the
landslide forecast goodness was very variable. Best results
were obtained for a fairly steep gradient to the drain, i.e. a

larger depth to drain (Fig. 7b) or a shorter distance to drain
(Fig. 7c). This indicates a better landslide forecast goodness
for well-drained sites. As shown previously, the landslide
forecast goodness was similar for both a CoupModel param-
eterization with or without groundwater, which is in line with
the very similar goodness of fit values for the two parameter-
izations.

Low sensitivity of the landslide forecast model was found
when using soil hydrological properties derived from uni-
form texture profiles (Fig. 8), resulting even in a slight fore-
cast goodness increase for the extreme and normal, coarse-
grained, uniform texture profiles. This is surprising since, by
using uniform texture profiles, the regional variation in soil
hydrological properties is disregarded, and Ks values par-
tially deviate substantially from what can be expected in re-
ality, both of which were reflected with a substantially worse
agreement with measured soil moisture in a previous sec-
tion. The reasons behind this are studied in more detailed
in Sect. 4.

3.4 Most important explanatory variables for landslide
forecast model

In the previous section, the landslide prediction models were
fitted, including all explanatory variables (also referred to
as event properties) as listed in Table 2. In order to anal-
yse the contribution of individual explanatory variables to
the overall forecast goodness, the landslide prediction model
was fitted to individual explanatory variables only, as illus-
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Figure 7. AUC values of landslide forecast model fits with different parameterizations of the lower boundary condition by varying (a) the
maximum pressure head of the lowest layer above which exfiltration occurs, (b) depth to the drain and (c) the distance to the drain. Grey
shaded model runs correspond to the CoupModel parameterization used in all other analyses.

Figure 8. AUC values of landslide forecast model fits based on
CoupModel set-ups with varying soil hydrological properties (de-
rived from SoilGrids and uniform texture profiles) and a lower
boundary condition with groundwater.

trated in Fig. 9 (first column), where AUC values are plotted
for different statistical model fits. Explanatory variables can
be grouped into variables describing the antecedent wetness
conditions (shaded in red) and into variables describing the
infiltration event dynamics (shaded in orange). For reference,

a model fit including two explanatory variables only (an-
tecedent saturation and saturation change; second column)
and a model fit including all explanatory variables (third col-
umn) are plotted too. As expected, the forecast goodness of
individual explanatory variables was significantly lower than
when all explanatory variables were included. Furthermore,
model fits using the two explanatory variables antecedent the
saturation and saturation change had almost the same fore-
cast goodness as if all event properties were used.

When looking at individual explanatory variables in de-
tail, distinct differences become apparent between statisti-
cal model fits based on simulated and measured soil mois-
ture. For the simulation-based landslide forecast models, the
increase in the forecast goodness was mostly driven by ex-
planatory variables that describe the triggering event dynam-
ics (e.g. saturation change during the infiltration event, max-
imum 3 h infiltration rate, infiltration rate and standard de-
viation change; Fig. 9a, d, g). Inversely, for a measurement-
based landslide forecast model, explanatory variables related
to the antecedent wetness conditions were more important
(e.g. antecedent saturation and the 2 weeks preceding the
maximum saturation; Fig. 9k).

The worse performance of explanatory variables related to
the antecedent wetness conditions for the simulation-based
forecast models can be related to the reduced ability of the
CoupModel set-up to reflect long-term seasonal water stor-
age, as described previously (Fig. 5). The better forecast
goodness of explanatory variables related to the triggering
event dynamics of the simulation-based landslide forecast
model can be explained by a more homogeneous site set-up,
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no impact by very site-specific conditions (e.g. preferential
flow, interaction with a local groundwater table and interac-
tion with the vegetation) and by the elimination of measure-
ment errors (e.g. sensor drift, sensor uncertainties and bad
sensor contact to surroundings).

The better performance of explanatory variables related to
event dynamics compared to those related to antecedent con-
ditions was even more accentuated in the case of the extreme
coarse-grained, uniform texture profile with a better forecast
goodness of most of the event-dynamics-related explanatory
variables (Fig. 9g). Conversely, the antecedent saturation ex-
planatory variable even showed a slight forecast goodness
decrease.

4 Discussion

4.1 Limitations of the soil moisture model

The soil moisture model incorporates errors and uncertain-
ties connected to the parameterization and the quality of the
input data, limiting the availability to reproduce soil mois-
ture variation as observed with soil moisture sensors. A large
component of uncertainty originates from the definition of
the soil hydrological properties, which, in previous studies,
were shown to have a great impact on simulated soil moisture
and landslide forecasts (e.g. Thomas et al., 2018). Here, un-
certainty is added from both the definition of the site-specific
texture and bulk density values, as well as from the estima-
tion of the soil physical properties with a pedotransfer func-
tion. No substantial differences in the goodness of fit of sim-
ulated versus observed soil moisture were found between us-
ing soil hydrological properties derived from soil samples
and those taken from SoilGrids. Yet, a decrease in the cor-
relation coefficient was found when using the same normal,
fine-grained uniform texture profile for all sites. From that,
we can conclude that the soil hydrological property differ-
ences between using soil samples and SoilGrids are smaller
than the missing regionalization inferred by using a uniform
texture profile only. This underlines the importance of using
regionally varying soil physical information for simulating
soil moisture, which is often omitted due to a lack of field
data or because too many parameters may lead to overfitting
problems (e.g. Posner and Georgakakos, 2015; Zhao et al.,
2019b).

Larger uncertainty is probably introduced by the use of
a pedotransfer function to infer the soil hydrological prop-
erties from soil physical information. This point cannot be
validated directly since field data on site-specific soil hydro-
logical properties is missing; however, the large ME spread
across the 14 reference sites points towards partially incor-
rect residual θr and saturated water content θs values. Fur-
thermore, many studies highlight that pedotransfer functions
incorporate a bias towards loamy agricultural soils and lack
a representation of soil structure, such as the presence of

macropores or concretizations (e.g. Or, 2020; Zhang and
Schaap, 2019). This may lead to an underestimation of Ks
values which, in return, impacts surface runoff generation,
water infiltration and discharge (Fatichi et al., 2020).

A second major source of uncertainty originates from the
definition of homogeneous upper and lower boundary condi-
tions. In general, seasonal soil moisture variation was under-
estimated, a problem also reported in other modelling studies
(Okkonen et al., 2017; Orland et al., 2020; Zhuo et al., 2019a)
and which may be partially attributed to the definition of the
vegetation and soil resistances and the potential evapotran-
spiration calculation. Calibration is difficult due to missing
evapotranspiration measurements. We compared our evapo-
transpiration estimates with a countrywide evapotranspira-
tion estimation function for grassland locations depending
on elevation (Hydrological Atlas of Switzerland – HADES;
Menzel et al., 1999) and with estimations from lysimeter
measurements at the Rietholzbach site (RHB; Hirschi et
al., 2017). It was shown that evapotranspiration estimates
slightly underestimated the HADES values; however, they
followed the same elevation dependence (Fig. 10a). When
comparing with field lysimeter data, evapotranspiration es-
timates were lower too (Fig. 10b) but followed the general
seasonal variation and showed similar interannual variation
except for the year of 2008 (Fig. 10c). This may explain the
underestimated drying out of the model compared with the
observations as shown previously, which could be improved
by a more elaborate or site-specific vegetation parameteriza-
tion. Nevertheless, the evapotranspiration data presented here
are only weakly representative and serve as a rough point
of reference as they are based on simulations and show re-
gional values (in case of HADES), and lysimeter measure-
ments were available for one site only (RHB).

At the lower boundary of the soil profile, the definition
of well-drained conditions showed the best results. How-
ever, soil hydrological conditions might differ substantially
for individual sites if shallow groundwater tables are present
(Marino et al., 2020) or if soil depths vary between the sites
(Anagnostopoulos et al., 2015); hence, a site-specific param-
eterization might improve the goodness of fit with observed
soil moisture variation. While no seepage data on regional
scales were available for calibration or validation, a site-
specific definition of lower boundary conditions could be
achieved by consideration of nearby groundwater-level mea-
surements or regional groundwater distribution maps when
defining the depth and distance to drain for a lower boundary
with groundwater.

Finally, when comparing the goodness of fit with observed
soil moisture measurements, it has to be noted that the soil
moisture measurements bear uncertainties too and might be
erroneous or contain a signal shift or trend due to bad contact
with the surrounding material, sensor deterioration or struc-
tural changes in soil. Thus, a thorough quality assessment
is needed when using soil moisture data for calibration or
validation. Further to that, measurement uncertainties of the
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Figure 9. AUC values of model fits based on simulated soil moisture (SM) at all 133 sites (upper three rows) and based on measured
soil moisture at the 35 monitoring sites (bottom row). Model fits include individual explanatory variables only (a, d, g, j), the explanatory
variables antecedent saturation and saturation change only (b, e, h, k) and all nine explanatory variables (c, f, i, l).

meteorological input data may have a considerable impact if
comparing the simulated soil moisture time series with ob-
served soil moisture variation. Particularly rainfall data may
lack due to pronounced undercatch problems at high and ex-
posed locations, which were not corrected for in the meteo-
rological time series used in this study (Gergely Rigo, Me-
teoSwiss, personal communication, 2020).

Following on from this, the goodness of fit might improve
significantly by applying a site-specific calibration scheme to
better characterize boundary conditions or to derive soil hy-
drological conditions during the calibration process. While
this would allow the reflection of complex local conditions,
site-specific calibration is limited by the availability of field
data for calibration (e.g. soil moisture or evapotranspiration
data) and the quality of these field data, and it is restricted
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Figure 10. Simulated evapotranspiration (ET) from the CoupModel versus validation data. (a) Yearly average ET versus elevation function
from the Swiss Hydrological Atlas, (b) day of the year’s average ET and (c) yearly ET at the Rietholzbach site (RHB) vs. lysimeter data
measured at this site.

by the number of parameters to fit. Furthermore, site-specific
calibration is not possible if the model is applied at places
where no measurements are available (e.g. for complement-
ing an existing soil moisture monitoring network). Group-
ing sites into areas of similar physiographic characteristics,
e.g. based on soil type, land use or geological data, to further
constrain parameter values may be a first step towards this
(Fatichi et al., 2016). Furthermore, the use of simpler model
formulations with fewer parameters to fit would be worth
exploring, as this could help with transferring the model to
places where no calibration is possible. Finally, data assim-
ilation techniques, often applied with land surface models
(Reichle et al., 2014) or in models used for landslide early
warning (Krøgli et al., 2018), could help to adjust for the
seasonal misfit of the long-term water storage term, but these
again depend on the availability of field data and are, thus,
limited to locations with soil moisture measurements.

4.2 The value of simulated soil moisture for landslide
early warning

Our results showed that the simulation-based landslide
forecast models performed slightly better than a forecast
model based on soil moisture measurements, implying that
simulation-based soil moisture information is, overall, more
representative for regional landslide occurrence. This can be
explained by considering different timescales and the hydro-
logical processes associated with them. The overall improve-
ment with a simulation-based forecast model is based on a
better representation of the triggering conditions, notably the
infiltration of water during precipitation or snowmelt events.
In this domain, processes typically range in timescales of
hours to days and are highly influenced by local factors such
as preferential infiltration along macropores and fissures in

the ground, surface ponding and runoff due to an impeding
surface layer, interception by the vegetation cover, interac-
tions with impeding layers within the soil columns or at the
soil–bedrock transition, as well as interactions with a ground-
water table. While the spatial variability in these processes
can be high in reality, they are simplified and represented
homogeneously in the model. In addition to this homoge-
nization in the process domain, the statistical variation is ho-
mogenized over time (no sensor errors or drifts as may be
observed for single sensors) and between sites (depth levels
and number of depth levels considered). We assume that the
homogenized representation of the processes in space leads
to a more robust statistical model fit and, hence, an improved
landslide forecast goodness.

With regard to the antecedent conditions, the
measurement-based landslide forecast model performed
better. The hydrological processes associated with this
domain are governed by the redistribution of soil water
after rainfall events by the steady drainage of water at the
bottom of the profile and by evapotranspiration from the
soil surface. Simplification and misrepresentation of some
of these processes in the CoupModel set-up may lead to
an underestimation of the seasonal soil moisture variation,
which is high in Switzerland, with generally wet conditions
from fall to spring and a dry period with intermittent wetting
events during summer (Pellet and Hauck, 2017). A limited
seasonal representation may reduce the forecast model’s
ability to separate triggering from nontriggering conditions,
as reported for regional landslide forecast models where
regions with different seasonal soil moisture variation were
compared (Thomas et al., 2020). Particularly in regions with
a high seasonal evapotranspiration variation, wet and dry
periods may be controlled by different soil moisture fluxes,
with vertical fluxes being dominant during dry periods and
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Figure 11. ROC curves and AUC values of model fits (a) based on
normalized rainfall information scaled by porosity and (b) based on
normalized rainfall information only for all 133 sites and the entire
modelling period (1981–2019).

lateral fluxes during wet periods (e.g. Grayson et al., 1997);
thus, a physically based representation of the processes is
important, and a spatial representation may improve the
seasonal soil moisture variation.

While the two process domains (antecedent conditions and
event dynamics) can be analysed individually, they also influ-
ence each other due to the limited value distribution of soil
saturation ranging from 0 % (residual soil water content) to
100 % (full saturation). If water drains quicker, more pore
space is available for rainfall to infiltrate in the next event,
and intense rainfall events may show a stronger soil moisture
response. Conversely, soil moisture responses to precipita-
tion events are weaker in wetter and more fine-grained soils
due to slower infiltration, less available pore space due to
presaturation and more surface runoff due to impeding con-
ditions near the surface. Hence, in a more conductive soil, the
statistical model is more able to separate triggering from non-
triggering events at the expense of the loss of long-term water
storage information. These effects were most clearly visible
when soil hydraulic properties of extremely coarse-grained,
uniform texture profiles were used in the CoupModel, which
showed an even better landslide forecast goodness. The fast
drainage causes the evapotranspiration loss to be ineffective,
and thus, the model becomes more a representation of rainfall
characteristics demonstrating the high information content in
precipitation for landslide prediction.

To validate this hypothesis, we applied the same statisti-
cal model to the precipitation time series only, which were
used to drive the soil moisture model. Individual precipita-
tion events were defined as continuous periods of rainfall
(>0.5 mm h−1) separated by gaps of at least 3 h of no rainfall.
Precipitation event sums were computed and (1) normalized
with the total porosity of the uppermost 100 cm taken from
SoilGrids, and resulting event sums were normalized with
the 99.5 percentile of each time series to represent some soil
information (Fig. 11a), or (2) event sums were solely normal-
ized by 99.5 percentile of the event time series (Fig. 11b).

While the first statistical model includes some information
on the regional soil physical conditions (porosity from Soil-
Grids), the latter includes rainfall information only. The num-
ber of precipitation events was about double compared to the
simulations with soil hydraulic properties (i.e. not all precip-
itation events were manifested as infiltration events in sim-
ulations of soil water dynamics). Despite the larger num-
ber of precipitation events (the classification between trig-
gering and nontriggering events is typically easier with a
higher number of events), the distance-averaged AUC value
dropped from 0.82 for simulations of soil water dynamics
to 0.79 for rainfall signatures. But both approaches (based
on precipitation and infiltration events, respectively) showed
similar landslide forecast goodness and similar forecast dis-
tance dependence, highlighting that the landslide forecast
goodness is mainly driven by spatial rainfall variation.

While it is discouraging that similar landslide forecast
goodness can be achieved with a forecast model that is
based on rainfall information only or with a heavily simpli-
fied model representation (e.g. based on the extreme, coarse-
grained, uniform texture profiles), the benefit of a well-
parameterized physically based soil moisture transfer model
or of using soil moisture measurements remains in the quan-
tification of the antecedent wetness conditions, particularly if
a strong seasonal variation persists. This is often missed by
less physically based approaches using, e.g., antecedent wet-
ness indexes or antecedent precipitation indexes (e.g. Brocca
et al., 2012). The added value of soil wetness information
was tested by comparing a landslide forecast model based
on rainfall amounts only (Fig. 12a) with a forecast model
based on a combination of rainfall amounts and antecedent
saturation derived from measured soil moisture (Fig. 12b)
or derived from simulated soil moisture (Fig. 12c). Forecast
goodness increase was found for both cases where antecedent
saturation was added to the model, demonstrating the infor-
mation content of soil wetness information. However, the ex-
tent of improvement was only minor if simulated soil mois-
ture was added, which can be explained by the described and
discussed underrepresentation of the seasonal soil moisture
cycle of the soil moisture model that was used.

5 Conclusions

The present analysis demonstrated a high information con-
tent of simulated soil moisture for regional landslide activ-
ity, which was even higher than when in situ soil moisture
measurements were used. The forecast goodness of such a
landslide warning system strongly depends on the distance
between soil moisture stations and landslide location, i.e.
on the soil moisture station density, because of more robust
model fits at near-forecast distances and a greater spatial cov-
erage of landslide events and regions of interest. The ad-
vantage of soil moisture simulations over in situ soil mois-
ture measurements is the better representation of trigger-
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Figure 12. ROC curves and AUC values of model fits (a) based on normalized rainfall information only, (b) based on normalized rainfall
and measured antecedent saturation and (c) based on normalized rainfall and simulated antecedent saturation for all 35 monitoring sites and
the period of 2008 to 2019.

ing event conditions, probably due to the homogenization of
the hydrological processes and the site representation (num-
ber and depths of sensors included). On the other hand, the
simulation-based forecast model performed worse than the
measurement-based model at reproducing critical antecedent
saturation conditions, possibly due to the inadequate repre-
sentation of the long-term water storage.

In comparison with a statistical landslide forecast model
that only uses precipitation or that simulates soil mois-
ture with very simplified (uniform) soil hydraulic properties,
the main added value of a comprehensive physically based
soil moisture simulation is the representation of critical an-
tecedent wetness conditions. To improve the soil moisture
model in this respect, further explorations in the use of site-
or region-specific calibration schemes are needed, and cal-
ibration data other than soil moisture measurements should
be incorporated.
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Appendix A

Table A1. Key equations of the CoupModel used for this study (see Jansson and Karlberg, 2011, for more details).

No. Equation Description

Deep percolation (unsaturated conditions)

(A1) qdeep =

{
kwlow, ψ > ψMax
0, ψ ≤ ψMax

Deep percolation, qdeep, under unsaturated conditions as a func-
tion of the hydraulic conductivity of the lowest layer, kwlow, and
the simulated pressure head of the lowest layer, ψ . Deep perco-
lation occurs if the maximum pressure head, ψMax, is exceeded.
Below the threshold, no flow of water occurs.

Deep percolation (saturated conditions)

(A2) qdeep =
8kslow(zsat−zp2)

2

d2
p2

Saturated deep percolation (qdeep) depends on the saturated hy-
draulic conductivity of the lowest layer (kslow). Drainage is at a
spacing distance dp2 and at depth zp2, both of which are param-
eters. The simulated groundwater table depth is at zsat.

Infiltration and surface runoff

(A3) qin =

{
qth, icap > qth
icap, icap ≤ qth

The infiltration rate (qin) is simulated as a function of the surface
infiltration capacity (icap). It equals the precipitation throughfall
rate (qth) if the throughfall is smaller than the infiltration rate.

(A4) qsurf =

{
asurf(Wpool−wpmax), Wpool >wpmax
0, Wpool ≤ wpmax

Surface runoff (qsurf) is generated if throughfall exceeds the infil-
tration capacity and a surface pool of water is formed, withWpool
being the total water amount. The amount of water which can be
stored (wpmax) is a parameter and asurf is an empirical coeffi-
cient.

Potential transpiration

(A5) LvEtp =
1Rn+ρacp

(es−ea)
ra

1+γ
(

1+ rs
ra

) The Penman’s combination equation (Monteith, 1965) is used to
calculate potential transpiration (Etp). It depends on net radia-
tion (Rn), the difference in saturation and actual vapour pressure
(es− ea), the aerodynamic resistance (ra) and the surface resis-
tance (rs). It further depends on air density (ρa), specific heat of
air (cp), latent heat of vaporization (Lv) and the psychometric
constant (γ ), which are all considered physical constants, and the
slope of saturated vapour pressure vs. the temperature curve (1).

(A6) ra =
ln2
(
zref−d
z0

)
k2u

The aerodynamic resistance (ra) depends on the wind speed (u)
measured at the reference height (zref). It is proportional to the
displacement height (d) and inversely proportional to the rough-
ness length (z0). k is the von Karman’s constant.

(A7) rs =
1

max(Algl,0.001) Surface resistance (rs) inversely proportional to the leaf area in-
dex (Al) and the leaf conductance (gl).

(A8) gl =
Ris

Ris+gris

gmax

1+ (es−ea)
gvpd

The leaf conductance (gl) is calculated by the Lohammar equa-
tion (Lindroth, 1985; Lohammar et al., 1980). It depends on
global radiation (Ris) and the vapour pressure deficit (es− ea),
with gris, gmax and gvpd being parameter values.
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Table A1. Continued.

No. Equation Description

Actual transpiration

(A9) Eta = Eta
∗
+ fumov

(
Etp
∗
−Eta

∗
)

Actual transpiration (Eta) may compensate for soil layers with
water stress by a two-step calculation. The left term (Eta

∗) cor-
responds to the water uptake without compensation. The right
term is the difference of the potential transpiration (Etp

∗, with
a reduction due to interception evapotranspiration) and actual
transpiration, and the degree of compensation is governed by
the parameter fumov.

(A10) Eta
∗
= Etp

∗
0∫
zr

f (ψ (z))f (T (z))r(z) Response functions for soil water potential, f (ψ(z)), and for
soil temperature, f (T (z)), are used to reduce potential transpi-
ration (Etp

∗) to calculate actual transpiration (Eta
∗). It is cal-

culated for each soil layer and integrated, with r(z) being the
distribution of relative root density and zr being the maximal
root depth.

(A11) f (ψ (z))=min
((

ψc
ψ(z)

)p1Etp+p2
,fθ

)
Transpiration is reduced under dry conditions by stomatal
mechanism and xylary tissue resistance and becomes zero at
the wilting point. p1, p2 and ψc are parameters, and fθ is an
additional response function (not shown).

(A12)
z∫
zr

r(z)= 1−e−krr(z/zr)
(1−rfrac)

The distribution of root density is represented in exponential
form. Below a depth z, the fraction of roots depends on the
extinction coefficient krr, whereas rfrac is a parameter. The in-
tegral calculated on the entire soil profile equals unity.

Soil evaporation

(A13) LvEs =
1(Rns−qh)+ρacp

(es−ea)
ras

1+γ
(

1+ rss
ras

) The Penman’s equation (Monteith, 1965) is used for the calcu-
lation of soil evaporation (Es). It is calculated from the surface
latent heat flux (LvEs) which depends on the energy available
at the surface (Rns− qh, i.e. available net radiation minus soil
surface heat flux from previous step), the aerodynamic resis-
tance (ras), the surface resistance (rss), and the difference in
saturation and actual vapour pressure (es−ea). All other terms
are equal to the terms in (A5).

(A14) rss =max
(
0, rψ1max

(
ψs− rψ2,0

)
− rψ3δsurf

)
Soil surface resistance (rss) is governed by the parameters rψ1,
rψ2 and rψ3. It accounts for the water tension in the uppermost
layer (ψs) and the mass balance at the soil surface (δsurf).

Radiation processes

(A15) Rn, tot = Ris (1− ar)+Rlnet Net radiation (Rn, tot) is the sum of global radiation (Ris) minus
the surface albedo (ar), and net long-wave radiation (Rlnet).

(A16) Rlnet = 86400σ
(
εs(Ts+ 273.15)4− εa(Ta+ 273.15)4

)
The Brunt’s formula is used to calculate net long-wave ra-
diation (Rlnet), where the surface emissivity (εs) is assumed
equal to 1, and the atmosphere emissivity (εa) is calculated by
Konzelmann et al. (1994). Ts is the surface temperature.
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Table A1. Continued.

No. Equation Description

Snow dynamics

(A17) Prain = P
(
1−Qp

)
The fraction of solid precipitation (Qp) determines
the snow and rain partitioning of precipitation (P ).

(A18) Qp =

{
min

(
1,
(
1− fliqmax

)
+ fliqmax

Ta−TRainL
TSnowL−TRainL

)
, Ta ≤ TRainL

0, Ta > TRainL
Qp is a function of air temperature (Ta), with
TRainL and TSnowL being parameters describing the
temperature range of mixed ice and liquid water
precipitation and fliqmax being the maximal liquid
water content of falling snow (equals 0.5).

(A19) M =MT Ta+MRRis+
fqhqh(0)
Lf

Snowmelt (M) is calculated from a temperature
function (MT ) and air temperature (Ta), a solar ra-
diation function (MR) and global radiation (Ris), as
well as from surface heat flow (qh), a scaling coef-
ficient (fqh) and the latent heat of freezing (Lf).

(A20) MT =

{
mT , Ta ≥ 0

mT
1zsnowmf

, Ta < 0 Snowmelt and refreezing are governed by the em-
pirical parameters mT and mf. Refreezing is simu-
lated only for a limited surface layer and is, thus,
inversely proportional to snow depth (1zsnow).

Soil heat flow

(A21) qh =−kh
∂T
∂z
+CwT qw Soil heat flow (qh) is calculated as the sum of con-

duction (first term) and convection (second term),
where kh is the soil heat conductivity, T is temper-
ature, Cw is heat capacity of liquid water and qw
is the liquid water flow. In this model set-up, latent
heat flow by water vapour was disregarded.

(A22) ∂(CT )
∂t
−Lfρ

∂θi
∂t
=

∂
∂z
(−qh) The heat flow equation includes changes in sensi-

ble and latent heat contents (left side) and input or
output of heat from the soil layer (right side) and is
calculated for each soil layer. It follows from com-
bining (A36) with the law of energy conservation.
C is the heat capacity, T is temperature, Lf is la-
tent heat of freezing, ρ is density and θi is the water
content of ice.
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Table A2. Description of the most important parameter values used in the CoupModel set-up along with the associated equations (see Jansson
and Karlberg, 2011, for more details).

Symbol Description Unit Value Eq.

Deep percolation, unsaturated conditions

ψMax Maximum pressure head in lowest layer above which outflow occurs cm 10 (A1)

Deep percolation, saturated conditions

zp2 Drain level depth m 7.5 (A2)
dp2 Spacing distance to drain m 100 (A2)

Infiltration and surface runoff

asurf Empirical coefficient used to calculate runoff from surface pool 1 d−1 0.8 (A4)
wpmax Maximum water amount stored in surface pool. mm 0 (A4)

Potential transpiration

z0 Roughness length – 0.1 (A6)
d Displacement height – 0.66 (A6)
zref Height above ground of wind speed, air humidity and air temperature measurements m 2 (A6)
Al Leaf area index m2 m−2 0.6 (A7)
gris Global radiation intensity at which light response is at half-light saturation J m−2 d−1 5e+6 (A8)
gmax Maximum conductance of fully open stomata m s−1 0.03 (A8)
gvpd Vapour pressure deficit at which stomatal conductance is reduced by 50 % Pa 100 (A8)

Actual transpiration

fumov Degree of compensation for compensatory water uptake – 0.6 (A10)

zr Maximum rooting depth m –0.6 (A10)
p1 Empirical coefficient for soil water potential response function 1 d−1 0.3 (A11)
p2 Empirical coefficient for soil water potential response function kg m−2 d−1 0.1 (A11)
ψc Pressure head above which potential water uptake is reduced cm water 1500 (A11)
rfrac Fraction of roots remaining below a given root depth – 0.1 (A12)

Soil evaporation

rψ1 Governing parameter for the calculation of the surface resistance s m−1 0.5 (A14)
rψ2 Governing parameter for the calculation of the surface resistance s m−1 300 (A14)
rψ3 Governing parameter for the calculation of the surface resistance s m−1 mm−1 80 (A14)

Snow dynamics

TRainL Temperature above which all precipitation is rain ◦C 2 (A18)
TSnowL Temperature below which all precipitation is snow ◦C 0 (A18)
fqh Contribution coefficient of ground heat flow on snowmelt – 0.5 (A19)
mT Temperature coefficient for snowmelt calculation kg ◦C−1 m−2 d−1 1.5 (A20)
mf Efficiency constant for refreezing calculation m−1 0.1 (A20)
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