Articles | Volume 25, issue 5
Hydrol. Earth Syst. Sci., 25, 2951–2977, 2021
https://doi.org/10.5194/hess-25-2951-2021
Hydrol. Earth Syst. Sci., 25, 2951–2977, 2021
https://doi.org/10.5194/hess-25-2951-2021

Research article 31 May 2021

Research article | 31 May 2021

Machine-learning methods for stream water temperature prediction

Moritz Feigl et al.

Related authors

The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021,https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
LamaH | Large-Sample Data for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-72,https://doi.org/10.5194/essd-2021-72, 2021
Preprint under review for ESSD
Short summary
Introduction of a Superconducting Gravimeter as Novel Hydrological Sensor for the Alpine Research Catchment Zugspitze
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-78,https://doi.org/10.5194/hess-2021-78, 2021
Revised manuscript under review for HESS
Short summary
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-254,https://doi.org/10.5194/essd-2020-254, 2020
Revised manuscript accepted for ESSD
Short summary
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Streamflow drought: implication of drought definitions and its application for drought forecasting
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021,https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021,https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3577–3594, https://doi.org/10.5194/hess-25-3577-2021,https://doi.org/10.5194/hess-25-3577-2021, 2021
Short summary
River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021,https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Bathymetry and latitude modify lake warming under ice
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021,https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary

Cited articles

Abba, S. I., Hadi, S. J., and Abdullahi, J.: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques, in: Procedia Computer Science, Elsevier B.V., Budapest, Hungary, 75–82, https://doi.org/10.1016/j.procs.2017.11.212, 2017. a, b
Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J., Bilodeau, L., Robichaud, É., Thiémonge, N., and Bobée, B.: Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada), Hydrol. Process., 21, 21–34, https://doi.org/10.1002/hyp.6353, 2007. a
Akaike, H.: Information theory as an extension of the likelihood principle., in: Second Akademiai International Symposium on Information Theory, edited by: Petrov, B. N. and Csaki, F., Kiado, Budapest, 267–281, 1973. a
Allaire, J. J. and Tang, Y.: tensorflow: R Interface to “TensorFlow”, available at: https://github.com/rstudio/tensorflow (last access: 13 Jauary 2021), 2020. a
Álvarez, D. and Nicieza, A. G.: Compensatory response “defends” energy levels but not growth trajectories in brown trout, Salmo trutta L., P. Roy. Soc. B-Biol. Sci., 272, 601–607, https://doi.org/10.1098/rspb.2004.2991, 2005. a
Download
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.