Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2951-2021
https://doi.org/10.5194/hess-25-2951-2021
Research article
 | 
31 May 2021
Research article |  | 31 May 2021

Machine-learning methods for stream water temperature prediction

Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz

Related authors

Soil moisture and precipitation intensity control the transit time distribution of quick flow in a flashy headwater catchment
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359,https://doi.org/10.5194/hess-2024-359, 2024
Preprint under review for HESS
Short summary
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021,https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021,https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021,https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021,https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
The role of neotectonics and climate variability in the Pleistocene-to-Holocene hydrological evolution of the Fuente de Piedra playa lake (southern Iberian Peninsula)
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024,https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
On the cause of large daily river flow fluctuations in the Mekong River
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024,https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024,https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Learning from a large-scale calibration effort of multiple lake models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
EGUsphere, https://doi.org/10.5194/egusphere-2024-2447,https://doi.org/10.5194/egusphere-2024-2447, 2024
Short summary

Cited articles

Abba, S. I., Hadi, S. J., and Abdullahi, J.: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques, in: Procedia Computer Science, Elsevier B.V., Budapest, Hungary, 75–82, https://doi.org/10.1016/j.procs.2017.11.212, 2017. a, b
Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J., Bilodeau, L., Robichaud, É., Thiémonge, N., and Bobée, B.: Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada), Hydrol. Process., 21, 21–34, https://doi.org/10.1002/hyp.6353, 2007. a
Akaike, H.: Information theory as an extension of the likelihood principle., in: Second Akademiai International Symposium on Information Theory, edited by: Petrov, B. N. and Csaki, F., Kiado, Budapest, 267–281, 1973. a
Allaire, J. J. and Tang, Y.: tensorflow: R Interface to “TensorFlow”, available at: https://github.com/rstudio/tensorflow (last access: 13 Jauary 2021), 2020. a
Álvarez, D. and Nicieza, A. G.: Compensatory response “defends” energy levels but not growth trajectories in brown trout, Salmo trutta L., P. Roy. Soc. B-Biol. Sci., 272, 601–607, https://doi.org/10.1098/rspb.2004.2991, 2005. a
Download
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.