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Abstract. Water temperature in rivers is a crucial environ-
mental factor with the ability to alter hydro-ecological as
well as socio-economic conditions within a catchment. The
development of modelling concepts for predicting river wa-
ter temperature is and will be essential for effective inte-
grated water management and the development of adapta-
tion strategies to future global changes (e.g. climate change).
This study tests the performance of six different machine-
learning models: step-wise linear regression, random forest,
eXtreme Gradient Boosting (XGBoost), feed-forward neu-
ral networks (FNNs), and two types of recurrent neural net-
works (RNNs). All models are applied using different data
inputs for daily water temperature prediction in 10 Austrian
catchments ranging from 200 to 96 000 km2 and exhibiting
a wide range of physiographic characteristics. The evalu-
ated input data sets include combinations of daily means of
air temperature, runoff, precipitation and global radiation.
Bayesian optimization is applied to optimize the hyperpa-
rameters of all applied machine-learning models. To make
the results comparable to previous studies, two widely used
benchmark models are applied additionally: linear regression
and air2stream.

With a mean root mean squared error (RMSE) of 0.55 ◦C,
the tested models could significantly improve water temper-
ature prediction compared to linear regression (1.55 ◦C) and
air2stream (0.98 ◦C). In general, the results show a very sim-
ilar performance of the tested machine-learning models, with
a median RMSE difference of 0.08 ◦C between the models.
From the six tested machine-learning models both FNNs and
XGBoost performed best in 4 of the 10 catchments. RNNs
are the best-performing models in the largest catchment, in-
dicating that RNNs mainly perform well when processes
with long-term dependencies are important. Furthermore, a
wide range of performance was observed for different hyper-

parameter sets for the tested models, showing the importance
of hyperparameter optimization. Especially the FNN model
results showed an extremely large RMSE standard deviation
of 1.60 ◦C due to the chosen hyperparameters.

This study evaluates different sets of input variables,
machine-learning models and training characteristics for
daily stream water temperature prediction, acting as a ba-
sis for future development of regional multi-catchment wa-
ter temperature prediction models. All preprocessing steps
and models are implemented in the open-source R package
wateRtemp to provide easy access to these modelling ap-
proaches and facilitate further research.

1 Introduction

Water temperature in rivers should not be considered only a
physical property, since it is a crucial environmental factor
and a substantial key element for water quality and aquatic
habitats. In particular, it influences riverine species by gov-
erning e.g. metabolism (Álvarez and Nicieza, 2005), distri-
bution (Boisneau et al., 2008), abundance (Wenger et al.,
2011), community composition (Dallas, 2008) and growth
(Imholt et al., 2010); thus, aquatic organisms have a specific
range of river temperature they are able to tolerate (Caissie,
2006). Due to the impact of water temperature on chemical
processes (Hannah et al., 2008) and other physical properties
such as density, vapour pressure and viscosity (Stevens et al.,
1975), stream temperature indirectly influences key ecosys-
tem processes such as primary production, decomposition
and nutrient cycling within rivers (Friberg et al., 2009). These
parameters and processes affect the level of dissolved oxygen
(Sand-Jensen and Pedersen, 2005) and, of course, have a ma-
jor influence on water quality (Beaufort et al., 2016).
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Besides its ecological importance, river temperature is also
of socio-economic interest for electric power and industry
(cooling), drinking water production (hygiene, bacterial pol-
lution) and fisheries (fish growth, survival and demographic
characteristics) (Hannah and Garner, 2015). Hence, a chang-
ing river temperature can strongly alter the hydro-ecological
and socio-economic conditions within the river and its neigh-
bouring region. Assessing alterations of this sensitive vari-
able and its drivers is essential for managing impacts and en-
abling prevention measurements.

Direct temperature measurements are often scarce and
rarely available. For successful integrated water manage-
ment, it will be essential to derive how river temperature will
be developing in the future, in particular when considering
relevant global change processes (e.g. climate change), but
also on shorter timescales. The forecast, for example, of river
temperature with a lead time of a few days can substantially
improve or even allow the operation of thermal power plants.
Two aspects are important: the efficiency of cooling depends
on the actual water temperature. On the other hand, legal con-
straints regarding maximum allowed river temperatures due
to ecological reasons can be exceeded when warmed-up wa-
ter is directed into the river after the power plant. This is es-
pecially relevant during low-flow conditions in hot summers.
Knowledge of the expected water temperature in the next few
days is therefore an advantage. An important step in this con-
text is the development of appropriate modelling concepts to
predict river water temperature to describe thermal regimes
and to investigate the thermal development of a river.

In the past, various models were developed to investi-
gate thermal heterogeneity at different temporal and spatial
scales, the nature of past availability and likely future trends
(Laizé et al., 2014; Webb et al., 2008). In general, water
temperature in rivers is modelled by process-based models,
statistical/machine-learning models or a combination of both
approaches. Process-based models represent physical pro-
cesses controlling river temperature. According to Dugdale
et al. (2017), these models are based on two key steps: first,
calculating energy fluxes to or from the river and then de-
termining the temperature change in a second step. Calcu-
lating the energy fluxes means solving the energy balance
equation for a river reach by considering the heat fluxes at
the air–water and riverbed–water interfaces (Beaufort et al.,
2016). These demanding energy budget components are de-
rived either by field measurements or by approximations
(Caissie and Luce, 2017; Dugdale et al., 2017; Webb and
Zhang, 1997), highlighting the complexity and parametriza-
tion of this kind of model. Although it is not feasible to
monitor these components over long periods or at all points
along a river network and contributing catchments (Johnson
et al., 2014), they provide clear benefits: (i) give insights into
the drivers of river water temperature and (ii) inform about
metrics, which can be used in larger statistical models and
(iii) different impact scenarios (Dugdale et al., 2017). These

arguments are also the reasons why data-intensive process-
based models are widely used despite their high complexity.

Statistical and machine-learning models are grouped into
parametric approaches, including regression (e.g. Mohseni
and Stefan, 1999) and stochastic models (e.g. Ahmadi-
Nedushan et al., 2007) and non-parametric approaches based
on computational algorithms like neural networks or k-
nearest neighbours (Benyahya et al., 2007). In contrast to
process-based models, statistical models cannot inform about
energy transfer mechanisms within a river (Dugdale et al.,
2017). However, unlike process-based models, they do not
require a large number of input variables, which are unavail-
able in many cases. Non-parametric statistical models have
gained attention in the past few years. Especially machine-
learning techniques have been proofed to be useful tools in
river temperature modelling already (Zhu and Piotrowski,
2020).

For this study we chose a set of state-of-the-art machine-
learning models that showed promising results for water tem-
perature prediction or in similar time-series prediction tasks.
The six chosen models are step-wise linear regression, ran-
dom forest, eXtreme Gradient Boosting (XGBoost), feed-
forward neural networks (FNNs) and two types of recurrent
neural networks (RNNs). Step-wise linear regression models
combine an iterative variable selection procedure with lin-
ear regression models. The main advantage of step-wise lin-
ear regression is the possibility of a variable selection proce-
dure that also includes all variable interaction terms, which
is only possible due to the short run times when fitting the
model. The main disadvantages are the linear regression spe-
cific assumptions (e.g. linearity, independence of regressors,
normality, homoscedasticity) that might not hold for a given
problem, which consequently could lead to a reduced model
performance. To our knowledge only one previous study by
Neumann et al. (2003) already applied this method for pre-
dicting daily maximum river water temperature.

The random forest model (RF) (Breiman, 2001) is an
ensemble-learning model that averages the results of multiple
regression trees. Since they consist of a ensemble of regres-
sion trees that are trained on random subsamples of the data,
RF models are able to model linear and non-linear dependen-
cies and are robust to outliers. RF models are fast and easy
to use, as they do not need extensive hyperparameter tuning
(Fernández-Delgado et al., 2014). This could also be a disad-
vantage as it is also difficult to further improve RF models by
hyperparameter optimization (Bentéjac et al., 2021). To date,
only one previous study by Heddam et al. (2020) applied RF
for predicting lake surface temperatures. Zhu et al. (2019d)
used bootstrap-aggregated decision trees, which are similar
but do not include the random variable sampling for splitting
the tree nodes, which is an important characteristic of the RF
model.

XGBoost (Chen and Guestrin, 2016) is also a regression
tree-based ensemble-learning model. However, instead of av-
eraging multiple individual trees, XGBoost builds comple-
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mentary trees for prediction, which allows for very different
functional relationships compared to random forests. Differ-
ently from RF models, XGBoost depends on multiple hyper-
parameters, which makes it harder and more computationally
expensive to apply (Bentéjac et al., 2021). XGBoost showed
excellent performances in a range of machine-learning com-
petitions (Nielsen, 2016) and also in hydrological time-series
applications (e.g. Ni et al., 2020; Gauch et al., 2019; Ibra-
hem Ahmed Osman et al., 2021), which makes it a promis-
ing candidate model for this study. To the authors’ knowl-
edge, XGBoost has not been applied for river water tempera-
ture predictions yet. However, results from short-term water
quality parameter predictions, which also include water tem-
perature, show promising performances (Lu and Ma, 2020;
Joslyn, 2018).

FNNs (White and Rosenblatt, 1963) are the first and sim-
plest type of neural networks. FNNs have already been
applied in numerous stream water temperature prediction
studies, which range from simple one hidden layer mod-
els (e.g. Risley et al., 2003; Bélanger et al., 2005; Chenard
and Caissie, 2008; McKenna et al., 2010; Hadzima-Nyarko
et al., 2014; Rabi et al., 2015; Zhu et al., 2018; Temizyurek
and Dadaser-Celik, 2018) to multiple hidden-layer models
with a hyperparameter optimization (Sahoo et al., 2009) and
to more complex FNN (hybrid) architectures and ensem-
bles of FNNs (e.g. DeWeber and Wagner, 2014; Piotrowski
et al., 2015; Abba et al., 2017; Graf et al., 2019; Zhu et al.,
2019a, b). While FNNs are very flexible and a one-layer FNN
can theoretically approximate any functions (Pinkus, 1999),
they are prone to overfitting and dependent on input data scal-
ing and an adequate choice of hyperparameters.

In contrast to FNNs, recurrent neural networks (RNNs)
are networks developed specifically to process sequences
of inputs. This is achieved by introducing internal hidden
states allowing one to model long-term dependencies in data
at the cost of higher computational complexity (Hochreiter
and Schmidhuber, 1997) and longer run times. Furthermore,
gaps in the observation time series can reduce the number
of usable data points significantly, as a certain number of
previous time steps are needed for prediction. While there
are many different types of RNNs, we focused on the two
most widely known, the long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and the gated recur-
rent unit (GRU) (Cho et al., 2014). To the authors’ knowl-
edge, RNNs have been used in one study by Stajkowski et al.
(2020), in which a LSTM in combination with a genetic al-
gorithm hyperparameter optimization was used to forecast
hourly urban river water temperature. However, LSTMs have
recently been applied in a wide range of hydrological studies
and showed promising results for time-series prediction tasks
(e.g. Kratzert et al., 2018, 2019; Xiang et al., 2020; Li et al.,
2020).

To make findings comparable with other studies investi-
gating this approach, we apply two benchmark models as the
baseline: linear regression and air2stream (Toffolon and Pic-

colroaz, 2015). Linear regression models are widely used for
river water temperature studies. While earlier studies used
mainly air temperature as a regressor to predict river wa-
ter temperature (e.g. Smith, 1981; Crisp and Howson, 1982;
Mackey and Berrie, 1991; Stefan and Preud’homme, 1993),
more recent publications use a wider range of input variables
or some modification to the standard linear regression model
(e.g. Caldwell et al., 2013; Li et al., 2014; Segura et al., 2015;
Arismendi et al., 2014; Naresh and Rehana, 2017; Jackson
et al., 2018; Trinh et al., 2019; Piotrowski and Napiorkowski,
2019). air2stream is a hybrid model for predicting river wa-
ter temperature, which combines a physically based struc-
ture with a stochastic parameter calibration. It was already
applied in multiple studies over a range of catchments and
generally had an improved performance compared to linear
regression and other machine-learning models (e.g. Piccol-
roaz et al., 2016; Yang and Peterson, 2017; Piotrowski and
Napiorkowski, 2018; Zhu et al., 2019d; Piotrowski and Na-
piorkowski, 2019; Tavares et al., 2020).

Most studies mainly use air temperature and discharge
as inputs for water temperature prediction (e.g. Piccolroaz
et al., 2016; Naresh and Rehana, 2017; Sohrabi et al., 2017),
while others use additional information from precipitation
(e.g. Caldwell et al., 2013) and/or solar radiation (e.g. Sa-
hoo et al., 2009). Additionally, air temperature can either be
included as mean, maximum or minimum daily temperature
(e.g. Piotrowski et al., 2015). To further investigate which
meteorological and hydrological inputs are important and
necessary for water temperature prediction, we here use mul-
tiple sets of input data and compare their outcome. Especially
knowing how simple models with few data inputs perform in
comparison with more complex input combinations can give
insight into how to plan applications of water temperature
modelling for a range of purposes.

Machine-learning models are generally parameterized by
a set of hyperparameters that have to be chosen by the user
to maximize performance of the model. The term “hyperpa-
rameters” refers to any model parameter that is chosen before
training the model (e.g. neural network structure). Depend-
ing on the model, hyperparameters can have a large impact
on model performance (Claesen and De Moor, 2015) but are
still most often chosen by rules of thumb (Hinton et al., 2012;
Hsu et al., 2003) or by testing sets of hyperparameters on a
predefined grid (Pedregosa et al., 2011). In this study we ap-
ply a hyperparameter optimization using the Bayesian opti-
mization method (Kushner, 1964; Zhilinskas, 1975; Močkus,
1975; Močkus et al., 1978; Močkus, 1989) to minimize the
possibility of using unsuitable hyperparameters for the ap-
plied models and to investigate the spread in performance
depending on the chosen hyperparameters.

This publication presents a thorough investigation of mod-
els, input data and model training characteristics for daily
stream water temperature prediction. It consists of the appli-
cation of six types of machine-learning models on a range
of different catchments using multiple sets of data inputs.
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The present work’s originality includes (i) application of a
range of ML models for water temperature prediction, (ii) the
use of different climatic variables and combinations of these
as model inputs, and (iii) the use of Bayesian optimization
to objectively estimate hyperparameters of the applied ML
models. The resulting performance of all models is compared
to two widely applied benchmark models to make the pre-
sented results comparable. Finally, all methods and models
are incorporated into an open-source R library to make the-
ses approaches available for researchers and industries.

2 Methods

2.1 Study sites and data

In Austria there are 210 river water temperature measure-
ment stations available, sometimes with 30+ years of data.
This large number of available data in Austria are highly
advantageous for developing new modelling concepts. Ad-
ditionally, a wide range of catchments with different phys-
iographic properties are available, ranging from high-alpine,
glacier-dominated catchments to lowland rivers, with mean-
dering characteristics.

For this study, 10 catchments with a wide range of phys-
iographic characteristics, human impacts (e.g. hydropower,
river regulation) and available observation period length
were selected. Including study sites with diverse properties
allows for validation of the applicability and performance
of the introduced modelling approach. The catchments are
situated in Austria, Switzerland and Germany, with outlets
located in the Austrian Alps or adjacent flatlands. All catch-
ments and gauging stations are shown in Fig. 1, and their
main characteristics are summarized in Table 1.

The gauging stations are operated by the Austrian Hy-
drographical Service (HZB) and measure discharge (Q) in
15 min intervals and water temperature (Tw) in a range of dif-
ferent time intervals (daily mean – 1 min). The temperature
sensors are situated in a way that complete mixing can be as-
sumed, e.g. after a bottom ramp. Consequently, the measured
water temperature should reflect the water temperature of the
given cross section.

The meteorological data used in this study are daily mean
air temperature (Ta), daily max air temperature (Tmax), daily
min air temperature (Tmin), precipitation sum (P ) and global
radiation (GL). Ta, Tmax, Tmin and P were available from
the SPARTACUS project (Hiebl and Frei, 2016, 2018) on
a 1× 1 km grid from 1961 onward. The SPARTACUS data
were generated by using observations and external drift krig-
ing to create continuous maps. GL data were available from
the INCA analysis (Integrated Nowcasting through Compre-
hensive Analysis) (Haiden et al., 2011, 2014) from 2007 on-
ward. The INCA analysis used numerical weather simula-
tions in combination with observations and topographic in-
formation to provide meteorological analysis and nowcasting

fields of several meteorological parameters on a 1×1 km grid
in 15–60 min time steps. For the presented study, the 15 min
INCA GL analysis fields were aggregated to daily means.
The catchment means of all variables are shown in Table 1.
By using high-resolution spatially distributed meteorologi-
cal data as the basis for our inputs, we aim to better represent
the main drivers of water temperature changes in the catch-
ments. Similar data sets are available for other parts of the
world, e.g. globally (Hersbach et al., 2020), for North Amer-
ica (Thornton et al., 2020; Werner et al., 2019), for Europe
(Brinckmann et al., 2016; Razafimaharo et al., 2020) and for
China (He et al., 2020).

2.2 Data preprocessing

The applied data preprocessing consists of aggregation of
gridded data, feature engineering (i.e. deriving new features
from existing inputs) and splitting the data into multiple sets
of input variables. Since river water temperature is largely
controlled by processes within the catchment, variables with
an integral effect on water temperature over the catchment
(i.e. Ta, Tmax, Tmin, P and GL) are aggregated to catchment
means.

Computing additional features from a given data set (i.e.
feature engineering) and therefore having additional data
representation can significantly improve the performance of
machine-learning models (Bengio et al., 2013). Previous
studies have shown that especially time information is impor-
tant for water temperature prediction. This includes time ex-
pressed as day of year (e.g. Hadzima-Nyarko et al., 2014; Li
et al., 2014; Jackson et al., 2018; Zhu et al., 2018, 2019c, d),
the content of the Gregorian calendar (i.e. year, month, day)
(Zhu et al., 2019b), or expressed as the declination of the
Sun (Piotrowski et al., 2015), which is a function of the day
of the year. Nevertheless, using cyclical features like day of
the year as an integer variable will most likely reduce model
performance, since days 1 and 365 are as close together as
1 and 2. To translate time information into a more suitable
format, we chose to transform months and days of months
into trapezoidal fuzzy sets, called fuzzy months. Similar to
dummy encoding, the values of a fuzzy month are between 0
and 1. They are equal to 1 on the 15th of the corresponding
month and linearly decreasing each day until they are zero
on the 15th day of the previous and following months. There-
fore, the values of two adjacent months will be around 0.5 at
the turn of the month. By encoding the categorical variable
“month” into these 12 new fuzzy variables, it should be pos-
sible to represent time of the year influence more smoothly,
as no jumps in monthly influence are possible. Initial test
showed that the advantage of this representation exceeds the
disadvantage of using 12 variables instead of 1 or 2. A simi-
lar approach for encoding time variables was already applied
by Shank et al. (2008).

Besides time variables, a previous study by Webb et al.
(2003) showed that lag information is significantly associ-
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Figure 1. Study sites in Austria, Germany and Switzerland. All gauging station IDs refer to the IDs in Table 1. Delineation sources:
Bayrisches Landesamt für Umwelt; HAO: Hydrological Atlas of Austria digHAO (BMLFUW, 2007).

Table 1. Overview of study catchment characteristics, including means of meteorological values of catchment means (Tw, Q, Ta, P , GL),
catchment areas (Area), mean catchment elevations (Elevation), catchment glacier and perpetual snow cover (Glacier), available data time
periods (Time period) and number of years with data (Years). IDs refer to the IDs used in Fig. 1. The percentage of glacier and perpetual snow
cover was computed from the CORINE Land Cover data 2012 and the mean catchment elevation from the EU-DEM v1.1 digital elevation
model with 25× 25 m resolution.

Area Elevation Glacier Tw Q Ta P GL
ID Catchment Gauging station Time period Years (km2) (m NAP) (%) (◦C) (m3/s) (◦C) (mm) (W/m2)

1 Kleine Mühl Obermühl 2002–2015 14.0 200.2 602 0 8.87 3.12 8.71 2.73 135
2 Aschach Kropfmühle 2004–2015 11.9 312.2 435 0 10.78 3.80 9.57 2.50 136
3 Erlauf Niederndorf 1980–2015 35.3 604.9 661 0 9.42 15.27 7.99 3.59 127
4 Traisen Windpassing 1998–2015 17.7 733.3 697 0 9.83 14.88 8.47 3.33 131
5 Ybbs Greimpersdorf 1981–2015 34.7 1 116.6 691 0 9.87 31.50 7.97 3.77 127
6 Saalach Siezenheim 2000–2015 16.0 1 139.1 1196 0 8.50 39.04 6.72 4.60 135
7 Enns Liezen 2006–2015 10.0 2 116.2 1419 0 1.19 67.56 5.62 3.60 137
8 Inn Kajetansbrücke 1997–2015 18.8 2 162.0 2244 2.8 6.00 59.26 0.12 2.56 153
9 Salzach Salzburg 1977–2015 39.0 4 425.7 1475 1.4 7.63 178.11 5.22 4.16 136
10 Danube Kienstock 2005–2015 11.0 95 970.0 827 0.4 10.77 1 798.31 10.05 2.13 131

ated with water temperature and can improve model perfor-
mance. The lag period of 4 d was chosen based on an initial
data analysis that included (i) assessing partial autocorrela-
tion plots of water temperatures, (ii) testing for significance
of lags in linear regression models, and (iii) checking vari-
able importance of lags in a random forest model. Therefore,
to allow for information of previous days to be used by the
models, the lags of all variables for the 4 previous days are
computed and used as additional features.

Using these input variables, six experiments with different
sets of inputs considering different levels of data availability
are defined. The variable compositions of all experiments are
shown in Table 2. All features include four lags, and each ex-
periment also includes fuzzy months as inputs. Experiment 0
(Tmean) acts as another simple benchmark in which only daily

mean air temperature and fuzzy months are used for predic-
tions. Experiment 1 (T ) will be able to show the benefit of
including Tmax and Tmin. Experiments 2–4 consist of com-
binations of experiment 1 with precipitation and discharge
data. Experiments 5–6 include combinations with GL and
therefore include only data of the time period 2007–2015 in
which GL data were available.

2.3 Benchmark models

Two widely applied models for stream water temperature
prediction are used as a benchmark for all models tested
in this study: multiple linear regression (LM) models and
air2stream (Toffolon and Piccolroaz, 2015). By including
these two models, it will be possible to compare this study’s
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Table 2. Overview of available meteorological and hydrological
variables and the composition of the different input data set exper-
iments. If an input variable is used in a data set, the lags for the 4
previous days are included as well. Additionally to the shown vari-
ables, all experiments use fuzzy months as input.

Experiment Ta Tmax Tmin P Q GL

0 (Tmean) X
1 (T ) X X X
2 (TP) X X X X
3 (TQ) X X X X
4 (TQP) X X X X X
5 (TPGL) X X X X X
6 (TQPGL) X X X X X X

results to a wider range of previous studies, which investi-
gated models for stream water temperature prediction.

2.3.1 Linear regression

Linear regression models are widely used for river water tem-
perature studies. Earlier studies used mainly air temperature
as a regressor to predict river water temperature (e.g. Smith,
1981; Crisp and Howson, 1982; Mackey and Berrie, 1991;
Stefan and Preud’homme, 1993). More recent publications
use a wider range of input variables or some modification
to the standard linear regression model (e.g. Caldwell et al.,
2013; Li et al., 2014; Segura et al., 2015; Arismendi et al.,
2014; Naresh and Rehana, 2017; Jackson et al., 2018; Trinh
et al., 2019; Piotrowski and Napiorkowski, 2019).

The ordinary least-square linear regression model is de-
fined as

Y = βX+ ε, (1)

where Y denotes the vector of the dependent variable (river
water temperature), X denotes the matrix of independent
variables (e.g. daily mean air temperature, global radiation),
β denotes the vector of model coefficients and ε denotes the
error term. ε is assumed to be normal distributed with a di-
agonal covariance matrix. The estimates for the model coef-
ficients and the dependent variable, which minimize the sum
of squared errors, are given by

Ŷ = β̂X, (2)

β̂ = (X′X)−1X′Y , (3)

where Ŷ and β̂ represent estimated values. The linear regres-
sion model applied in this study includes an intercept and the
variables Ta and Q as independent variables to predict Tw.

2.3.2 air2stream

air2stream (Toffolon and Piccolroaz, 2015) is a hybrid model
for predicting river water temperature, which combines a

physically based structure with a stochastic parameter cal-
ibration. It was already applied in multiple studies over a
range of catchments and generally had an improved perfor-
mance compared to linear regression models (e.g. Piccolroaz
et al., 2016; Yang and Peterson, 2017; Piotrowski and Na-
piorkowski, 2018; Zhu et al., 2019d; Piotrowski and Napi-
orkowski, 2019; Tavares et al., 2020). air2stream uses the
inputs Ta and Q and was derived from simplified physical
relationships expressed as ordinary differential equations for
heat-budged processes. Due to this simplification, it may be
applied like a data-driven model, which depends on parame-
ter calibration. The eight-parameter version of air2stream is
defined as

dTw
dt
=

1
θa4
[a1+ a2Ta− a3Tw

+ θ

(
a5+ a6 cos

(
2π
(
t

ty
− a7

))
− a8Tw

)
], (4)

where t is the time in days, ty is the number of days per year,
Q̄ is the mean discharge, θ =Q/Q̄ is the dimensionless dis-
charge and a1,...,8 are the model parameters. This differen-
tial equation is numerically integrated at each time step using
the Crank–Nicolson numerical scheme (Crank and Nicolson,
1947) and the model parameters are calibrated using particle
swarm optimization (Kennedy and Eberhart, 1995).

2.4 Machine-learning models

In this study we compare six different machine-learning
models: step-wise linear regression (step-LM), RF, XG-
Boost, FNNs and two RNNs – the long short-term network
(RNN-LSTM) and the gated recurrent unit (RNN-GRU). An
overview and simple depiction of the models are shown in
Fig. 2.

2.4.1 Step-wise linear regression

Step-wise linear regression models combine an iterative vari-
able selection procedure with linear regression models. The
step-wise variable selection starts at an initial model (e.g. all
variables) and removes or adds at each iteration based on a
prespecified criterion. We applied the step-wise variable se-
lection starting with an initial model including all variables
and using the Akaike information criterion (AIC) (Akaike H,
1973). The AIC for a linear regression model is given by

AIC= n× ln

(∑n
i=1(Y i − Ŷ i)

2

n

)
+ 2k, (5)

where n is the number of samples, ln() the natural logarithm,
Y and Ŷ the observed and predicted water temperatures and
k the number of selected input variables. The step-wise vari-
able selection is iteratively applied until AIC is at a mini-
mum. Additionally to the variables given in Sect. 2.2, inter-
action terms between Ta, Q, GL and P are included.
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Figure 2. Overview of the applied models with Ŷ denoting estimated water temperatures and X the matrix of observed variables. Ŷ1,...,M
are the predictions from individual RF trees. h1, ...,M are the predicted residuals from individual XGBoost trees. f (X,θ) denotes a mapping
from a FNN with the parameters θ . For a given time step, ht denotes the hidden internal state of a RNN cell, ct the internal cell state of a
LSTM cell and f (ht ,θ) the mapping from a RNN with the parameters θ . RNNs consist of a cascade of cells, each feeding their internal
states into the next cell, finally resulting in a single feed-forward layer estimating Ŷ from ht .

2.4.2 Random forest

The RF model (Breiman, 2001) is an ensemble-learning
model based on the idea of bagging (bootstrap aggregating)
(Breiman, 1996). Bagging predictors average multiple model
predictions, where each model is trained on a bootstrapped
sample instead of the full observed sample. This randomness
introduced by bootstrapping increases the model’s ability to
generalize and to produce stable prediction results.

RF models are bagging predictors which use classification
and regression trees (CARTs) as a base learner. RF CARTs
recursively apply binary splits to the data to minimize en-
tropy in the tree nodes. This is done until each node reaches
a minimum node size or a previously defined maximum tree
depth is reached. Breiman (2001) showed that adding further
randomness to the bagging method improves prediction ac-
curacy. In random forests this is achieved by only selecting
a random subset of available variables for the split at each
node. The estimate for the dependent variable is given by

Ŷ =
1
M

M∑
m=1

fi(X), (6)

where fm denotes a single fitted CART, M the number of
used CARTs, X the matrix of regressors and Ŷ the vector
of estimated water temperature. A simplified depiction of the
RF algorithm is shown in Fig. 2. RF has two important hyper-
parameters: the number of predictors sampled at each node
(mtry) and the minimum size of nodes (min node size). The
number of trees was chosen to be constant with 500 trees.

2.4.3 XGBoost

XGBoost (Chen and Guestrin, 2016) is a tree-boosting algo-
rithm that was developed based on the already existing con-
cept of boosting, which was further enhanced to increase ef-
ficiency, scalability and reduced overfitting. Similarly to bag-
ging, boosting methods combine the prediction of an ensem-
ble of weak learners to improve prediction accuracy. How-
ever, while bagging ensemble members are trained in par-
allel, boosting iteratively trains new ensemble members and
adds them to the existing ensemble. Boosting was first in-
troduced by Schapire (1990) and then widely applied af-
ter the introduction of the Adaboost algorithm (Freund and
Schapire, 1995). Friedman (2001) further enhanced boost-
ing by adding gradient decent optimization for the boosting
iterations. This resulted in the development of gradient tree
boosting (Friedman, 2002), which uses CART as weak learn-
ers.

XGBoost is an implementation of gradient tree boosting
with further enhancements in the form of added stochasticity
and regularization. The XGBoost estimated for the indepen-
dent variable is given by

Ŷ = 0.5+
M∑
m=1

ηfm(X), (7)

where f1, . . . fM is a sequence of CARTs, η ∈ [0,1] is the
learning rate, M is the number of used CARTs, X is the ma-
trix of input features and Ŷ is the vector of estimated water
temperatures. The mth tree is trained to predict the residu-
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als of a model of the form given in Eq. (7), which uses the
previous m− 1 CARTs. The loss function used to train each
tree includes a regularization term to prevent overfitting. Ad-
ditionally, overfitting is reduced by only allowing a random
subset of samples and variables to be used for constructing
trees and tree nodes at each iteration. A simplified depiction
of the XGBoost algorithm is shown in Fig. 2.

XGBoost has multiple important hyperparameters that
have to be chosen before fitting the model: the maximum
number of iterations (nrounds), the learning rate (η), the
maximum depth of a tree (max depth), the minimum sum of
instance weight needed in a child (min node size), the ratio
of random subsamples used for growing a tree (subsample)
and the random fraction of variables used for growing a tree
(colsample bytree).

2.4.4 Feed-forward neural networks

FNNs (White and Rosenblatt, 1963) are the first and simplest
type of neural networks. FNNs consist of multiple layers of
nodes, where each node is connected to all nodes of the pre-
vious and following layers. A node applies linear and non-
linear (activation) functions to its input to produce an output.
The general structure of a FNN is shown in Fig. 2.

Piotrowski et al. (2020) showed that adding dropout (Hin-
ton et al., 2012; Srivastava et al., 2014; Baldi and Sadowski,
2014) to FNNs for stream water temperature prediction im-
proved performance of single-layer FNNs. Dropout refers to
randomly dropping nodes from a layer during training, which
can prevent overfitting and potentially improve generaliza-
tion. We added a dropout to every FNN layer and defined
the dropout rate as a hyperparameter, which can be zero and
therefore also allow for model structures without dropout.

While the parameters (θ ) of the linear function get opti-
mized using backpropagation (Rumelhart et al., 1986), FNNs
have multiple hyperparameters that need to be predefined be-
fore training. These hyperparameters include the activation
functions, the number of layers, the number of nodes per
layer and the dropout ratio. After initial tests, in which a large
set of different activation functions was applied, we chose
the scaled exponential linear unit (SELU) activation function
(Klambauer et al., 2017) for all nodes in the network. SELU
includes a normalization, which enhances convergence and
avoids both vanishing and exploding gradients during back-
propagation. The other hyperparameters are optimized as de-
scribed in Sect. 2.5.

The hyperparameter optimization approach presented here
differs from previous studies, which generally assume a set
of a fixed number of layers and/or nodes per layer that were
derived by a trial-and-error approach (e.g. Bélanger et al.,
2005; Hadzima-Nyarko et al., 2014; Piotrowski et al., 2015;
Zhu et al., 2018, 2019d).

2.4.5 Recurrent neural networks

In contrast to FNNs, RNNs are able to process sequences of
inputs. This is achieved by having internal (hidden) states.
While there are many different types of RNNs, we focused
on the two most widely known, the long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) and the
gated recurrent unit (GRU) (Cho et al., 2014). Each layer
of an RNN consists of a sequence of cells that share a com-
mon set of weights. The cells of both LSTM and GRU are
shown in Fig. 2 and are described in Appendices A1 and A2.
A single RNN cell consists of multiple gates, which refers to
the nodes of a cell where non-linear transformations are ap-
plied to the inputs and states. The main difference between
LSTM and GRU cells is their number of gates and internal
states, where LSTMs are more complex (two internal states
and three gates) than GRUs (one internal state and two gates).
While in some cases GRUs outperform LSTMs, there is no
clear rule of when to use one or the other (Yazidi et al., 2020).
Each RNN contains a FNN layer with a single node at its
end, which is used to compute the predicted values from the
hidden states of the last time step (hT ). Both types of RNNs
have the same set of hyperparameters that need to be speci-
fied before training the model: the number of used RNN lay-
ers, the number of units per layer, the numbers of time steps,
the dropout ratio, and the batch size.

Due to their internal states and the usage of multiple time
steps for prediction, it can be assumed that RNNs do not need
time information (here in the form of fuzzy months) for pre-
dicting water temperature data. To test this assumption, both
RNN variants are also trained without fuzzy months to check
the influence of these additional variables on model perfor-
mance. Being able to achieve equally good results without
fuzzy months would reduce training time considerably due
to decreasing the input data by 12 dimensions (columns).

2.5 Bayesian hyperparameter optimization

Choosing adequate hyperparameters for a machine-learning
model can have a large impact on its performance. There-
fore, it is necessary to apply some sort of optimization pro-
cedure. While it might be possible to apply a grid search
over the range of all possible parameter value combinations
for a small set of hyperparameters, it is usually not feasible
due to available computational resources. For that reason, we
chose to optimize the hyperparameters of nearly all machine-
learning models in this study with the Bayesian optimization
method. Only random forest with three hyperparameters is
optimized using a grid search. Step-wise linear regression
does not have hyperparameters that need optimization.

Bayesian optimization is a global optimization method
for blackbox functions (i.e. lacks known structure and is
derivative-free) that is often applied in cases where the ob-
jective function is computationally expensive to evaluate. It
originates from work by Kushner (1964), Zhilinskas (1975),
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Močkus (1975), Močkus et al. (1978), and Močkus (1989)
and was later popularized by Jones et al. (1998). It be-
came especially well known for being suitable for optimizing
machine-learning hyperparameters after a study by Snoek
et al. (2012).

Bayesian optimization consists of two parts: a method for
statistical inference and an acquisition function for deciding
the next sample point. The method for statistical inference is
usually a Gaussian process (GP) which provides an estimated
posterior distribution at each iteration that is an estimate for
the function that should be optimized. The acquisition func-
tion is used to find the next point to evaluate during each
optimization step and was chosen to be the upper confidence
bound (UCB) (Srinivas et al., 2009) in this study. In sum-
mary, Bayesian optimization constructs a surrogate model at
each iteration during optimization to choose a suitable next
point. The hyperparameters of all optimized models and their
chosen bounds are given in Appendix A3.

2.6 Evaluation metrics

The objective function for all models and the hyperparameter
optimization is the mean squared error (MSE):

MSE=
1
n

n∑
i=1
(yi − ŷi)2, (8)

where n is the number of samples (d) and yi the observed
and ŷi the predicted water temperatures. To compare the per-
formance of different models, the root mean squared error
RMSE and the mean absolute error MAE are used:

RMSE=
√

MSE, (9)

MAE=
1
n

n∑
i=1
|yi − ŷi |. (10)

2.7 Experimental setup

To be able to objectively compare all applied models, the
available data sets are split into two parts: the first 80 % of
the time series were used for training/validation and the last
20 % were used for testing. We deliberately did not choose
a random split, because predicting water temperatures for a
future time period is a more adequate test for models. This
is especially relevant for water temperature, which is charac-
terized by non-stationarity due to climate change (Van Vliet
et al., 2013). The training/validation and test time series are
compared to assess the difference of water temperature dis-
tribution of all catchments.

The step-wise linear regression model, RF and XGBoost
are optimized using cross-validation (CV). Two kinds of CV
are applied: a five times repeated 10-fold CV and a time-
series CV. While the 10-fold CV splits the data randomly, the
time-series CV gradually adds data to an initial part of the
time series while evaluating the performance of each step.

The time-series CV started with an initial window of 730 d
for training the following 90 d for validation. The training
set is increased by 90 d at each different cross-validation set
until the full time series except for the last 90 d was used.
Therefore, instead of 10 folds, the number of folds for the
time-series CV depends on the time-series length.

Due to computational and time constraints, hyperparam-
eter optimization for all neural networks was done by us-
ing a training/validation split with 60 % data for training and
20 % data for validation. This allows model validation per-
formance estimation by training a model once, while a 5
times repeated 10-fold CV would require training a model 50
times. Furthermore, the training/validation split is the stan-
dard way of training neural networks for real-world applica-
tions.

Bayesian hyperparameter optimization consists of 20 ran-
dom parameter samples and 40 iterations of optimization.
The data inputs for all neural networks were standardized by
subtracting the mean and dividing by the standard deviation
of the training data. The optimized neural network hyper-
parameter sets are used to create five independently trained
models, from which an ensemble for prediction is created by
taking the average of all five prediction results. Using ensem-
bles of networks is a way to significantly increase a neural
network’s ability to generalize and is an often-applied ap-
proach which was first introduced by the work of Hansen
and Salamon (1990). In addition, early stopping with pa-
tience= 5 was applied to all neural networks to avoid over-
fitting.

The best-performing model for each model type and ex-
periment is chosen using the validation RMSE. Test RMSE
and MAE results are only compared after choosing the mod-
els with minimum validation RMSE. Consequently, it might
be possible that some models have a superior test perfor-
mance but are not chosen as the best-performing model for
a specific model type and/or experiment. This should reflect
a real-world application, where test data act as a previously
unknown future time series.

Table 3 gives an overview of all time periods and the hy-
perparameter optimization details. All models are trained us-
ing the training/validation period data and either applied CV
or a training/validation split. Models with hyperparameters
are trained multiple times during hyperparameter optimiza-
tion. The fully trained models are then applied in the test
time period to produce comparable out-of-sample results.
The eight air2stream hyperparameters are optimized using
the particle swarm optimization with 500 iterations, 500 par-
ticles, cognitive and social learning factors set to 2 and inertia
max and min set to 0.9 and 0.4. All models were run on the
Vienna Scientific Cluster, where each run had access to two
Intel Xeon E5-2650v2, 2.6 GHz, eight-core CPUs and 65 GB
RAM.
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Table 3. Overview of the different modelling time periods and hyperparameter optimization details, including information about cross-
validation (CV), the number of hyperparameters (Hyperparameters) and the number of iterations of the Bayesian hyperparameter optimiza-
tion (Iterations).

Catchment Training/validation period Test period Model CV Hyperparameters Iterations

Kleine Mühl 2002–2012 2013–2015 LM no 0 0
Aschach 2004–2012 2013–2015 air2stream no 8 500
Erlauf 1980–2007 2008–2015 step-LM yes 0 0
Traisen 1998–2011 2012–2015 RF yes 2 60
Ybbs 1981–2007 2008–2015 XGBoost yes 6 60
Saalach 2000–2011 2012–2015 FNN no 4 60
Enns 2006–2013 2014–2015 RNN-GRU no 5 60
Inn 1997–2011 2012–2015 RNN-LSTM no 5 60
Salzach 1977–2007 2008–2015
Danube 2005–2012 2013–2015

2.8 Statistical tests

The Kruskal–Wallis test (Kruskal and Wallis, 1952) was used
to test for differences in overall model performances, differ-
ent training/model characteristics and different data inputs.
Dunn’s test for multiple comparison (Dunn, 1964) was used
for pair-wise comparisons between model performances. To
investigate the association of model types, experiments and
catchments with test RMSE, an ordinary least-square linear
regression model was used. Level of significance was set to
p = 0.05 for all statistical tests.

2.9 Open-source R package

All preprocessing steps and models were implemented in
the open-source R package wateRtemp, which is available
under https://www.github.com/MoritzFeigl/wateRtemp (last
access: 25 April 2021) or from Feigl (2021a). This provides
easily applicable modelling tools for the water temperature
community and allows all results of this study to be repli-
cated. All programming was done in R (R Core Team, 2020),
where the model development relied heavily on Caret (Kuhn,
2020), xgboost (Chen et al., 2020) and TensorFlow (Allaire
and Tang, 2020) and the visualizations on ggplot2 (Wickham,
2016).

3 Results

3.1 Time period characteristics

Due to climate change, both air temperatures and water tem-
peratures are steadily increasing (Mohseni and Stefan, 1999;
Pedersen and Sand-Jensen, 2007; Harvey et al., 2011; Kȩdra,
2020). This is clearly visible when comparing the change
in number of extreme warm days and the increase in mean
water temperature in all studied catchments with time. For
this we compared the training/validation and test time data
in each catchment. Since test data consist of the last 20 % of

the overall data, the exact length of these time series is de-
pendent on the catchment but is always a subset of the years
2008–2015. We can observe an increase of 138% of the me-
dian number of days with water temperature above the 90%
quantile between training/validation and test time period in
all catchments. This increase ranges from 69% or from 32 to
54 d, in the Danube catchment and up to 285%, or from 26
to 100 d, in the Salzach catchment. This change is even more
pronounced when comparing the last year of test data (2015)
to all other available years, where the median number of days
with water temperatures above the 90% quantile (computed
for the overall time series) of all catchments increases by
273%. Figure 3 shows the corresponding boxplots of days
with stream temperature above the 90 % quantile for each
catchment in training/validation and in test time period. A
similar pattern can be observed in the changes in mean yearly
stream temperatures. The median increase in mean yearly
water temperature of all catchments is 0.48 ◦C when com-
paring training/validation with test time period and 0.77 ◦C
when comparing the last year of the test period (2015) with
all other years. Since the test period is, as shown here re-
garding extremes, different from the training/validation pe-
riod, the models are also, at least to some extent, tested on
how they perform under instationary conditions. This is a
test where environmental models often fail (e.g. Kling et al.,
2015).

3.2 Overall performance comparison

Table 4 gives an overview of the best-applied machine-
learning models and the two benchmark models LM and
air2stream. This table compares the RMSE and MAE per-
formances of all models; additional performance metrics are
shown in Table A1. The mean test RMSE of LM is 1.55 ◦C
with an overall range of [1.25, 2.15] ◦C, while air2stream has
a mean test RMSE of 0.98 ◦C with an overall range of [0.74,
1.17] ◦C. The performance results for each catchment show
that air2stream always outperformed LM and consequently
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Figure 3. Boxplots showing the distribution of numbers of days with stream temperatures above the 90 % quantile per year for all study
catchments for the training/validation and the test time period, where the test time period consists of the last 20 % of data in each catchment.
The 90 % quantile values were estimated using the full time series for each catchment.

results in a significant lower test RMSE (p < 0.001). The
mean test RMSE of the best machine-learning models per
catchment is 0.55 ◦C with an overall range of [0.42, 0.82] ◦C
and always outperformed the air2stream benchmark. Based
on the RMSE means, the highest performing ML model
is 64 % and 43 % better, compared to LM and air2stream.
This results in a significantly lower test RMSE of the tested
machine-learning models compared to the air2stream bench-
mark (p < 0.001).

Both XGBoost and FNN were found to be the best-
performing model in 4 of 10 analysed catchments each. RF
was the best-performing model in the Salzach catchment
and RNN-LSTM in the Danube catchment. Step-LM and
RNN-GRU did not outperform the other models in any of
the study catchments. Experiment 3, which only includes air
temperature and discharge input features, resulted in the best-
performing model in four catchments. Experiment 6, which
included all available input features, also produced the best-
performing model in four catchments. Experiment 4, which
includes air temperature, discharge and precipitation input
features, performed best in two catchments.

Figure 4 shows the results of all models, catchments and
experiment combinations. The boxplots in Fig. 4a show the
range of model performances depending on the model type.
Kruskal–Wallis test results show no significant difference
(p = 0.11) of the test RMSE of different model types. Fig-
ure 4b shows boxplots of model performance for all experi-
ments. Kruskal–Wallis test results show a highly significant
difference of test RMSE of the different experiments (p <
10−14). The results in Fig. 4b show an increase in median
performance with an increasing number of input features un-
til experiment 4 (TQP). When adding global radiation as an

additional input parameter, the median performance does not
increase further. This could be explained by a reduced time-
series length of experiments 5 (TPGL) and 6 (TQPGL), since
global radiation was only available from 2007 on. A com-
parison between experiments with equal time-series lengths
(experiments 0–4 and experiments 5–6) also indicates that
runoff information improves the modelling performance.

Figure 4c illustrates the RMSE performance results for
each catchment shown as boxplots. A corresponding figure
of the MAE results is shown in Fig. A1. The boxplots are
overlayed with scatter-plot points adding an overview of the
individual performance of each model and experiment com-
bination. To account for a better visibility, the scatter-plot
points are shifted in horizontal direction randomly. The dif-
ference in performance between catchments is clearly visible
and ranges from a median RMSE of around 0.93 ◦C in catch-
ments Kleine Mühl and Aschach down to a median RMSE
of 0.58 ◦C in the Inn catchment.

Figure 4c also includes the air2stream benchmark per-
formance shown as a grey line for each catchment. Nearly
all tested experiments and model combinations showed im-
proved performance compared to the air2stream benchmark.
Only in five catchments could we observe models in combi-
nation with experiments 0, 1, and 5 and one time with exper-
iment 6 that predicted worse than air2stream. There are sur-
prisingly few models considering the fact that experiments 0,
1, 5 and 6 are heavily constrained due to the amount of infor-
mation that is available for prediction. Experiments 0 and 1,
which only use air temperature, are still able to improve pre-
dictions compared to air2stream for all model types in seven
catchments. Similarly, experiments 5 and 6 with only 6 years
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Table 4. Overview of model performance of the best machine-learning model for each catchment and the two reference models. The best-
performing model results in each catchment are shown in bold font. The best machine-learning model for each catchment was chosen by
comparing validation RMSE values, while test RMSE and test MAE values were never part of any selection or training procedure. The shown
values all refer to the test time period.

Best ML model results LM air2stream

Catchment Model Experiment RMSE (◦C) MAE (◦C) RMSE (◦C) MAE (◦C RMSE (◦C) MAE (◦C)

Kleine Mühl XGBoost 4 (TQP) 0.740 0.578 1.744 1.377 0.908 0.714
Aschach XGBoost 6 (TQPGL) 0.815 0.675 1.777 1.408 1.147 0.882
Erlauf XGBoost 6 (TQPGL) 0.530 0.419 1.354 1.057 0.911 0.726
Traisen FNN 3 (TQ) 0.526 0.392 1.254 0.970 0.948 0.747
Ybbs RF 3 (TQ) 0.576 0.454 1.787 1.415 0.948 0.756
Saalach XGBoost 6 (TQPGL) 0.527 0.420 1.297 1.062 0.802 0.646
Enns FNN 6 (TQPGL) 0.454 0.347 1.425 1.166 1.168 0.671
Inn FNN 3 (TQ) 0.422 0.329 1.376 0.098 1.097 0.949
Salzach FNN 4 (TQP) 0.430 0.338 1.327 1.077 0.743 0.595
Danube RNN-LSTM 3 (TQ) 0.521 0.415 2.145 1.721 1.099 0.910

Mean: 0.554 0.437 1.549 1.235 0.977 0.760

of training data are able to improve predictions compared to
air2stream for all model types in five catchments.

From the results in Fig. 4a, b, c it seems likely that per-
formance is in general influenced by the combination of
model, data inputs (experiment) and catchment, while the
influence of different experiments and catchments is larger
than the influence of model types on test RMSE. The lin-
ear regression model for test RMSE with catchment, exper-
iment and model type as regressors is able to explain most
of the test RMSE variance with a coefficient of determina-
tion of R2

= 0.988. Furthermore, it resulted in significant
association of all catchments (p < 10−15), all experiments
(p < 0.005) and the FNN model type (p < 0.001). The es-
timated coefficient of the FNN is −0.05, giving evidence of
a prediction improvement when applying the FNN model.
All other model types do not show a significant association.
However, this might be due to a lack of statistical power, as
the estimated coefficients of the model types (mean: −0.01,
range: [−0.05, 0.02]) are generally small compared to catch-
ment coefficients (mean: 0.86, range: [0.69, 1.06]) and ex-
periment coefficients (mean: −0.12, range: [−0.2, −0.04]).
Overall, the influence of the catchment is higher than the
influence of model type and experiment, which is clearly
shown with their around 1 order of magnitude larger coef-
ficients.

Multiple experiments often result in very similar RMSE
values for a single model type. Furthermore, the best-
performing experiments of different model types are always
very close in performance. This results in a median test
RMSE difference of the best experiments of different model
types of 0.08 ◦C and a median test RMSE difference of the
best-performing model and the second best model of another
model type of 0.035 ◦C. On the other hand, the median dif-

ference between the tested machine-learning model RMSE
and the air2stream RMSE is −0.39 ◦C.

The relationship between mean catchment elevation,
glacier fraction and test RMSE was analysed with a linear
model using mean catchment elevation, glacier fraction in
percentage of the total catchment area, total catchment area
and the experiments as independent variables and test RMSE
as the dependent variable. This resulted in a significant asso-
ciation of elevation (p value < 2×10−16) with lower RMSE
values and catchment area (p value= 3.91×10−4) and a sig-
nificant association of glacier cover (p value= 9.79× 10−5)
with higher RMSE values. Applying the same model without
using the data of the largest catchment, the Danube, resulted
in a significant (p value= 2.12×10−11) association between
catchment area and lower RMSE values, while the direction
of the other associations stayed the same.

The run times for all applied ML models are summarized
in Table 5. FNN and RF have the lowest median run times
with comparatively narrow inter-quartile ranges (IQRs), so
that most models take between 30 min and 1 h to train. XG-
Boost has a median run time of around 3 h (172.9 min) and
also a comparatively low IQR with a span of 50 min. Step LM
and both RNNs need much longer to train, with median run
times of around 700 min. They also have a much larger vari-
ability in the needed run time, especially the step-LM model
with an IQR of more than 1500 min. In contrast, the run time
of the LM model is negligibly small (< 1 s), and air2stream
is also considerably faster, with run times of < 2 min in all
catchments.

3.3 Detailed analysis for a single catchment

To further investigate the difference in performance, the pre-
diction results for the last year of the test data (2015) of
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Figure 4. Boxplots of model performance comparing (a) the different machine-learning models, (b) the different experiments and (c) model
performance in each catchment with additional scatter-plot overlay to show performance of individual combinations of catchments, models
and experiments. The catchments in (c) are ordered by catchment size from smallest to largest with additional information of the available
time-series length in parentheses below. The air2stream benchmark performance is shown as grey line for each catchment. Due to the much
larger test RMSE values, LM performance is not shown to account for a better visibility.

Table 5. Run times of all applied ML models given as the median
and inter-quartile ranges (IQR) of run times in minutes.

Run times (min)

Model Median IQR

Step-LM 698.9 158.8–1733.8
RF 54.3 44.3–74.6
XGBoost 172.9 153.6–204.0
FNN 30.8 28.5–41.5
RNN-LSTM 748.6 520.9–1111.6
RNN-GRU 767.8 583.9–1171.1

the Inn catchment are examined. The year 2015 was chosen
for comparison, since it has an extraordinarily large number
of days with high water temperatures and therefore can be
used to give a robust estimate of model performance. It is
a strong test under instationary conditions. The time period
1997–2014 has a median of 30 d per year with water temper-
atures over 11 ◦C, whereas 102 d with such high water tem-
perature could be observed in the year 2015. Figure 5 shows
the prediction results of each model (red lines) compared to

the observation (blue line) and all other model predictions
(grey lines) for the year 2015 and the corresponding RMSE
and MAE result for that year.

The two benchmark models (LM and air2stream) show
large differences between prediction and observations and
show in general a very different behaviour than all tested
machine-learning models. While the largest prediction errors
of the tested machine-learning models occur during similar
time periods, large deviations can be observed over the whole
year in both benchmark models.

The largest prediction errors of all machine-learning mod-
els occur during warmer periods and peaks in the sum-
mer months and during periods of low water temperature
in November–December. This is clearly visible in all tested
models. Therefore, differences in RMSE and MAE mainly
result from their performance during these periods and con-
sequently can be quite large even though the actual numerical
difference is rather small. This can be observed when com-
paring the results of best-performing model FNN and RNN-
GRU in Fig. 5. Both models produce similar prediction re-
sults for the largest part of the year, but the FNN model is
better able to predict the peaks with high water temperatures
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Figure 5. Comparison of the prediction of all tested model types for the Inn catchment for the year 2015. Data from 2015 were not used
for training and validation. Prediction results for each model are shown with red lines, while the observations are shown in blue lines. The
predictions of all other models are illustrated with grey lines.

in the summer months, which results in a RMSE and MAE
difference of 0.115 and 0.086, respectively. Very small dif-
ferences in RMSE and MAE as seen between the two best-
performing models, FNN and XGBoost, result in only very
subtle differences in the predicted time series. Very similar
observations can be made when analysing the prediction re-
sults in the other catchments. The only exception can be ob-
served in the largest catchment, the Danube (Fig. A2), where
the time series is much smoother with relatively few peaks in
water temperature. This results in the RNN models being the
best-performing models with a large performance difference
compared to all other models. The corresponding figures of
all catchments except the Inn and Danube are provided in the
Supplement.

3.4 Influence of time variables for RNNs,
cross-validation methods

Removing time information in the form of fuzzy months
from the training data of RNNs does not significantly change
the catchment test RMSE (p = 0.17). However, the optimal
number of time steps estimated by the hyperparameter opti-
mization is significantly increased (p = 0.02). By removing
time information from the inputs, the estimated time steps
by Bayesian hyperparameter optimization are 37.78 d longer
than when using time information as additional input. This

significantly increases model training time (p = 0.034), with
a mean difference of 132.45 min.

The different CV schemes applied to steps LM, RF and
XGBoost showed no significant difference in performance
(p = 0.91).

3.5 Influence of hyperparameters on model results

The influence of different sets of hyperparameters on model
performance is shown in Fig. 6. This figure shows the valida-
tion RMSE for all parameter sets which were used during hy-
perparameter optimization. A large difference in the range of
performance can be observed for different models. Validation
RMSE means, standard deviations, and minimum and maxi-
mum of all models are shown in Table 6. The largest variabil-
ity is apparent in the FNN results, with a validation RMSE
standard deviation of σFNN = 1.60 ◦C and an overall RMSE
range of [0.41, 16.6] ◦C. This is followed by XGBoost, which
has multiple outliers in each catchment that increase the
performance spread, resulting in σXGBoost = 1.07 ◦C and the
RMSE range [0.40, 9.15] ◦C. Both RNNs show very simi-
lar performance distributions, with a RMSE range of around
[0.45, 6.3] ◦C. Compared to all other tested models, the RF
model has a much smaller spread in performance, resulting
from different hyperparameter sets with σRF = 0.16 ◦C and
a resulting RMSE range of [0.45, 1.14] ◦C. Tables with all
optimized hyperparameters are provided in the Supplement.
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Figure 6. Boxplots showing the validation RMSE distribution for different hyperparameter sets for all model types, catchments and exper-
iments. The catchments are ordered by catchment size from smallest (left) to largest (right), with additional information of the available
time-series length in parentheses below.

Table 6. Validation RMSE means µ, standard deviations σ , and
maxima and minima for all model types resulting from hyperpa-
rameter optimization.

Validation RMSE (◦C)

Model µ σ Min Max

RF 0.70 0.16 0.45 1.14
XGBoost 0.95 1.07 0.40 9.15
FNN 1.70 1.60 0.41 16.6
RNN-LSTM 0.97 0.53 0.46 6.4
RNN-GRU 0.91 0.44 0.45 6.3

4 Discussion

In this study, we show the stream water temperature pre-
diction performance of six machine-learning models with
a range of input data sets in 10 catchments and compared
them to two widely used benchmark models. The results
show generally a very similar performance of the tested
machine-learning models, with a median test RMSE differ-
ence of 0.08 ◦C between models. In contrast, the models had
a significantly improved performance when compared to the
air2stream benchmark model, with a mean test RMSE de-
crease of 0.42 ◦C (42 %). Results showed that nearly all of
the test RMSE variance (R2

= 0.99) can be explained by

the catchment, the input data set and the model type. This
also showed that the performance is significantly influenced
by the type of input data, where more inputs generally per-
formed better and, that of all models, only the FNN model
had a significant association with lower test RMSE values.
Furthermore, a wide range of performance was observed
for the different hyperparameter sets for the tested models,
with extremely large RMSE standard deviation (1.60 ◦C) ob-
served in the FNN results.

Except for very few model types and experiment combi-
nations, all tested machine-learning models showed an im-
proved performance when compared to the two benchmark
models. The difference between the benchmark and tested
models was not only visible in the resulting test RMSE and
MAE values, but also clearly visible in the range and time
of occurrence of large prediction errors in the predicted time
series (see Fig. 5). Given the range of estimated coefficients
of the catchments ([0.69, 1.06]), data inputs ([−0.2, −0.04])
and model types ([−0.05, 0.02]) in the regression model for
test RMSE, we can state that given an adequate model setup
and selected hyperparameters, the influence of different data
inputs and different catchments is much larger than the in-
fluence of the model types. However, there seems to be an
advantage of using the FNN model, as it was the only model
that had a significant association with lower RMSE values
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and also the largest estimated coefficient of all model types
(−0.05).

The result presented here shows that FNN and XGBoost
perform best in 8 of 10 catchments and are therefore a first
choice for water temperature prediction tasks. For modelling
large catchments with comparable size to the Danube catch-
ment (96 000 km2), where long-term dependencies seem to
be more relevant, RNNs are the best choice. Both RNN ar-
chitectures, GRU and LSTM, produce very similar results
in the Danube catchment, with a best test RMSE of ap-
proximately 0.52 ◦C. This is considerably lower than the
median test RMSE of the other models (0.90 ◦C) and the
air2stream benchmark (1.10 ◦C). The RF model has the low-
est standard deviation in the resulting RMSE depending on
the chosen hyperparameter (0.16 ◦C) and thus might be the
most reasonable choice in situations with limited computa-
tional resources. More input data are generally better, but the
combination of air temperature and discharge input data al-
ready produces prediction results with a median RMSE of
0.62 ◦C. This can be further enhanced by adding precipi-
tation data, which decreases the median RMSE further to
0.60 ◦C. Adding GL data can potentially increase perfor-
mance as well, as experiment 6 shows a similar performance
range to experiment 3 while using only 6 years of training
data. Results of experiment 2 (TP), which is most relevant for
practical application as it uses inputs that are general avail-
able for most regions and from climate models, show a me-
dian test RMSE of 0.75 ◦C. This is only a 19 % reduction
in RMSE performance compared to the experiment with the
lowest median RMSE and an improvement of 21% compared
to air2stream. Thus, application of this set of widely avail-
able data inputs is able to produce prediction performance,
improving the current state of the art, and could be used as a
basis for short-term forecasts and assessing near-future pre-
dictions (5–10 years) under climate change. The ability of
ML approaches to simulate processes and signals from a sys-
tem under prolonged climate change is important and a topic
of future research.

The presented machine-learning approaches could con-
siderably improve prediction results compared to the cur-
rent state-of-the-art air2stream model. This stands in con-
trast to the findings of Zhu et al. (2019d), which assessed
the performance of a suite of machine-learning models for
daily stream water temperature. Zhu et al. (2019d) results
showed that air2stream had an improved performance when
compared to FNNs, Gaussian process regression and de-
cision tree models in eight catchments using water tem-
perature, discharge and day of year as model inputs. The
air2stream results presented here have a test RMSE range
of [0.74, 1.17] ◦C, which is comparable to results of Zhu
et al. (2019d) with [0.64, 1.16] ◦C and also to other stud-
ies applying air2stream, e.g. Piotrowski and Napiorkowski
(2018) with a range of [0.625, 1.31] ◦C. This leads us to the
conclusion that our benchmark performance is in line with
other air2stream applications and therefore provides a con-

sistent reference, even though air2stream was originally set
up for the use of point source data and not the catchment
means that we used to make results comparable to the tested
machine-learning models. Consequently, our presented ap-
proaches show a significant improvement compared to ex-
isting machine-learning daily stream water temperature pre-
diction models, which can be attributed to the adequate rep-
resentation of time (fuzzy months) as data input, the applied
hyperparameter optimization, the choice of lagged time steps
and the used input variables.

Due to the lack of physical restraints, statistical modelling
approaches are often suspected of failing when extrapolat-
ing outside their training data range (Benyahya et al., 2007).
However, machine-learning methods are more powerful and
flexible than previous modelling approaches and are able to
simultaneously use spatial and temporal information at dif-
ferent scales (Reichstein et al., 2019). This is especially im-
portant for climate change studies, where increasing air tem-
perature might change the statistical relationships between
meteorological drivers and stream water temperature. To in-
vestigate the extrapolation performance of the considered
ML methods, we selected the much warmer recent years of
the time series as a test period and analysed the year with
the most frequent days of extreme temperatures in detail. All
tested models where able to produce predictions with a per-
formance close to the training performance in the test time
period and in the year with the most temperature anoma-
lies. These results show that it is still possible to produce
robust prediction results at least for short time predictions
(1–8 years) under a changing climate. Successful extrapola-
tion for short-term periods suggests that mid- to long-term
predictions might also produce reasonable results. However,
this can only be evaluated based on future observations. It
is clear that the ML approaches will fail in extrapolation,
when catchment properties change with time. In the context
of high-alpine, glacier-dominated catchments, for example,
it can be assumed that the water temperature characteris-
tics will change, when glaciers vanish. As a consequence,
the underlying processes lead the water temperature in the
stream change. These changes are not reflected in the ML
approaches. It would need more physically or process-based
approaches. For example, air2stream would not have an ad-
vantage in this respect. The current results suggest a strong
influence of catchment properties on general ML model per-
formance. While associations of performance with elevation,
glacier cover and catchment area were apparent, we could not
come to a strong conclusion, as even the direction of the rela-
tionship for one variable changed when removing one catch-
ment from the analysis. We believe that there are a number
of factors influencing these associations, and more in-depth
investigations on a larger number of basins are needed to fur-
ther understand the relationships between ML model perfor-
mances and catchment properties and their implications.

Depending on the machine-learning model, our results
varied considerably with the chosen hyperparameters. Espe-
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cially the two best-performing models, XGBoost and FNNs,
show an extreme variance in performance due to the cho-
sen hyperparameters. This leads to the conclusion that flex-
ibility might be necessary for a well-performing model but
that it is also a possible source of error or reduced model
performance. These findings highlight the importance of hy-
perparameter optimization of machine-learning models and
might be a possible explanation of the fact that especially
FNNs did not perform equally well in other studies. Most
publications reporting findings regarding FNN performance
for stream water temperature tested only a small set of FNN
hyperparameter combinations, mostly chosen by trial and er-
ror (e.g. Piotrowski et al., 2015; Rabi et al., 2015; Abba et al.,
2017; Zhu et al., 2018; Temizyurek and Dadaser-Celik, 2018;
Zhu et al., 2019d). Our results show the extremely an large
influence of hyperparameters, therefore rendering any trial-
and-error approach insufficient and certainly non-optimal.

RNNs are successfully applied in current rainfall-runoff
modelling studies (e.g. Kratzert et al., 2018, 2019; Xiang
et al., 2020; Li et al., 2020), and are thus a promising candi-
date for stream water prediction. However, our results show a
below average performance in most catchments when com-
pared to the other tested machine-learning models. This is
especially relevant, since compared to the other methods,
RNNs use a range of previous time steps (optimized hyperpa-
rameter) for prediction, which contains much more informa-
tion than the four previous time steps available for the other
models. RNNs are the best-performing models in the largest
catchment indicating that RNNs are especially strong when
processes with long-term dependencies have to be described.
These long-term dependencies result most likely from in-
creased concentration times, which is generally dependent on
catchment size (McGlynn et al., 2004). For all other catch-
ments in this study, the 4 d lagged variables seem to be suf-
ficient and RNNs are not able to predict the corresponding
fast changes in water temperature. Our results also show the
importance of using time information as input for RNNs.
RNNs are generally able to learn the corresponding infor-
mation from data, since there is no significant difference in
performance for the RNNs with and without time informa-
tion. However, RNNs optimized with time information in-
puts needed a significantly lower number of time steps for
the same prediction performance, thus decreasing computa-
tion time and increasing the number of data points available
for training.

This study has some limitations. Firstly, the selected catch-
ments are all central European catchments with humid con-
ditions. Testing these approaches on Mediterranean or more
dynamic hydro-climatological conditions could potentially
result in different importance of input variables (e.g. dis-
charge in arid climates) and performance ranking of mod-
els. By selecting catchments with a wide range of physio-
graphic characteristics this potential bias should be kept at
a minimum. Furthermore, the performance of the air2stream
benchmark is similar to the performance range of other stud-

ies, allowing for comparison. Secondly, we trained all models
only for individual catchments and did not try to produce a
global model that could predict water temperatures in mul-
tiple catchments, or even in a prediction of ungauged basin
setting. While this is a relevant problem, we found it nec-
essary to have a comprehensive evaluation of different data
inputs, model types and training characteristics before com-
bining all of this in a multi-catchment water temperature pre-
diction model.

5 Conclusions

Current standard methods in daily stream water prediction
are able to model 10 Austrian study catchments with a
mean test RMSE of 1.55 ◦C (linear regression) and 0.98 ◦C
(air2stream). We tested six machine-learning models with
different data inputs and could produce predictions with a
mean RMSE of 0.55 ◦C, an improvement of 64 % and 43 %.
Of these tested models, the FNN model using air tempera-
ture, discharge and precipitation and, if available, radiation
as inputs produces the best-performing models. With only
6 years of training data, state-of-the-art prediction model re-
sults can be achieved.

One major influence on performance are model hyperpa-
rameter. The variability in performance for different hyper-
parameters is much larger than for different model types or
data inputs. Thus hyperparameter optimization is extremely
important for a well-performing model. In situations where
computing resources are limited and hyperparameter opti-
mization is not possible, the RF model seems to be a reason-
able choice for application, because it has the lowest variance
in prediction RMSE resulting from the chosen hyperparame-
ters.

RNNs with their internal states and ability to process long
time series, are the best-performing model type for very large
catchments. This is most likely a result from increased con-
centration times in the catchment. Consequently, estimating
concentration times of a catchment for adequately choosing
a model type or relevant lags of variables should be included
in future research. Applying variable importance estimation
methods are also another way to further enhance the under-
standing of the interactions between variables and model per-
formance and could help deciding on the relevant number of
variable lags. Applying these methods however, especially
for neural networks, is out of scope for this study and will be
part of future research.

The study catchments were chosen to have a wide range
of physiographic characteristics but are all located in central
Europe. Thus the range of characteristics is still limited and
testing these model approaches in a wider range of catch-
ments is still necessary and should also be included in fu-
ture research. This will be especially important for devel-
oping multi-catchment water temperature prediction models
for regional prediction, which is an important next step and

https://doi.org/10.5194/hess-25-2951-2021 Hydrol. Earth Syst. Sci., 25, 2951–2977, 2021



2968 M. Feigl et al.: Machine-learning methods for stream water temperature prediction

topic of current research. The development of regional mod-
els would also need to include comparison of cross-station
scenarios and other tests for model transferability in time and
space. The presented machine-learning methods, driven with
observed meteorological inputs, seem to represent the sys-
tem in an appropriate manner for applying them to predict
river water temperature in changing conditions and may be
promising for short time or real-time forecasting approaches.
The resulting prediction uncertainties in such systems will
be mainly related to uncertainties in the meteorological fore-
casts. By implementing all methods into the open-source R
package wateRtemp, we hope to further contribute to repro-
ducible research and make the presented methods available
and easily applicable for management issues, scientists and
industries and to facilitate research on these next steps.
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Appendix A

A1 Long short-term memory cells

Given a sequence of inputs for T time steps x1, . . .,xT ,
where each xt ∈ Rd is a vector of d input features, the for-
ward pass of a single LSTM cell with h hidden units is given
by the following equations:

ft = σ(Wf xt +Uf ht−1+bf ), (A1)
it = σ(Wixt +Uiht−1+bi), (A2)
ot = σ(Woxt +Uoht−1+bo), (A3)
c̃t = tanh(Wgxt +Ught−1+bg), (A4)
ct = ft � ct−1+ it � c̃t , (A5)
ht = ot � tanh(ct ), (A6)

where ft , it , and ot ∈ Rh are the forget gate, input gate and
output gate, c̃t ∈ Rh is the cell input activation, ht ∈ Rh is
the hidden state, ct ∈ Rh is the cell state and all W ∈ Rh×d ,
U ∈ Rh×h and b ∈ Rh are trainable weights. σ is the sig-
moid function, tanh the hyperbolic tangent function and �
is element-wise multiplication.

The hidden state (ht ) is computed from the current input
(xt ) and the previous hidden state (ht−1). The amount of in-
formation that is passed through the current cell is regulated
by the input gate (it ) and the forget gate (ft ). The cell state
(ct ) regulates how much memory will be stored in the hidden
state (ht ). The output gate (ot ) controls how much informa-
tion is passed to the next cell.

A2 Gated recurrent unit cells

The GRU cell is similar to a LSTM cell but much simpler. It
combines the forget and input gate into a single update gate
and also merges the cell state and the hidden state. Given a
sequence of inputs for T time steps x1, . . .,xT , where each
xt ∈ Rd is a vector of d input features, the forward pass of
a single GRU cell with h hidden units is given by following
equations:

zt = σ(Wzxt +Uzht−1+bz), (A7)
rt = σ(Wrxt +Urht−1+br), (A8)

ĥt = tanh(Whxt )+Uh(rt �ht−1+bh), (A9)

ht = (1− zt )�ht−1+ zt � ĥt , (A10)

where zt ∈ Rh is the update gate, rt ∈ Rh is the reset gate,
ĥt ∈ Rh is the candidate activation, ht ∈ Rd is the output and
all W ∈ Rh×d , U ∈ Rh×h and b ∈ Rh are trainable weights.
The reset gate (rt ) determines how much information from
the previous state will be forgotten when computing the can-
didate activation (ĥt ). The update gate is the amount of infor-
mation used from the candidate activation (ĥt ) for computing
the current output ht .

A3 Model hyperparameter bounds

RF: min.node.size; 2–10, mtry: 3-(number of inputs −1)
XGBoost: nrounds: 300–3000, eta: 0.001–0.3, max_depth:
3–12, min_child_weight: 1–10, subsample: 0.7–1, colsam-
ple_bytree: 0.7–1, gamma: 0–5 FNN: layers: 1–5, units:
5–200, dropout: 0–0.2, batch_size: 5–150, epochs: 100,
early_stopping_patience: 5 RNNs: layers: 1–5, units: 5–
300, dropout: 0–0.4, batch_size: 5–150, time steps: 5–200,
epochs: 100, early_stopping_patience: 5.

https://doi.org/10.5194/hess-25-2951-2021 Hydrol. Earth Syst. Sci., 25, 2951–2977, 2021



2970 M. Feigl et al.: Machine-learning methods for stream water temperature prediction

Table A1. Overview of additional model quality criteria of the best machine-learning model for each catchment and the two reference models,
consisting of the Nash–Sutcliffe model efficiency coefficient NSE, (Nash and Sutcliffe, 1970), the index of agreement d (Willmott, 1981)
and the coefficient of determination R2. The best machine-learning model for each catchment was chosen by comparing validation RMSE
values. The shown values all refer to the test time period.

Best ML model results LM air2stream

Catchment Model Experiment NSE d R2 NSE d R2 NSE d R2

Kleine Mühl XGBoost 4(TQP) 0.982 0.995 0.983 0.899 0.971 0.903 0.973 0.993 0.974
Aschach XGBoost 6(TQPGL) 0.983 0.996 0.983 0.920 0.978 0.924 0.969 0.992 0.970
Erlauf XGBoost 6(TQPGL) 0.985 0.996 0.986 0.884 0.968 0.900 0.959 0.989 0.960
Traisen FNN 3(TQ) 0.985 0.996 0.985 0.912 0.977 0.915 0.951 0.988 0.955
Ybbs RF 3(TQ) 0.989 0.997 0.989 0.889 0.971 0.890 0.968 0.992 0.969
Saalach XGBoost 6(TQPGL) 0.977 0.994 0.979 0.864 0.961 0.883 0.951 0.988 0.955
Enns FNN 6(TQPGL) 0.984 0.996 0.985 0.834 0.951 0.840 0.946 0.986 0.952
Inn FNN 3(TQ) 0.984 0.996 0.984 0.829 0.949 0.830 0.882 0.968 0.882
Salzach FNN 4(TQP) 0.986 0.996 0.986 0.862 0.961 0.864 0.957 0.989 0.963
Danube RNN-LSTM 3(TQ) 0.986 0.996 0.989 0.842 0.955 0.843 0.961 0.990 0.968

Figure A1. Boxplots of model performance comparing model MAE values in each catchment with additional scatter-plot overlay to show
performance of individual combinations of catchments, models and experiments. The catchments are ordered by catchment size from smallest
(left) to largest (right) with additional information of the available time-series length in parentheses below. The air2stream benchmark
performance is illustrated as grey line for each catchment.
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Figure A2. Comparison of the prediction of all tested model types for the Danube catchment for the year 2015. Prediction results for each
model are shown with red lines, while the observations are shown with blue lines. The predictions of all other models are shown with grey
lines.
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Code and data availability. The R code used to generate all results
for this publication can be found in Feigl (2021b). This includes
the version of the wateRtemp R package providing all machine-
learning methods and code that were used for producing the results
of this paper. A maintained and continuously updated version of
the wateRtemp package can be found at https://www.github.com/
MoritzFeigl/wateRtemp (https://doi.org/10.5281/zenodo.4438575)
or in Feigl (2021a).

We do not have permission for further distribution of the data
used in this study. All input data can, however, be acquired from
the rights holders of these data sets. The water temperature and dis-
charge data used in this study can be requested from the Central
Hydrographical Bureau (HZB) at https://www.ehyd.gv.at (Central
Hydrographical Bureau, 2021). The rights for the meteorological
data from the INCA and the SPARTACUS data sets belong to the
Zentralanstalt für Meteorologie und Geodynamik (ZAMG) and can
be acquired from https://www.zamg.ac.at (Zentralanstalt für Mete-
orologie und Geodynamik, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-2951-2021-supplement.

Author contributions. KL, MF and MH designed the study and ac-
quired and processed the input data. MF and KL performed all
analyses and prepared the figures. MF developed the software pub-
lished with this work. MH and KS contributed to the methodologi-
cal framework. MF prepared the paper with contributions from KL,
MH and KS.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The computational results presented have been
achieved using the Vienna Scientific Cluster (VSC). We also thank
Ignacio Martin Santos for providing data from the upper Danube
catchment and many valuable discussions about seasonal forecast
and team spirit during the Covid-19 pandemic. Furthermore, we
would like thank our reviewers, Salim Heddan and Adrien Michel,
for their insightful comments and suggestions which helped to
shape the manuscript into its current form.

Financial support. This research has been supported by the Aus-
trian Science Fund (grant no. P 31213) and the Österreichische
Akademie der Wissenschaften (Rechout and Poco-Flood).

Review statement. This paper was edited by Bettina Schaefli and
reviewed by Adrien Michel and Salim Heddam.

References

Abba, S. I., Hadi, S. J., and Abdullahi, J.: River water modelling
prediction using multi-linear regression, artificial neural net-
work, and adaptive neuro-fuzzy inference system techniques, in:
Procedia Computer Science, Elsevier B.V., Budapest, Hungary,
75–82, https://doi.org/10.1016/j.procs.2017.11.212, 2017.

Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J.,
Bilodeau, L., Robichaud, É., Thiémonge, N., and Bobée, B.: Pre-
dicting river water temperatures using stochastic models: case
study of the Moisie River (Québec, Canada), Hydrol. Process.,
21, 21–34, https://doi.org/10.1002/hyp.6353, 2007.

Akaike, H.: Information theory as an extension of the likelihood
principle., in: Second Akademiai International Symposium on
Information Theory, edited by: Petrov, B. N. and Csaki, F., Ki-
ado, Budapest, 267–281, 1973.

Allaire, J. J. and Tang, Y.: tensorflow: R Interface to “TensorFlow”,
available at: https://github.com/rstudio/tensorflow (last access:
13 Jauary 2021), 2020.

Álvarez, D. and Nicieza, A. G.: Compensatory response “de-
fends” energy levels but not growth trajectories in brown trout,
Salmo trutta L., P. Roy. Soc. B-Biol. Sci., 272, 601–607,
https://doi.org/10.1098/rspb.2004.2991, 2005.

Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.:
Can air temperature be used to project influences of climate
change on stream temperature?, Environ. Res. Lett., 9, 084015,
https://doi.org/10.1088/1748-9326/9/8/084015, 2014.

Baldi, P. and Sadowski, P.: The dropout learning algorithm, Artif.
Intell., 210, 78–122, https://doi.org/10.1016/j.artint.2014.02.004,
2014.

Beaufort, A., Moatar, F., Curie, F., Ducharne, A., Bustillo, V., and
Thiéry, D.: River Temperature Modelling by Strahler Order at
the Regional Scale in the Loire River Basin, France, River Res.
Appl., 32, 597–609, https://doi.org/10.1002/rra.2888, 2016.

Bélanger, M., El-Jabi, N., Caissie, D., Ashkar, F., and Ribi, J. M.:
Water temperature prediction using neural networks and multi-
ple linear regression, Revue des Sciences de l’Eau, 18, 403–421,
https://doi.org/10.7202/705565ar, 2005.

Bengio, Y., Courville, A., and Vincent, P.: Representation learning:
A review and new perspectives, IEEE T. Pattern Anal., 35, 1798–
1828, https://doi.org/10.1109/TPAMI.2013.50, 2013.
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