Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4001-2020
https://doi.org/10.5194/hess-24-4001-2020
Research article
 | 
18 Aug 2020
Research article |  | 18 Aug 2020

A new form of the Saint-Venant equations for variable topography

Cheng-Wei Yu, Ben R. Hodges, and Frank Liu

Related authors

Consistent initial conditions for the Saint-Venant equations in river network modeling
Cheng-Wei Yu, Frank Liu, and Ben R. Hodges
Hydrol. Earth Syst. Sci., 21, 4959–4972, https://doi.org/10.5194/hess-21-4959-2017,https://doi.org/10.5194/hess-21-4959-2017, 2017
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2111,https://doi.org/10.5194/egusphere-2023-2111, 2023
Short summary

Cited articles

Aggett, G. R. and Wilson, J. P.: Creating and coupling a high-resolution DTM with a 1-D hydraulic model in a GIS for scenario-based assessment of avulsion hazard in a gravel-bed river, Geomorphology, 113, 21–34, https://doi.org/10.1016/j.geomorph.2009.06.034, 2009. a
Brunner, G. W.: HEC-RAS, River Analysis System Reference Manual, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Technical Report CPD-69, Davis, California, USA, available at: [13:43] Viola Zierenberg https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf (last access: 10 August 2020), 2016a. a, b, c
Brunner, G. W.: HEC-RAS, River Analysis System User's Manual, Version 5.0, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Technical Report CPD-68, Davis, California, USA, available at: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Users Manual.pdf (last access: 10 August 2020), 2016b. a, b
Burguete, J., Garcia-Navarro, P., Murillo, J., and Garcia-Palacin, I.: Analysis of the Friction Term in the One-Dimensional Shallow-Water Model, Journal of Hydraul. Eng.-ASCE, 133, 1048–1063, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:9(1048), 2007. a
Chen, Y. H.: Mathematical Modeling of Water and Sediment Routing in Natural Channels, PhD thesis, Colorado State University, Ft. Collins, CO, 1973. a
Download
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.