Abbott, M. B. and Ionescu, F.: On The Numerical Computation Of Nearly Horizontal
Flows, J. Hydraul. Res., 5, 97–117, https://doi.org/10.1080/00221686709500195, 1967. a

Aricò, C. and Tucciarelli, T.: A marching in space and time (MAST) solver
of the shallow water equations. Part I: The 1D model, Adv. Water Resour., 30,
1236–1252, https://doi.org/10.1016/j.advwatres.2006.11.003, 2007. a

Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast
and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow
Water Flows, SIAM J. Scient. Comput., 25, 2050–2065, https://doi.org/10.1137/S1064827503431090, 2004. a, b

Audusse, E., Bouchut, F., Bristeau, M.-O., and Sainte-Marie, J.: Kinetic Entropy
Inequality and Hydrostatic Reconstruction Scheme for the Saint-Venant System,
Math. Comput., 85, 2815–2837, https://doi.org/10.1090/mcom/3099, 2016. a

Blanckaert, K. and Graf, W.: Momentum transport in sharp open-channel bends,
J. Hydraul. Eng.-ASCE, 130, 186–198, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(186), 2004. a

Bollermann, A., Chen, G., Kurganov, A., and Noelle, S.: A Well-Balanced
Reconstruction of Wet/Dry Fronts for the Shallow Water Equations, J. Scient.
Comput., 56, 267–290, https://doi.org/10.1007/s10915-012-9677-5, 2013. a, b

Bouchut, F. and Morales de Luna, T.: A Subsonic-Well-Balanced Reconstruction
Scheme For Shallow Water Flows, SIAM J. Numer. Anal., 48, 1733–1758, https://doi.org/10.1137/090758416, 2010. a

Bouchut, F., Mangeney-Castelnau, A., Perthame, B., and Vilotte, J.: A new
model of Saint Venant and Savage–Hutter type for gravity driven shallow water
flows, Comptes Rendus Mathematique, 336, 531–536, https://doi.org/10.1016/S1631-073X(03)00117-1, 2003. a

Brunner, G. W.: HEC-RAS River Analysis System Hydraulic Reference Manual,
US Army Corps of Engineers, Davis, CA, USA, 2010. a

Buntina, M. V. and Ostapenko, V. V.: TVD Scheme for Computing Open Channel Wave
Flows, Comput. Math. Math. Phys., 48, 2241–2253, https://doi.org/10.1134/S0965542508120130, 2008. a

Burger, G., Sitzenfrei, R., Kleidorfer, M., and Rauch, W.: Parallel flow routing
in SWMM 5, Environ. Model. Softw., 53, 27–34, https://doi.org/10.1016/j.envsoft.2013.11.002, 2014. a

Canelon, D. J.: Pivoting Strategies in the Solution of the Saint-Venant Equations,
J. Irrig. Drain. Eng.-ASCE, 135, 96–101, 2009. a

Casas, A., Lane, S. N., Yu, D., and Benito, G.: A method for parameterising
roughness and topographic sub-grid scale effects in hydraulic modelling from
LiDAR data, Hydrol. Earth Syst. Sci., 14, 1567–1579, https://doi.org/10.5194/hess-14-1567-2010, 2010. a

Castellarin, A., Di Baldassarre, G., Bates, P. D., and Brath, A.: Optimal
Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models, J. Hydraul.
Eng.-ASCE, 135, 96–105, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:2(96), 2009. a, b

Castro Diaz, M. J., Chacon Rebollo, T., Fernandez-Nieto, E. D., and Pares, C.:
On well-balanced finite volume methods for nonconservative nonhomogeneous
hyperbolic systems, SIAM J. Scient. Comput., 29, 1093–1126, https://doi.org/10.1137/040607642, 2007. a

Catella, M., Paris, E., and Solari, L.: Conservative scheme for numerical
modeling of flow in natural geometry, J. Hydraul. Eng.-ASCE, 134, 736–748,
https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(736), 2008. a, b

Chau, K. W. and Lee, J. H.: Mathematical modelling of Shing Mun River network,
Adv. Water Resour., 14, 106–112, 1991. a

Chen, A., Hsu, M., Chen, T., and Chang, T.: An integrated inundation model for
highly developed urban areas, Water Sci. Technol., 51, 221–229, 2005. a

Cohen, S., Praskievicz, S., and Maidment, D. R.: Featured Collection Introduction:
National Water Model, J. Am. Water Resour. Assoc., 54, 767–769,
https://doi.org/10.1111/1752-1688.12664, 2018. a

Crnković, B., Crnjarić-Zic, N., and Kranjcevic, L.: Improvements of
semi-implicit schemes for hyperbolic balance laws applied on open channel flow
equations, Comput. Math. Appl., 58, 292–309, https://doi.org/10.1016/j.camwa.2009.04.004, 2009. a

Cunge, J. A., Holly, F. M., and Verwey, A.: Practical Aspects of Computational
River Hydraulics, Pitman Publishing Ltd, Boston, MA, 1980. a

David, C. H., Habets, F., Maidment, D. R., and Yang, Z. L.: RAPID applied to
the SIM-France model, Hydrol. Process., 25, 3412–3425, https://doi.org/10.1002/hyp.8070, 2011. a

David, C. H., Yang, Z.-L., and Hong, S.: Regional-scale river flow modeling
using off-the-shelf runoff products, thousands of mapped rivers and hundreds
of stream flow gauges, Environ. Model. Softw., 42, 116–132, 2013. a

Decoene, A., Bonaventura, L., Miglio, E., and Saleri, F.: Asymptotic derivation
of the section-averaged shallow water equations for natural river hydraulics,
Math. Models Meth. Appl. Sci., 19, 387–417, 2009. a

Delis, A. I. and Skeels, C. P.: TVD Schemes for Open Channel Flow, Int. J. Numer.
Meth. Fluids, 26, 791–809, 1998. a

Delis, A. I., Skeels, C. P., and Ryrie, S. C.: Implicit high-resolution methods
for modelling one-dimensional open channel flow, J. Hydraul. Res., 38, 369–382, 2000a. a

Delis, A. T., Skeels, C. P., and Ryrie, S. C.: Evaluation of some approximate
Riemann solvers for transient open channel flows, J. Hydraul. Res., 38, 217–231,
https://doi.org/10.1080/00221680009498339, 2000b. a

de Saint-Venant, A. B.: Théorie du mouvement non permanent des eaux, avec
application aux crues des rivières et à introduction des marées dans
leurs lits, Comptes Rendus des Séances de l'Académie des Sciences,
73, 237–240, 1871. a

Ferreira, V., de Queiroz, R., Lima, G., Cuenca, R., Oishi, C., Azevedo, J., and
McKee, S.: A bounded upwinding scheme for computing convection-dominated
transport problems, Comput. Fluids, 57, 208–224, https://doi.org/10.1016/j.compfluid.2011.12.021, 2012. a

Gasiorowski, D.: Balance errors generated by numerical diffusion in the solution
of non-linear open channel flow equations, J. Hydrol., 476, 384–394,
https://doi.org/10.1016/j.jhydrol.2012.11.008, 2013. a

Getirana, A., Peters-Lidard, C., Rodell, M., and Bates, P. D.: Trade-off between
cost and accuracy in large-scale surface water dynamic modeling, Water Resour.
Res., 53, 4942–4955, 2017. a

Godunov, S. K.: A difference method for numerical calculation of discontinuous
solutions of the equations of hydrodynamics, Mathematicheskii Sbornik, 47, 271–306, 1959. a

Gottardi, G. and Venutelli, M.: Central schemes for open-channel flow, Int. J.
Numer. Meth. Fluids, 41, 841–861, https://doi.org/10.1002/d.471, 2003. a, b

Goutal, N. and Maurel, F.: A finite volume solver for 1D shallow-water equations
applied to an actual river, Int. J. Numer. Meth. Fluids, 38, 1–19, 2002. a

Greenberg, J. M. and Leroux, A. Y.: A well-balanced scheme for the numerical
processing of source terms in hyperbolic equations, SIAM J. Numer. Anal.,
33, 1–16, 1996. a, b, c

Guinot, V.: Upwind finite volume solution of sensitivity equations for hyperbolic
systems of conservation laws with discontinuous solutions, Comput. Fluids, 38,
1697–1709, https://doi.org/10.1016/j.compfluid.2009.03.002, 2009. a, b

Gulbaz, S. and Kazezyilmaz-Alhan, C. M.: Calibrated Hydrodynamic Model for
Sazlidere Watershed in Istanbul and Investigation of Urbanization Effects, J.
Hydrol. Eng., 18, 75–84, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000600, 2013. a

Harten, A., Lax, P. D., and Van Leer, B.: On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35–61, 1983. a, b

Hernandez-Duenas, G. and Beljadid, A.: A central-upwind scheme with artificial
viscosity for shallow-water flows in channels, Adv. Water Resour., 96, 323–338,
https://doi.org/10.1016/j.advwatres.2016.07.021, 2016. a

Hodges, B. R.: Challenges in Continental River Dynamics, Environ. Model. Softw.,
50, 16–20, 2013. a, b, c

Hodges, B. R. and Imberger, J.: Simple curvilinear method for numerical methods
of open channels, J. Hydraul. Eng.-ASCE, 127, 949–958, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(949), 2001. a

Hodges, B. R. and Liu, F.: Rivers and Electric Networks: Crossing Disciplines
in Modeling and Simulation, Foundat. Trends Electron. Design Automat., 8, 1–116, 2014. a

Hodges, B. R. and Liu, F.: No-neighbor discretization of a Saint-Venant model
for unsteady open-channel flow, J. Hydraul. Res., submitted, 2019. a

Hsu, C.-T. and Yeh, K.-C.: Iterative explicit simulation of 1D surges and
dam-break flows, Int. J. Numer. Meth. Fluids, 38, 647–675, https://doi.org/10.1002/fld.236, 2002. a

Hsu, M., Chen, S., and Chang, T.: Inundation simulation for urban drainage
basin with storm sewer system, J. Hydrol., 234, 21–37, https://doi.org/10.1016/S0022-1694(00)00237-7, 2000. a

Iserles, A.: A first course in the numerical analysis of differential equations,
Cambridge University Press, Cambridge, UK, 1996. a, b

Islam, A., Raghuwanshi, N. S., and Singh, R.: Development and application for
irrigation of hydraulic simulation model canal network, J. Irrig. Drain.
Eng.-ASCE, 134, 49–59, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:1(49), 2008. a

Ivanova, K., Gavrilyuk, S. L., and Richard, G.: Formation and coarsening of
roll-waves in shear shallow water flows down an inclined rectangular channel,
Comput. Fluids, 159, 189–203, https://doi.org/10.1016/j.compfluid.2017.10.004, 2017. a, b

Karelsky, K., Papkov, V., Petrosyan, A., and Tsygankov, D.: Particular solutions
of shallow-water equations over a non-flat surface, Phys. Lett. A, 271, 341–348,
https://doi.org/10.1016/S0375-9601(00)00378-9, 2000. a

Katsaounis, T., Perthame, B., and Simeoni, C.: Upwinding Sources at Interfaces
in Conservation Laws, Appl. Math. Lett., 17, 309–316, https://doi.org/10.1016/S0893-9659(04)00012-6, 2004. a

Kesserwani, G., Ghostine, R., Vazquez, J., Ghenaim, A., and Mose, R.:
Application of a second-order Runge–Kutta discontinuous Galerkin scheme for
the shallow water equations with source terms, Int. J. Numer. Meth. Fluids, 56,
805–821, https://doi.org/10.1002/fld.1550, 2008. a

Kesserwani, G., Mose, R., Vazquez, J., and Ghenaim, A.: A practical
implementation of high-order RKDG models for the 1D open-channel flow equations,
Int. J. Numer. Meth. Fluids, 59, 1389–1409, 2009. a, b

Kesserwani, G., Liang, Q., Vazquez, J., and Mose, R.: Well-balancing issues
related to the RKDG2 scheme for the shallow water equations, Int. J. Numer.
Meth. Fluids, 62, 428–448, https://doi.org/10.1002/fld.2027, 2010. a, b

Krebs, G., Kokkonen, T., Valtanen, M., Koivusalo, H., and Setala, H.: A high
resolution application of a stormwater management model (SWMM) using genetic
parameter optimization, Urban Water J., 10, 394–410, https://doi.org/10.1080/1573062X.2012.739631, 2013. a

Kurganov, A. and Petrova, G.: A second-order well-balanced positivity preserving
central-upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5, 133–160, 2007. a, b

Lai, C., Baltzer, R. A., and Schaffranek, R. W.: Conservation-form equations of
unsteady open-channel flow, J. Hydraul. Res., 40, 567–578, https://doi.org/10.1080/00221680209499901, 2002. a

Lai, W. and Khan, A. A.: Discontinuous Galerkin Method for 1D Shallow Water
Flows in Natural Rivers, Eng. Appl. Comput. Fluid Mech., 6, 74–86, 2012. a, b

Lax, P. D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves, chap. 1, SIAM, Philadelphia, Pennsylvania, USA, 1–48,
https://doi.org/10.1137/1.9781611970562.ch1, 1973. a

Leandro, J. and Martins, R.: A methodology for linking 2D overland flow models
with the sewer network model SWMM 5.1 based on dynamic link libraries, Water
Sci. Technol., 73, 3017–3026, https://doi.org/10.2166/wst.2016.171, 2016. a

Li, J. and Chen, G.: The generalized Riemann problem method for the shallow
water equations with bottom topography, Int. J. Numer. Meth. Eng., 65, 834–862,
https://doi.org/10.1002/nme.1471, 2006. a

Li, M., Guyenne, P., Li, F., and Xu, L.: A Positivity-Preserving Well-Balanced
Central Discontinuous Galerkin Method for the Nonlinear Shallow Water Equations,
J. Scien. Comput., 71, 994–1034, https://doi.org/10.1007/s10915-016-0329-z, 2017. a

Liang, Q. and Marche, F.: Numerical resolution of well-balanced shallow water
equations with complex source terms, Adv. Water Resour., 32, 873–884,
https://doi.org/10.1016/j.advwatres.2009.02.010, 2009. a, b

Liggett, J. A.: Unsteady Flow in Open Channels, in: chap. 2: Basic equations
of unsteady flow, Water Resources Publications, Fort Collins, Colorado, 1975. a

Liu, F. and Hodges, B. R.: Applying microprocessor analysis methods to river
network modeling, Environ. Model. Softw., 52, 234–252, https://doi.org/10.1016/j.envsoft.2013.09.013, 2014. a, b, c, d, e, f, g, h

Lyn, D. A. and Altinakar, M.: St. Venant–Exner Equations for Near-Critical and
Transcritical Flows, J. Hydraul. Eng.-ASCE, 128, 579–587,
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(579), 2002. a

Mohamed, K.: A finite volume method for numerical simulation of shallow water
models with porosity, Comput. Fluids, 104, 9–19, https://doi.org/10.1016/j.compfluid.2014.07.020, 2014. a

Monthe, L., Benkhaldoun, F., and Elmahi, I.: Positivity preserving finite
volume Roe schemes for transport-diffusion equations, Comput. Meth. Appl. Mech.
Eng., 178, 215–232, https://doi.org/10.1016/S0045-7825(99)00015-8, 1999. a

Paiva, R. C. D., Collischonn, W., and Tucci, C. E. M.: Large scale hydrologic
and hydrodynamic modeling using limited data and a GIS based approach, J.
Hydrol., 406, 170–181, https://doi.org/10.1016/j.jhydrol.2011.06.007, 2011. a

Paiva, R. C. D., Collischonn, W., and Costa Buarque, D.: Validation of a full
hydrodynamic model for large-scale hydrologic modelling in the Amazon, Hydrol.
Process., 27, 333–346, 2013. a, b

Papanicolaou, A. N., Bdour, A., and Wicklein, E.: One-dimensional
hydrodynamic/sediment transport model applicable to steep mountain streams,
J. Hydraul. Res., 42, 357–375, 2004. a, b

Paz, A. R., Bravo, J. M., Allasia, D., Collischonn, W., and Tucci, C. E. M.:
Large-Scale Hydrodynamic Modeling of a Complex River Network and Floodplains,
J. Hydrol. Eng., 15, 152–165, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000162, 2010. a

Perthame, B. and Simeoni, C.: A kinetic scheme for the Saint-Venant system with
a source term, CALCOLO, 38, 201–231, https://doi.org/10.1007/s10092-001-8181-3, 2001. a

Pramanik, N., Panda, R. K., and Sen, D.: One dimensional hydrodynamic modeling
of river flow using DEM extracted river cross-sections, Water Resour. Manage.,
24, 835–852, 2010. a, b

Preissmann, A.: Propagation des intumescences dans les canaux et rivieres, in:
Premier Congres De L'Association Francaise de Calcul AFCAL, Grenoble 14–15–16,
1960, Gauthier-Villars, Paris, 433–442, 1961. a, b

Pu, J. H., Cheng, N.-S., Tan, S. K., and Shao, S.: Source term treatment of
SWEs using surface gradient upwind method, J. Hydraul. Res., 50, 145–153,
https://doi.org/10.1080/00221686.2011.649838, 2012. a, b

Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes,
J. Comput. Phys., 43, 357–372, https://doi.org/10.1016/0021-9991(81)90128-5, 1981. a

Rosatti, G., Bonaventura, L., Deponti, A., and Garegnani, G.: An accurate and
efficient semi-implicit method for section-averaged free-surface flow modelling,
Int. J. Numer. Meth. Fluids, 65, 448–473, https://doi.org/10.1002/fld.2191, 2011. a, b

Rossman, L. A.: Storm Water Management Model Reference Manual, in: Volume II – Hydraulics,
Tech. Rep. EPA/600/R-17/111, US EPA Office of Research and Development, Water
Systems Division, avaialable at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf
(last access: 5 March 2019), 2017. a, b

Saavedra, I., Lopez, J. L., and García-Martínez, R.: Dynamic Wave Study
of Flow in Tidal Channel System of San Juan River, J. Hydraul. Eng.-ASCE, 129,
519–526, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:7(519), 2003. a, b, c

Saleh, F., Ducharne, A., Flipo, N., Oudin, L., and Ledoux, E.: Impact of river
bed morphology on discharge and water levels simulated by a 1D Saint–Venant
hydraulic model at regional scale, J. Hydrol., 476, 169–177, https://doi.org/10.1016/j.jhydrol.2012.10.027, 2013. a, b

Sanders, B. F.: High-resolution and non-oscillatory solution of the St. Venant
equations in non-rectangular and non-prismatic channels, J. Hydraul. Res.,
39, 321–330, 2001. a, b, c

Sanders, B. F., Jaffe, D. A., and Chu, A. K.: Discretization of integral
equations describing flow in-nonprismatic channels with uneven beds,
J. Hydraul. Eng.-ASCE, 129, 235–244, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:3(235), 2003. a, b, c

Sart, C., Baume, J. P., Malaterre, P. O., and Guinot, V.: Adaptation of
Preissmann's scheme for transcritical open channel flows, J. Hydraul. Res., 48,
428–440, https://doi.org/10.1080/00221686.2010.491648, 2010. a, b

Schippa, L. and Pavan, S.: Analytical treatment of source terms for complex
channel geometry, J. Hydraul. Res., 46, 753–763, https://doi.org/10.3826/jhr.2008.3211, 2008. a, b, c, d, e

Sen, D. J. and Garg, N. K.: Efficient Algorithm for Gradually Varied Flows in
Channel Networks, J. Irrig. Drain. Eng.-ASCE, 128, 351–357, https://doi.org/10.1061/(ASCE)0733-9437(2002)128:6(351), 2002. a

Szymkiewicz, R.: Finite-Element Method For The Solution Of The Saint Venant
Equations In An Open Channel Network, J. Hydrol., 122, 275–287,
https://doi.org/10.1016/0022-1694(91)90182-H, 1991. a

Tucciarelli, T.: A new algorithm for a robust solution of the fully dynamic
Saint-Venant equations, J. Hydraul. Res., 41, 239–246, 2003. a

Vazquez-Cendon, M.: Improved treatment of source terms in upwind schemes for
the shallow water equations in channels with irregular geometry, J. Comput.
Phys., 148, 497–526, 1999. a, b

Venutelli, M.: Stability and accuracy of weighted four-point implicit finite
difference schemes for open channel flow, J. Hydraul. Eng.-ASCE, 128, 281–288,
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(281), 2002. a

Venutelli, M.: A fractional-step Padé Galerkin model for dam-break flow
simulation, Appl. Math. Comput., 134, 93–107, 2003. a

Venutelli, M.: A third-order explicit central scheme for open channel flow
simulations, J. Hydraul. Res., 44, 402–411, 2006. a, b

Wang, G.-T., Yao, C., Okoren, C., and Chen, S.: 4-Point FDF of Muskingum method
based on the complete St Venant equations, J. Hydrol., 324, 339–349,
https://doi.org/10.1016/j.jhydrol.2005.10.010, 2006. a

Wang, J., Ni, H., and He, Y.: Finite-difference TVD scheme for computation of
dam-break problems, J. Hydraul. Eng.-ASCE, 126, 253–262, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:4(253), 2000. a

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P.,
Blyth, E., de Roo, A., Doll, P., Ek, M., Famiglietti, J., Gochis, D., van de
Giesen, N., Houser, P., Jaffe, P. R., Kollet, S., Lehner, B., Lettenmaier, D.
P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead,
P.: Hyperresolution global land surface modeling: Meeting a grand challenge for
monitoring Earth's terrestrial water, Water Resour. Res., 47, 1–10, 2011. a

Wu, W. M. and Wang, S. S. Y.: One-dimensional Modeling of dam-break flow over
movable beds, J. Hydraul. Eng.-ASCE, 133, 48–58, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48), 2007. a, b

Wu, W. M., Vieira, D. A., and Wang, S. S. Y.: One-dimensional numerical model
for nonuniform sediment transport under unsteady flows in channel networks,
J. Hydraul. Eng.-ASCE, 130, 914–923, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(914), 2004. a

Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow
water equations with moving water equilibrium, J. Comput. Phys., 257, 536–553,
https://doi.org/10.1016/j.jcp.2013.10.010, 2014.
a, b

Xing, Y. and Shu, C.-W.: High-order finite volume WENO schemes for the shallow
water equations with dry states, Adv. Water Resour., 34, 1026–1038,
https://doi.org/10.1016/j.advwatres.2011.05.008, 2011. a

Xing, Y. and Zhang, X.: Positivity-Preserving Well-Balanced Discontinuous
Galerkin Methods for the Shallow Water Equations on Unstructured Triangular
Meshes, J. Scient. Comput., 57, 19–41, https://doi.org/10.1007/s10915-013-9695-y, 2013. a

Ying, X. and Wang, S. S. Y.: Improved implementation of the HLL approximate
Riemann solver for one-dimensional open channel flows, J. Hydraul. Res.,
46, 21–34, 2008. a, b

Ying, X., Khan, A. A., and Wang, S. S. Y.: Upwind Conservative Scheme for the
Saint Venant Equations, J. Hydraul. Eng.-ASCE, 130, 977–987,
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(977), 2004. a, b

Zeng, W. and Beck, M. B.: STAND, a dynamic model for sediment transport and
water quality, J. Hydrol., 277, 125–133, https://doi.org/10.1016/S0022-1694(03)00073-8, 2003. a

Zhu, D. J., Chen, Y. C., Wang, Z. Y., and Liu, Z. W.: Simple, Robust, and
Efficient Algorithm for Gradually Varied Subcritical Flow Simulation in General
Channel Networks, J. Hydraul. Eng.-ASCE, 137, 766–774, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000356, 2011. a