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Abstract. The solution stability of river models using the
one-dimensional (1D) Saint-Venant equations can be eas-
ily undermined when source terms in the discrete equations
do not satisfy the Lipschitz smoothness condition for partial
differential equations. Although instability issues have been
previously noted, they are typically treated as model imple-
mentation issues rather than as underlying problems associ-
ated with the form of the governing equations. This study
proposes a new reference slope form of the Saint-Venant
equations to ensure smooth slope source terms and eliminate
one source of potential numerical oscillations. It is shown
that a simple algebraic transformation of channel geometry
provides a smooth reference slope while preserving the cor-
rect cross-section flow area and the total Piezometric pres-
sure gradient that drives the flow. The reference slope method
ensures the slope source term in the governing equations is
Lipschitz continuous while maintaining all the underlying
complexity of the real-world geometry. The validity of the
mathematical concept is demonstrated with the open-source
Simulation Program for River Networks (SPRNT) model in a
series of artificial test cases and a simulation of a small urban
creek. Validation comparisons are made with analytical solu-
tions and the Hydrologic Engineering Center’s River Anal-
ysis System (HEC-RAS) model. The new method reduces
numerical oscillations and instabilities without requiring ad
hoc smoothing algorithms.

1 Introduction

The Saint-Venant equations (SVEs) for one-dimensional
(1D) river modeling are typically presented with pressure
forcing terms of either (i) gradients of the water surface ele-
vation or (ii) thalweg bottom slope combined with gradients

of the water depth. In this study, we demonstrate a new form
using a reference slope (SR) and its associated depth (ha),
which are shown to be algebraically identical to the two stan-
dard forms of the SVEs. The new forms provide greater flex-
ibility in addressing numerical convergence issues associated
with modeling discontinuous bottom slopes. A key point of
this paper is that precise representation of the thalweg bottom
slope (S0) and hydrostatic pressure gradients (∂h0/∂x) is not
necessary to correctly represent variable topography. Indeed,
the splitting point for representing the forcing Piezometric
pressure gradient as a body force (defined by a slope) and a
residual head gradient term is free choice in a simple alge-
braic substitution. Different choices for the splitting provide
different body force directions and lead to different forms of
the SVEs – all of which are valid representations of variable
topography and do not constitute a smoothing of topography.
We will show that it is possible to use a smooth slope (body
force) term in the SVEs without actually smoothing the to-
pography. Herein, this smooth slope term will be designated
as the reference slope, SR, to distinguish it from the tradi-
tional thalweg bottom slope, S0.

The two common differential forms of the SVEs are

∂Q

∂t
+
∂

∂x

(
Q2

A

)
=−gASf− gA

∂η

∂x
(1)

and

∂Q

∂t
+
∂

∂x

(
Q2

A

)
=−gASf+ gAS0− gA

∂h0

∂x
, (2)

where Q is the flow rate, A is the cross-section area, η is
the water surface elevation, h0 is the thalweg depth, S0 is
the thalweg bottom slope, and Sf is the friction slope that
represents the local energy gradient. Equation (1) can be en-
visioned as using the Piezometric head gradient to force the
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flow, as shown in Fig. 1a. In contrast, Eq. (2) can be envi-
sioned as splitting the Piezometric gradient into a body force
in the bottom slope direction and a hydrostatic head gradi-
ent, as shown in Fig. 1b. Note that both equations are valid
for variable topography despite only the second equation ex-
plicitly representing the bottom slope and thalweg depth hy-
drostatic pressure gradients.

The two SVE forms of Eqs. (1) and (2) are algebraically
identical using the identity

∂η

∂x
≡
∂h0

∂x
− S0. (3)

Heuristically, we can propose a more general identity of

∂η

∂x
≡
∂ha

∂x
− SR, (4)

where SR is an arbitrary reference slope and ha is an asso-
ciated depth that will be defined in Sect. 3.2 below. For an
introductory exposition, ∂ha/∂x is merely the residual im-
plied for a given ∂η/∂x and arbitrary SR. Applying Eq. (4)
to (1) provides the following:

∂Q

∂t
+
∂

∂x

(
Q2

A

)
=−gASf+ gASR− gA

∂ha

∂x
, (5)

where the terms gASR and gA ∂ha
∂x

are algebraically equiva-
lent to those in Eqs. (1) and (2). Clearly, if we let SR equal S0,
then ha equals h0 and we recover Eq. (2). Furthermore, if we
let SR equal 0, then ha equals η and we recover Eq. (1). The
equations are identical with these substitutions, so it follows
that using a reference slope of zero (SR = 0) must exactly
represent the same topographic variability as using a refer-
ence slope that mimics the topographic slope (SR = S0) as
long as ha is correctly defined consistent with Eq. (4). That
is to say that from simple algebra the use of the real S0 in
the SVEs is not required to capture effects of topographic
variability as long as the depth gradient term is correctly re-
defined as something other than the thalweg depth gradient
and the cross-section flow areas are correctly computed.

From the arguments above, the effects of varying bot-
tom topography are captured by SR = 0 and ha = η, which
implies we are also free to introduce any other (preferably
smooth) SR into Eq. (5) without altering the underlying rep-
resentation of variable topography. An example is illustrated
in Fig. 2. As the splitting defined in Eq. (4) makes Eq. (5)
algebraically identical to Eqs. (1) and (2), the introduction
of a smooth SR does not reflect “smoothing” of the topogra-
phy. It merely reflects a decision on whether effects of non-
smoothness will reside solely in solution variables A and ha
or will also be forced as a non-smooth source term in S0.

We would like to use an a priori smooth SR in a compu-
tational model rather than the actual thalweg S0 because of
what happens to S0(x) and ∂h0(x)/∂x for topography vary-
ing sharply over short distances, as illustrated in Fig. 3. From
a physics perspective, using S0 to split the Piezometric head

is an intuitive way to describe the local interplay of pres-
sure with the bottom slope. Furthermore, S0 has the advan-
tage of being readily reduced to a kinematic wave equation
where Sf = S0, which has some advantage in multipurpose
codes. However, from a numerical modeling perspective, us-
ing S0 has a significant limitation based on its smoothness. If
the water surface is smooth, then non-smooth S0(x) requires
the numerical solver to produce a compensating non-smooth
h0(x), i.e., requiring a well-balanced scheme (see Sect. 2).
If we can discard our (wrong) intuition that the S0 form
must somehow better represent sharply variable topography
– i.e., recognizing the algebraic equivalence of Eq. (5) with
Eqs. (1) and (2) – it follows that the splitting of the Piezo-
metric head to include a body force that is everywhere ex-
actly aligned with a sharply varying S0 is (from a numerical
perspective) merely creating unnecessary complexity in the
governing equation source term that requires compensating
complexity in the solution algorithm. In contrast, by requir-
ing SR to be smooth, we can ensure the ha solution is also
smooth for a smoothly varying free surface.

The use of SR rather than S0 in the governing equations
can perhaps be better understood if we think of the slope in
Eq. (4) as representing simply a portion of the overall Piezo-
metric pressure gradient that can be extracted from ∂η/∂x

and treated as a body force that varies gradually along the
channel. Hence, in Fig. 3 we are not interested in separating
out the details of the sharply varying slope changes in the
local topography but instead prefer a body force term that
aligns with the mean slope over some larger spatial scale,
e.g., as in Fig. 2.

In this paper, we examine the effect of variable cross-
section geometry on numerical solutions of the SVEs and
propose a new reference slope approach that can be inferred
from the above arguments. The use of a reference slope as
a body force direction to split the Piezometric head gradi-
ent term ensures (i) the slope used in the discrete source
term is smooth, (ii) the variable geometry is correctly re-
tained, (iii) the fundamental governing equations are pre-
served, and (iv) an SVE numerical algorithm developed us-
ing S0 is essentially unchanged. We further demonstrate that
bottom slope discontinuities are a cause of problems in finite-
difference forms of 1D Saint-Venant equations with subcrit-
ical flow. Of course, this idea will not be a surprise to many
modelers who routinely remove troublesome cross sections
or smooth their topography; however, the concept does not
appear to have been conclusively demonstrated in the liter-
ature. More importantly, we show that the problem is inher-
ent in the traditional formulation of the governing equations
using the thalweg bottom slope, S0, which is usually com-
puted as the slope between the lowest points in two adjacent
river cross sections. Problems associated with slope discon-
tinuities can be fixed within the governing equations by the
careful selection of smoothly changing reference elevations
along the channel, zR(x), which results in smooth reference
slopes, SR(x), and the redefinition of the thalweg depth (h0)
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Figure 1. The η form of the SVEs (a) has a driving Piezometric head gradient which is equivalent (b) to the sum of the hydrostatic head
gradient and a body force aligned with S0. The effect of varying geometry is handled in A in both forms.

Figure 2. Comparison of Piezometric forcing terms for varying topography. (a) Eq. (1) with the arbitrary SR line provided for reference. (b)
The equivalent split form of forcing with Eq. (5) using the identity of Eq. (4). The physical bottom topography, shown only in (a) for clarity,
only plays a role through the cross-section area (A) which feeds back into the solution of variability in ha in both forms of the equation.

as a depth associated (ha) with the reference elevation. Note
that ha is not necessarily any characteristic depth of the flow
and is only indirectly related to the hydrostatic pressure.

The approach proposed herein can be implemented within
any Saint-Venant model as it is entirely independent of the
solution algorithm; however, implementation does require
rewriting code for the relationships between cross-section
area, wetted perimeter, and the depth variable of the solu-
tion. Note that the new approach includes a redefinition of
the depth variable (traditionally the maximum depth, h0) as
the depth associated (ha) with the reference elevation, zR.

2 Background

One-dimensional (1D) hydrodynamic models using the
Saint-Venant equations (SVEs) are widely employed for
studying both natural streams and man-made channels (e.g.,
Martinez-Aranda et al., 2019; Sanders, 2001). It is widely
recognized that numerical solutions of the SVEs are prone to
spurious oscillations in the free-surface elevation unless par-
ticular care is taken in the numerical formulation and/or the
problem definition (e.g., Nujic, 1995; Tseng, 2004). Numer-
ous techniques and special numerical schemes have been pre-
viously designed to overcome unwanted numerical oscilla-
tions caused by discontinuous geometries and boundary con-
ditions (e.g., Zhou et al., 2001; Liang and Marche, 2009).
These approaches typically rely on the concept of a well-
balanced discrete form (Greenberg and LeRoux, 1996) as
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Figure 3. Comparison of Piezometric forcing terms with sharply varying topography for Eqs. (1) and (2). (a) The Piezometric head gradient
for Eq. (1). (b) The equivalent split form of forcing from Eq. (2) using the identity of Eq. (3). The variability of the bottom of (a) will be
reflected in the cross-section area, A(x), that feeds back into the solution of η(x). In contrast, (b) attempts to directly represent topographic
variability as both a driving term in S0(x) and a solution response term, h0(x)

discussed in a comprehensive review by Kesserwani (2013)
and further elaborated by Hodges (2019).

Although well-balanced schemes are relatively robust
in handling discontinuous boundary conditions, they have
not been extensively applied in water resource models to
simulate the regional-to-continental-scale river networks or
stormwater systems for megacities. The rapidly varying and
discontinuous S0 in natural systems can significantly increase
the difficulty and computational burden of obtaining a well-
balanced method (Schippa and Pavan, 2008). Hence, when a
large-scale open-channel model develops oscillations and/or
instabilities, practitioners may resort to the traditional ap-
proach of removing cross sections or smoothing bathymetry
to mitigate oscillatory or unstable solution behavior (Tayfur
et al., 1993). Such ad hoc efforts can be effective as they
address a major cause of such oscillations and instabilities
(discontinuous topography), but they inherently reduce the
fidelity of the simulation.

Oscillations and instabilities can be induced in any numer-
ical solution of a boundary initial value problem by the in-
clusion of non-smooth source terms; i.e., if we consider an
advection equation of the form

∂Q

∂t
+
∂

∂x

(
Q2

A

)
= σ, (6)

where σ is a nonhomogeneous source term, a fundamental
theorem for differential equations provides that a unique so-
lution cannot be guaranteed to exist unless the source term
is Lipschitz continuous (e.g., Iserles, 1996). That numerical
instabilities are often caused by non-smooth source terms is
not a new observation. A wide variety of numerical schemes
have been developed to address this issue, including, e.g.,
extensive work on wetting/drying (Liang and Marche, 2009;
Song et al., 2011), positivity-preserving methods for coupled

models (Singh et al., 2015), and implicit schemes that ad-
dress stiffness of the nonlinear friction term (Xia and Liang,
2018). The literature in this area is vast – particularly if both
1D and 2D models are considered. For the present purposes,
we focus on only one part of the source term, S0, whose non-
smoothness has previously been treated as a problem to be
handled rather than as a problem that can be directly elim-
inated in the governing equations. Existing well-balanced
schemes (see reviews noted above) seek to compensate for
non-smoothness of all parts of the source term in the structure
of the numerical discretization. Arguably, if the slope term
is guaranteed smooth, then a well-balanced scheme should
be simpler to create. In general, when the thalweg bottom
slope (S0) appears as a source term in the SVEs, it should
be a priori Lipschitz smooth or oscillations and instabilities
should be expected. For natural systems, S0(x) is typically
defined using the maximum channel depth at each surveyed
cross section, which is rarely a smooth function (unless the
distance between cross sections is large compared to bottom
elevation variability). When cross sections are surveyed at
short distances, S0 will tend to have significant variability. It
follows that the use of S0 has the undesirable property that
smaller 1x (i.e., resolving a river with more detailed survey
data) will increase the non-smoothness in this source term of
the momentum equation, resulting in a model that is unlikely
to converge under a grid refinement test. It is not surprising
that S0 smoothness, when it occurs in a model of a natural
river channel, is typically the result of relatively long sepa-
rations (1x) between cross-section surveys that ensures that
the discrete d2z0/dx2 is small. Thus, removing cross sec-
tions can be an effective mitigation technique because it in-
creases 1x and effectively smooths S0. In general, models
discretized with higher-resolution river surveys (smaller1x)
will have greater non-smoothness in S0 and develop more
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oscillation and instability issues. In essence, our models get
worse as our boundary condition data get better.

The problems associated with S0 can be understood by
considering the identity in Eq. (3) for a channel with subcriti-
cal flow in which the free-surface curvature is expected to be
negligible, i.e., ∂2η/∂x2

∼ ε, where ε� dS0/dx,∂2η/∂2x.
Taking the along-channel gradient of Eq. (3) implies that

∂2h0

∂x2 =
dS0

dx
− ε. (7)

Thus, forcing with a non-smooth dS0(x)/dx will require non-
negligible curvature of the response variable, h0(x), whose
gradient is also a forcing function of the nonlinear equa-
tion. Feedback can easily build and cause successive over-
shoot/undershoot effects, producing oscillations and non-
convergence in a nonlinear solver. In contrast, Eq. (4) can
be invoked with dSR/dx guaranteed to be small, which im-
plies that ∂2ha/∂x

2 will also be small even when ∂A/∂x is
non-smooth. As a practical matter, any S0 with a discontinu-
ous discrete first derivative (i.e., discontinuities in the second
derivative of the thalweg elevation, d2z0/dx2) will be Lip-
schitz discontinuous and should not be directly discretized
in an SVE solution with Eq. (2). Although approximate nu-
merical solutions of equations with non-smooth S0(x) can
sometimes be attained for models with sufficient damping,
such solutions are questionable as they do not have rigorous
mathematical foundations.

Arguably, non-smoothness in S0 can be handled in one
of four ways: (i) smoothing the geometry – hence solving
for flows that do not match the real system; (ii) applying
ad hoc smoothing within the flow solution – i.e., adjusting
the physics to remove numerical instabilities; (iii) adjusting
the numerical discretization scheme to compensate for non-
smoothness – e.g., the well-balanced concept; or (iv) ad-
justing the governing equations to ensure that any slope in
the source term is smooth without modifying the solution
physics, the channel geometry, or the numerical discretiza-
tion scheme. It should be obvious that Eq. (1) is the extreme
example of the last approach – replacing S0 and ∂h0/∂x with
∂η/∂x ensures that S0 does not occur in the governing equa-
tions and cannot destabilize the solution. To our knowledge,
the last approach (as used herein and illustrated in Fig. 2) has
not been previously proposed or analyzed in the literature.
Nevertheless, as shown below, it provides a simple method
that can be readily adapted into existing hydrodynamic mod-
els.

For brevity, we will limit our focus herein to subcritical
flows – backwater tends to smooth the effects of slope dis-
continuities and thus we expect smooth solutions for flow
rate and free-surface elevation despite non-smooth geome-
try. Nevertheless, common SVE solvers can exhibit oscil-
latory, non-convergent behavior even in simple subcritical
flows when geometry is not smooth. In the following, it will
be obvious that the mathematical theory applies directly to
supercritical and transcritical flows as well, but evaluating

model performance under the breadth of possible transcriti-
cal conditions (including non-smooth jumps) necessarily re-
quires more analyses than is practical in a single paper.

3 Methods

3.1 SPRNT

The Simulation Program for River Networks (SPRNT) code
for unsteady SVE river networks is used and modified herein.
The baseline for this code models momentum using Eq. (2),
which is coupled to the solution of continuity,

∂A

∂t
+
∂Q

∂x
= q`, (8)

where q` is a lateral inflow per unit length. Note that sig-
nificantly non-smooth q`(x, t) can provide another source of
numerical oscillations and instability (Kuiry et al., 2010). As
the main focus of this study is the slope source term in the
momentum equation, the lateral inflows and their effects are
neglected by setting q` = 0 everywhere.

In the SPRNT momentum equation, the friction slope is
represented using the Chezy–Manning form as

Sf =
n2P

4/3
w

A10/3 Q
2, (9)

where Pw is the wetted perimeter of a cross section and n is
the Gauckler–Manning–Strickler roughness. Although, there
are other methods for treating frictional losses (e.g., Decoene
et al., 2009; Burguete et al., 2007), the Chezy–Manning form
remains popular due to its simplicity.

The baseline model uses the thalweg elevation (z0), the
thalweg depth (h0), and the thalweg bottom slope (S0) as

h0 ≡ η− z0 (10)

and

S0 ≡−
∂z0

∂x
. (11)

SPRNT is an open-source, 1D hydrodynamic solver using
the fully implicit Preissmann numerical scheme (Preissmann,
1961) with the Newton–Raphson iteration and computational
acceleration techniques developed from very large-scale in-
tegration (VLSI) semiconductor design. Details on the base-
line SPRNT model and its application to large river networks
are provided in Liu and Hodges (2014) and Yu et al. (2017).

3.2 Reference slope method

We introduce a new reference slope (RS) method through
a transformation and redefinition of geometry in the Saint-
Venant equations, as discussed in Sect. 1. In place of the con-
ventional h0 and z0, we define a reference elevation (zR) and
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its associated depth (ha) as shown in Fig. 4. These provide a
relationship with the free-surface elevation (η) defined as

ha ≡ η− zR. (12)

Note that zR is arbitrary, so ha may be either greater than or
less than the thalweg depth, h0, at a given location. As shown
in Fig. 4, it is convenient to define the reference height, hR,
in relation to zR and the true bottom elevation, z0, by

hR ≡ z0− zR. (13)

Thus, the conventional h0 and z0 are recovered with

h0 = ha−hR (14)

and

z0 = zR+hR. (15)

We define the reference slope (SR) as the downstream slope
of zR:

SR ≡−
∂zR

∂x
. (16)

Using Eqs. (12) and (16) in Eq. (2) provides Eq. (5), which
is more conveniently written as

∂Q

∂t
+
∂

∂x

(
Q2

A

)
=−gA

∂ha

∂x
+ gA(SR− Sf) . (17)

The above is identical to Eq. (2) with the simple substitution
of ha and SR for h0 and S0. In this formulation, the definition
of zR(x) is arbitrary, so we can a priori require a definition
such that SR(x) is smooth. A trivial choice that is guaranteed
smooth is zR(x)= constant, which returns SR(x)= 0 and the
Saint-Venant equations in the form of Eq. (1). However, this
form with ∂η/∂x for the entire pressure term is known to
cause numerical stiffness issues for large ranges in η, e.g.,
the elevation change in a river from its mountain source to
a coastal plain (Liu and Hodges, 2014). Using the conven-
tional S0 in Eq. (2) reduces this problem as the range of h0 is
inherently confined to the local water depths rather than the
underlying topography. In the RS method, the range of ha is
tied to the range of water depths and the selection of zR; thus,
for present purposes, we are interested in nontrivial defini-
tions of zR that (i) are close to z0 to maintain a small range of
ha values and (ii) provide smooth SR(x). An arbitrary zR that
is far from z0 or non-smooth is of little interest as it holds no
theoretical or practical advantage over the Eq. (1) approach
implied by SR(x)= 0.

If SR(x) is required to be smooth, then the source term
of the equation can be guaranteed smooth as long as Sf(x)

is smooth, which is typically true as long as the solution,
Q(x), is smooth. Note that in extreme cases of geometric
discontinuity the combined values of n, Pw, and A in Eq. (9)
can cause a non-Lipschitz friction term; thus, the RS method

Figure 4. Relationships of ha, hR, zR, and z0 for an arbitrary cross
section. Note that zR > z0 is also allowed, which results in ha <
h0 and a negative value for hR. Furthermore, if zR is greater than
z0+h0, then ha is negative to retain algebraic consistency. Modified
from Liu (2014) and used with permission.

cannot guarantee that the entire source term is smooth. Nu-
merical solution methods are usually robust against discon-
tinuities in n and Pw as they are coefficients of the so-
lution variables {A,Q}. More subtle problems might arise
due to discontinuities developed in the Q2A−10/3 ratio in
Eq. (9); countering incipient instabilities from this term re-
quires other numerical strategies (e.g., Xia and Liang, 2018).

A critical change required by the introduction of ha is that
the conventional geometric auxiliary relationships of A=
f (h0) and Pw = f (h0) must be transformed into A= f (ha)

and Pw = f (ha). That is, once we change the depth in our
equation from h0 to ha, we must re-index the geometry. In
general, for known functions A(h0) and Pw(h0) this is a triv-
ial transformation:

A= A(ha−hR) (18)

and

Pw = Pw(ha−hR). (19)

However, the implementation in an existing code is not nec-
essarily as simple as the above equations suggest. For ex-
ample, in Fig. 4, the condition A= 0 occurs when ha = hR,
i.e., a nonzero value as compared to h0 = 0 with conventional
geometry. Unfortunately, model developers typically have ad
hoc wetting/drying treatments that are introduced as h0→ 0
or for h0 < 0. Such treatments need to be modified to be de-
ployed as ha→ hR, which introduces the added complication
that hR is negative when zR > z0. Note that the new geom-
etry does not require altering the wetting/drying algorithm
itself or, for that matter, any other solution algorithm – only
the actual geometry definitions require alteration. These rela-
tively straightforward changes can be contrasted with the ef-
fort needed to provide a well-balanced numerical discretiza-
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tion scheme for the conventional S0 representation of geom-
etry (e.g., Kesserwani, 2013).

The modification of the SPRNT code to implement the
above RS method will be known as SPRNT-RS. The SPRNT
and SPRNT-RS source codes are available in an open-source
repository (Liu, 2014). Note that the solution algorithm for
SPRNT-RS is identical to that of SPRNT; the only code
changes are for the new geometry definitions for ha and SR
that replace h0 and S0 in the original algorithm. This simple
geometry replacement strategy is effective because Eq. (17)
is identical to Eq. (2) except for the change in nomenclature
to ha and SR.

3.3 Generating a smooth SR(x)

The zR(x) and hence SR(x) are arbitrary choices in the RS
method but should be generated for the smoothness of SR(x)

along the reach. In synthetic reach test cases and analytical
test cases (described below), the channels are a priori either
specified with a uniform SR or produced by a different order
of splines. For our urban creek test case, the zR is generated
with an approximating cubic B-spline (de Boor, 2001) based
on thalweg, z0(x), elevations. There are a variety of possible
ways to generate smooth SR(x), but applying approximating
cubic B-splines to the z0(x) is convenient because the slope
is guaranteed to be locally smooth as long as the knot spacing
in the B-spline is everywhere larger than the spacing between
cross sections. It should be emphasized that an exact spline
fitting of all the thalweg data (i.e., knots at all the cross sec-
tions) will be smooth at scales finer than the cross-section
spacing but non-smooth at the model’s discretization scale.
That is to say that the exact cubic spline fitting of z0(x) does
not reduce discontinuities at the discretization scale – only an
approximate fitting associated with coarser scales than the
cross-section spacing will be effective. It follows that there
is some (limited) choice in the selection of the subset of
z0(x) used as the spline knots, with different sets producing
slightly different {zR(x),hR(x)} over the domain. Each set
is algebraically identical to the underling geometry, so the
generated solutions should be identical within the machine
truncation error as long as the zR(x) are sufficiently smooth.
Implications of the method chosen for generating zR(x) are
discussed in Sect. 5.3. Further details and test cases are pro-
vided in Yu et al. (2019b).

3.4 HEC-RAS for model validation

The baseline SPRNT has been previously shown to have
excellent agreement with the Hydrologic Engineering Cen-
ter’s River Analysis System (version 5.0.7) – known as
HEC-RAS. Liu and Hodges (2014) showed SPRNT simula-
tions agreed with HEC-RAS with ≤ 3% difference in water
depth solution when using both prismatic cross sections and
nonuniform channels. Thus, HEC-RAS provides a reason-
able model for testing and validating SPRINT-RS. We would

have preferred to use a single model with and without the RS
method for such model–model comparisons; however, HEC-
RAS is a closed-source proprietary model, so we could not
directly implement and test the RS method in that code. Con-
versely, as expected by the discussions in Sect. 2, the base-
line SPRNT model is oscillatory and non-convergent on the
highly discontinuous geometry of our test cases due to its
use of the S0 approach, so it cannot be directly used for be-
fore and after comparisons of RS. Thus, simulations using
SPRNT-RS are compared to HEC-RAS simulations for vali-
dation and insight.

HEC-RAS provides a convenient validation model for
three reasons. Firstly, it is a widely accepted engineering
model for river-reach simulations, (e.g., Wang et al., 2012;
Giustarini et al., 2011; Aggett and Wilson, 2009). Secondly,
it has been used as a validation model in numerous prior stud-
ies (e.g., Gichamo et al., 2012; Mejia and Reed, 2011; Hor-
ritt and Bates, 2002). Finally, unsteady HEC-RAS employs
∂η/∂x as the piezometric gradient rather than using ∂h0/∂x

and S0, which is one of the reasons it is relatively robust for
non-smooth geometry such as that used herein.

The performance of the RS method is demonstrated be-
low through (i) a comparison to six analytical test cases from
MacDonald et al. (1995) with Lipschitz continuous geome-
try, various prismatic shapes, and different formulations of
SR, (ii) seven synthetic test cases using Lipschitz discontin-
uous geometry, and (iii) an urban creek with complex cross-
section geometry derived from physical surveys that include
discontinuities an-order-of-magnitude greater than those in
the synthetic test cases.

3.5 Test cases – analytical solutions

Analytical solutions of six test cases with different chan-
nel shapes and bed slope formations from MacDonald et al.
(1995) are used to show that SPRNT-RS reproduces the cor-
rect water surface elevation regardless of the selection of SR.
These test cases are representative of the more comprehen-
sive analysis provided in Yu et al. (2019a). The configuration
details for each case are provided in Table 1, for which we
adopt the nomenclature of MacDonald et al. (1995) for ease
of comparison. The selected test cases have Lipschitz smooth
geometric features that are represented in RS tests using both
uniform and splined reference beds, as shown in Fig. 5. To
illustrate the adaptability of the RS method, the UR3 and
UT2 cases use splines that produce zR very close to (but not
identical to) the actual bed, whereas the other cases use uni-
form SR or splines with greater differences. The uniform SR
in cases UR1, UT1, and VR1 is set to the average slope in
each domain. With reference to Fig. 4, the differences be-
tween the channel bottom (z0) and the reference bottom (zR)
shown in Fig. 5 imply channel bottom offsets (hR) of varying
complexity for the RS method, as shown in Fig. 6. The VR1
and VR2 cases also provide smooth changes in the channel
width, which are shown in Fig. 7. The node spacing for all
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these tests is a uniform1x = 10 m. The boundary conditions
follow MacDonald et al. (1995).

3.6 Test cases – synthetic channel reach

The analytical test cases above are designed to show that
the RS method does not introduce approximations that af-
fect the smooth solution. However, the true power of the RS
method is in solutions of non-smooth bathymetry in which
most models using h0 and S0 have difficulty converging.
To illustrate this aspect, we use a simple river reach with
a randomly perturbed (discontinuous) bathymetry at various
scales. As there are no analytical solutions for these tests,
we use the HEC-RAS model for comparison. The simula-
tions use time-invariant boundary conditions with geometry
defined by trapezoidal cross sections of uniform side slope,
as detailed in Table 2. The channel bed offset (hR) and thal-
weg slope (S0) are illustrated in Fig. 8. The flow boundary
conditions provide for a mild slope with a water surface pro-
file that can be classified as an M1 gradually varying flow.

Case 1 is the baseline smooth channel with a uniform slope
over the entire reach length. Cases 2 through 5 have a syn-
thetic geometry developed by random perturbations of the
bottom elevation of the baseline reach. Cases A and B have
the identical smooth geometry to Case 1 but use different ref-
erence slopes for RS tests. The synthetic channel test reach is
1.58 km in length discretized into 80 uniform computational
nodes with 79 channel segments (20 m per segment). The
trapezoidal cross sections each have a 10.0 m bottom width
and 63.4◦ sidewall slopes. Bottom roughness is fixed by a
Manning’s n value of 0.04 for all segments.

To develop the random perturbations of the bottom in the
synthetic test cases, we begin with Case 1 (baseline) using a
uniform S

[1]
0 = 0.008 over the entire reach length. Here the

superscript in square brackets indicates the case identifier.
The set of bottom elevations for Case 1 are z[1]0 (x), which
are smooth and linearly decreasing over the reach length.
Cases 2–5 are similar channels with perturbed bottom ele-
vations set by

z
[c]
0 (x)= z

[1]
0 (x)+α[c]H(x) : c ∈ {2,3,4,5} , (20)

where H(x) is a set of random-generated numbers within
the range of −0.126≤H(x)≤ 0.183. The upper and lower
limits of H(x) were selected to prevent the occurrence of a
locally adverse slope – such conditions can be handled by
SPRNT-RS but can cause convergence problems for some
models. The α[c] is a magnitude to generate a range of bot-
tom displacements with α[c] ∈ {0.01,0.1,0.5,1.0} for c ∈
{2,3,4,5}, respectively. Cases 2–5 set the reference bottom
elevations exactly equal to the baseline Case 1 physical bot-
tom elevations; i.e.,

z
[c]
R (x)= z

[1]
0 (x) : c ∈ {2,3,4,5} . (21)

Thus, the SPRNT-RS simulations for cases 2–5 use uniform
SR over the reach such that the bed offset (hR) represents the

physical geometric perturbations. Noting from Eq. (13) that
hR is the difference between the physical bottom (z[c]0 ) and
the reference bottom (z[c]R ), substituting the above relation-
ships gives

h
[c]
R (x)= α

[c]H(x). (22)

For synthetic test cases A and B in Table 2, the actual
channel bottom slopes are set to uniform values equivalent
to Case 1; that is S[A]0 = S

[B]
0 = S

[1]
0 = 0.008 with identical

thalweg elevations of z[1]0 (x). However, the reference slopes
for these cases are set to smaller and greater uniform values:
S
[A]
R = 0.004 and S[B]R = 0.010. These two cases demonstrate

that the RS method generates the same numerical solution as
baseline Case 1 (solved at S0) when SR is set to an arbitrary
value.

Forcing for all seven test cases is a constant inflow bound-
ary of 283 m3 s−1 applied at the furthest upstream node.
The downstream boundary condition is 5.0 m depth, which
is a subcritical flow based on a normal depth of 4.95 m for
S0 = 0.008 and the inflow rate. Because a subcritical bound-
ary condition allows upstream wave reflections, the down-
stream boundary was enforced at the end of a 180 m (9 node)
buffer domain, which was adequate for reducing upstream
wave propagation in unsteady flow solutions. Simulation re-
sults are reported after the models have reached a steady state
and all oscillations associated with the initial conditions have
dissipated. Solutions for the buffer segment are not included
in the analyses below.

3.7 Test case – Waller Creek study site

The main stem of Waller Creek in Austin, Texas, USA, is
used to examine the performance of the RS method for more
complex conditions. The main stem of the creek drains an
urban watershed of 14.3 km2 with total length of 10.7 km
for the area illustrated in Fig. 9. Bathymetric survey data
are available courtesy of the city of Austin (Fig. 10). The
bathymetric data set includes 327 surveyed cross sections
with spacing intervals ranging from 2.5 up to 178 m (mean of
33.5 m). The Manning’s n of the channel (based on the city
of Austin computations) varies from 0.02 to 0.06 through-
out the system. The SPRNT model, in both its original and
RS form, has numerical stability issues associated with close
cross-section spacing. Arguably, these issues are related to
sharp changes in A that lead to non-smooth source terms de-
spite the RS method; however, this issue requires further in-
vestigation. Similar numerical instability behavior can also
be found in the HEC-RAS unsteady model and also causes
divergent solutions. For the present work, we discarded 36
cross sections (11 % of the data set) that were closer than
10 m and merged these short reach lengths with the adjacent
sections. An additional three cross sections were discarded
and some channel roughness values were modified as they
caused numerical instability in the HEC-RAS unsteady simu-
lation (see Appendix for details). The resulting data set is 288
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Table 1. Configuration and geometric data for analytical test cases derived from MacDonald et al. (1995). WB and SSW represent bottom
width and sidewall slope, respectively.

Case name Cross-section shape type Cross-section shape detail n Q SR

UR1 Uniform rectangular
WB = 10 m

0.03 20 m3 s−1

Constant zR

UR3 Uniform rectangular First-order spline

UT1 Uniform trapezoidal WB = 9 m, SSW = 2 Constant zR

UT2 Uniform trapezoidal WB = 10 m, SSW = 2 Second-order spline

VR1 Varying rectangular
Varying WB

Constant zR

VR2 Varying rectangular Third-order spline

Figure 5. Channel bed elevation (z0) and reference bed elevation (zR) for six test cases from MacDonald et al. (1995).

cross sections with spacing ranging from 10.1 to 184.9 m.
The mean cross-section spacing is 37.2 m with a total reach
length of 10.7 km. To limit our focus to subcritical flow, our
analyses consider only the upper 8.3 km of the main reach
(210 out of 288 cross sections), which eliminates a series of
step-pool transcritical elements in the downstream channel in
which the HEC-RAS solution is strongly influenced by the ad
hoc local partial inertia (LPI) algorithm (Fread et al., 1996;
Brunner, 2016b). The smoothing introduced by LPI makes
it difficult to draw conclusions from a comparison between
SPRNT-RS and HEC-RAS across transcritical locations.

A time-invariant upstream inflow boundary condition is
set to 25 m3 s−1 at the headwater cross section. To minimize
the influence of subcritical reflections from the upstream in-
flow boundary, the first 10 computational nodes at the up-
stream are not included in the results analysis. Lateral in-
flows are set to zero for all test cases. A 300 m buffer sec-
tion is added downstream of the test domain to reduce the
influence of reflections from the downstream boundary con-

dition. This buffer section uses the same cross section as the
final downstream section of the data set with a bed slope (S0)
of 0.0033 and Manning’s n of 0.04. The buffer section has
a normal depth of 0.76 m at the 25 m3 s−1 inflow rate. The
downstream boundary condition at the end of the buffer sec-
tion is 0.7 m depth, which is subcritical and implies an M2
gradually varying drawdown in the vicinity of the outflow.
These geometry and boundary conditions are identically ap-
plied to both SPRNT-RS and HEC-RAS models.

The thalweg elevation, z0(x), and the reference elevation,
zR(x), of the RS method (as determined by the approximate
spline fit described above) for Waller Creek are shown in
Fig. 11a. The z0 and zR are visually similar with the for-
mer being somewhat more noisy. The elevation data sets pro-
vide similar overall reach slopes (uppermost cross section to
lowermost cross section) of 0.0074 and 0.0077, respectively.
Note that the approximate B-spline technique for generating
zR(x) does not force the overall reach slope to be identical.
Because zR(x) is mathematically arbitrary, there is no need
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Figure 6. Reference bed offset, hR, for zR and z0 of the test cases in Fig. 5.

Figure 7. Plan view of channel edges for cases VR1 (a) and VR2 (b) of Fig. 5.

to force an exact match. Although z0(x) and zR(x) are simi-
lar in Fig. 11a, S0(x) from the raw data is discontinuous and
varies over a wide range (up to 4 times the reach slope), as
illustrated in Fig. 11b. Note that S0(x) also includes nega-
tive slopes (i.e., adverse gradient sections) which can cause
convergence problems for some numerical solvers. In con-
trast, as shown in Fig. 11c, the approximate cubic B-spline
used to generate SR(x) from zR(x) provides a reference slope
that is everywhere smooth and positive and remains close to
the overall reach slope of 0.008. The slope range and model
nomenclature for the Waller Creek test cases are provided
in Table 3. The Lipschitz smoothness of S0 versus SR can
be better understood by evaluating the gradient of the slope,
i.e., the second derivative of z0 and zR, as shown in Fig. 11d.
The S0 formulation clearly lacks smoothness in the higher
derivative.

3.8 Analysis methods

To evaluate the performance of the RS method relative to
conventional formulations, four depth-based indicators are
employed, as described below. For these definitions, the con-
trol (superscript [C]) is the MacDonald et al. (1995) solu-
tion for the analytical test case and HEC-RAS results for the
synthetic channel and Waller Creek test cases. Note that the
synthetic tests use unsteady HEC-RAS, whereas the Waller
Creek study uses comparisons to both steady and unsteady
versions of the model. The test case (superscript [T ]) is al-
ways the SPRNT-RS simulation. These measures can be con-
sidered error metrics for the comparison to the analytical
solutions and difference metrics for model–model compar-
isons.

Hydrol. Earth Syst. Sci., 24, 4001–4024, 2020 https://doi.org/10.5194/hess-24-4001-2020



C.-W. Yu et al.: A new form of the Saint-Venant equations for variable topography 4011

Table 2. Configuration of synthetic channel reach test cases: α is used in Eq. (20) for random perturbation of the baseline Case 1 geometry;
hR is the bed offset based on Fig. 4 with parentheses indicating upper and lower limits of randomized geometry values over the nonuniform
test reach; S0 is the range of the thalweg slope for z0 from Eq. (20); and SR is the selected uniform reference slope.

Case α hR S0 SR

Case 1 (baseline) – – 0.008 0.008

Case 2 0.01 ( −0.0018, 0.0012) (0.0079, 0.00802)

0.008Case 3 0.1 ( −0.0186, 0.0126) (0.0077, 0.0082)

Case 4 0.5 ( −0.0914, 0.0632) (0.0067, 0.0092)

Case 5 1 ( −0.1827, 0.1264) (0.0056, 0.0105)

Case A 0 ( −3.2, 3.12 ) 0.008 0.004

Case B 0 ( −1.56, 1.6) 0.008 0.010

Figure 8. Channel bottom offset (hR) and physical thalweg slope (S0) for synthetic test cases 2–5 that are random perturbations of the
baseline smooth S0 = 0.008 of Case 1.

1. Normalized difference (ρ). A nondimensional index to
describe the local difference in depth can be defined as

ρ[T :C](x)=
h
[C]
0 (x)−h

[T ]
0 (x)

h
[C]
0 (x)

, (23)

where h[C]0 (x) and h[T ]0 (x) are the local depth solutions
from the control and test case results after steady-state
conditions are achieved. The normalization scale is the
local depth of the control case. Note the denominator is
nonzero in the synthetic test case setup because the flow
setup is an M1 gradually varying flow.

2. Absolute mean normalized difference (ζ ). The mean of
the absolute value of ρ(x) over the domain provides an

overall nondimensional indicator of the depth error:

ζ [T :C] =
1
N

N∑
x=1
| ρ[T :C](x) |, (24)

where N is the total number of cross sections. We use
the absolute value so that positive errors do not cancel
negative errors, and ζ is a representative scale of the
discrepancy between models.

3. Mean absolute error (MAE). The overall dimensional
error is characterized as

MAE=
1
N

N∑
x=1
| h
[C]
0 (x)−h

[T ]
0 (x) |, (25)
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Figure 9. Main stem of Waller Creek and catchment in Austin (Texas, USA). Basemap © by Open Geospatial Consortium (OGC) Web
Mapping Service (WMS).

Table 3. Data for model setup of Waller Creek test cases.

Case Slope formulation Slope range Model usage

WCRS RS method 0.0033< SR < 0.0147 SPRNT

WCHEC-S Conventional −0.0328< S0 < 0.0393 HEC-RAS (steady)
WCHEC-U Conventional −0.0328< S0 < 0.0393 HEC-RAS (unsteady)

Figure 10. Surveyed cross sections of Waller Creek. Only 140 out
of 327 cross sections are shown for clarity. Elevations are relative
to mean sea level. Data courtesy of the city of Austin.

and the nondimensional form of overall error is

MAE (nondimensional)

=
1
N

N∑
x=1
|
h
[C]
0 (x)−h

[T ]
0 (x)

h
[C]
0 (x)

| . (26)

4. Root mean square error (RMSE). A standard dimen-
sional measure of the squared error is

RMSE=

√√√√ 1
N

n∑
x=1
(h
[C]
0 (x)−h

[T ]
0 (x))2. (27)

The nondimensional form of RMSE is computed by the
following equation:

RMSE (nondimensional)

=

√√√√ 1
N

n∑
x=1
(
h
[C]
0 (x)−h

[T ]
0 (x)

h
[C]
0 (x)

)2. (28)
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Figure 11. Waller Creek bottom elevation and slope: (a) z elevation,
with 5 m subtracted from zR for clarity; (b) S0 thalweg slope be-
tween cross sections; (c) SR smoothed bottom slope; and (d) second
derivative of z0 and zR. Note the y-axis scaling in (c) has reduced
limits compared to (b) to better show the smoothness achieved by
the spline fit.

Both the MAE and RMSE are also reported in nondi-
mensional form where the normalization scale is pre-
sented.

4 Results

4.1 Analytical test cases

The water surface elevations for the analytical solutions and
SPRNT-RS simulations are shown in Fig. 12. Visually, the
analytical and simulated results across all six cases are iden-
tical. Error metrics following Sect. 3.8 are provided in Ta-
ble 1. The normalized differences (ρ) are less than 1 % and
are consistent with absolute errors of O(10−3)m, which are
negligible compared with the water depths ≥ 1 m. The spa-
tial distributions of the normalized error are shown in Fig. 13.
By comparing this figure with Fig. 5, it can be seen that ρ(x)
fluctuates with the change in bed slope. Similar behavior can
also be found for model results reported in MacDonald et al.
(1995).

4.2 Synthetic test cases

Results for the baseline synthetic test, Case 1, are shown in
Fig. 14. The SPRNT-RS method produces visually the same
solution to HEC-RAS with zR = z0. Similarly, the compar-
ison of model results for depth (h0) for test cases 2–5 are
visually indistinguishable, as shown in the left column of
Fig. 15. The quantitative difference measures for the syn-
thetic tests are provided in Table 5, and the spatial distribu-
tions of ρ(x) are illustrated in the right column of Fig. 15.
Values for ρ(x) in cases 2 and 3 are slightly below zero
(≈ 0.02%) over the entire domain, indicating the SPRNT-RS
solution has a slightly higher water surface than the HEC-
RAS solution for small perturbations in the bed slope. With
the increased bottom perturbations in cases 4 and 5, the ρ(x)
range is larger (and includes a positive range), but the bound-
ing values are still trivial. The ζ and RMSE measures show
that the nondimensional and dimensional overall differences
are small. The MAE and RMSE climb slightly with the in-
creasing hR for cases 2 through 5 but remain below 3 mm.
These depth RMSE values are negligible compared with the
normal depth (4.95 m) of the baseline and well within rea-
sonable truncation error differences for solvers using differ-
ent numerical techniques. The model–model comparisons for
test cases A and B also have trivial errors (Table 5), and fur-
ther results are not shown as they are visually identical to
those for baseline Case 1 illustrated in Fig. 14. Note that the
RMSE for both cases is identical to Case 1, which indicates
the solution for the SPRNT-RS method with SR 6= S0 is very
close to the baseline solution with SR = S0.

4.3 Waller Creek test case

Waller Creek has been simulated with SPRNT-RS (de-
noted as WCRS in the following figures), the HEC-RAS un-
steady solver (WCHEC-U), and the HEC-RAS steady solver
(WCHEC-S). Figure 16 shows water surface elevations for
SPRNT-RS and unsteady HEC-RAS. For clarity, the upper
40% of the domain (which has similar good behavior) is
not shown. Figure 17 shows the spatial distribution of the
normalized difference, ρ, for these simulations. The differ-
ences are roughly within±4% across the entire domain. The
maximum and minimum difference both occur at two adja-
cent nodes close to 7800 m with 4.14% and −3.07%, re-
spectively. Figure 18 provides a similar comparison of water
surface elevations between SPRNT-RS and the steady HEC-
RAS case. The results are visually quite similar to the com-
parison with unsteady HEC-RAS. A direct comparison of
surface elevations for unsteady and steady HEC-RAS does
not provide any further insight and is omitted for brevity.
However, to quantitatively evaluate the differences between
SPRNT-RS and HEC-RAS, it is useful to compute difference
measures between the unsteady and steady HEC-RAS mod-
els themselves, as well as the differences between SPRNT-
RS and both models, as provided in Table 6. Overall, the

https://doi.org/10.5194/hess-24-4001-2020 Hydrol. Earth Syst. Sci., 24, 4001–4024, 2020



4014 C.-W. Yu et al.: A new form of the Saint-Venant equations for variable topography

Figure 12. Comparison between simulated water surface elevation from SPRNT-RS and analytical solution for analytical test cases of
MacDonald et al. (1995).

Figure 13. Spatial distribution of normalized difference (ρ) for analytical test cases of MacDonald et al. (1995).

SPRNT-RS result have marginally better consistency with
unsteady HEC-RAS than with steady HEC-RAS. Of greater
importance is that the behavior of SPRNT-RS relative to
unsteady HEC-RAS has the same order of differences as
the comparison of unsteady HEC-RAS to steady HEC-RAS.
These results imply that the differences between SPRNT-RS
and unsteady HEC-RAS are reasonable for the different nu-
merical methods given the geometric variability of Waller
Creek.

5 Discussion

5.1 Validation of the RS method

The RS method is a simple algebraic transformation of the
governing equations, and the answer to the principal question
“does it work” is implied by our inability use the baseline
SPRNT model (with S0) as a control model (see Sect. 3.4).
Invariably, discontinuous topography for SPRNT without RS
caused either an oscillatory solution or numerical instability.
In contrast, both HEC-RAS (using η) and SPRNT-RS (using
SR) provide stable, non-oscillatory solutions.
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Table 4. Difference measures using Eqs. (23)–(28) for analytical test cases of MacDonald et al. (1995). Nondimensional MAE and RMSE
are shown in parentheses.

Case Min (ρ) Max (ρ) ζ MAE (m) RMSE (m)

UR1 −0.47% 0.33% 0.09% 0.00104 (0.032%) 0.00131 (0.048%)
UR3 −0.73% 0.55% 0.28% 0.00385 (0.044%) 0.00457 (0.058%)
UT1 −0.19% 0.33% 0.07% 0.00085 (0.027%) 0.00108 (0.042%)
UT2 −0.73% 0.62% 0.28% 0.00388 (0.064%) 0.00458 (0.084%)
VR1 −0.13% 0.08% 0.03% 0.00055 (0.006%) 0.00070 (0.009%)
VR2 −0.15% 0.13% 0.06% 0.00090 (0.026%) 0.00108 (0.031%)

Table 5. Difference measures between SPRNT-RS and HEC-RAS using Eqs. (23)–(28) for synthetic test cases. Nondimensional MAE and
RMSE are shown in parentheses.

Case Min (ρ) Max (ρ) ζ MAE (m) RMSE (m)

Case 1 (baseline) −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00176 (0.035%)
Case 2 −0.031% −0.012% 0.0251% 0.00124 (0.025%) 0.00126 (0.025%)
Case 3 −0.037% −0.005% 0.0252% 0.00125 (0.025%) 0.00129 (0.026%)
Case 4 −0.073% 0.032% 0.0284% 0.00141 (0.028%) 0.00168 (0.034%)
Case 5 −0.107% 0.095% 0.0426% 0.00212 (0.043%) 0.00249 (0.049%)
Case A −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00175 (0.035%)
Case B −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00175 (0.035%)

Figure 14. Simulated profile of water surface elevation (upper line)
and channel bottom (lower line) for synthetic test Case 1 using
SPRNT-RS (red) and unsteady HEC-RAS (black).

The analytical results in Sect. 4.1, supplemented by addi-
tional results in Yu et al. (2019a), validate the SPRNT-RS
method for the simulation of smoothly varying channel mor-
phologies that are Lipschitz continuous at the discretization
scale. We have experimented with both uniform and splined
SR for these tests. For both types of simulations, we observe
errors relative to physical experiments that are comparable
or smaller than those shown in the numerical validation stud-
ies of MacDonald et al. (1995). These results imply that the
transformation from the conventional h0 and S0 form of the
SVEs to the ha and SR form of Eq. (17) is a valid algebraic
step that can be implemented in a numerical solver and is an
alternative for representing smooth geometries.

The synthetic test cases in Sect. 4.2 serve two purposes.
Firstly, cases A and B compared to baseline Case 1 show
that the numerical solution does not depend on a particular
choice of SR. The arbitrary selection of an SR 6= S0 results
in identical solutions to SR = S0. Secondly, the synthetic test
cases show that the SPRNT-RS method can be applied with
non-smooth geometry at the discretization scale (i.e., random
perturbations of the physical bottom slope), which caused
non-convergent behavior in the baseline SPRNT model. As
a control, we have compared SPRNT-RS with the accepted
HEC-RAS model that remains stable for these test cases as it
is solved with the piezometric pressure gradient rather than
splitting into S0 and the gradient of h0. The results indi-
cate that SPRNT-RS provides numerical solutions that are
nearly identical to HEC-RAS for the non-smooth geometry
test cases. Thus, using a Lipschitz smooth SR provides a sta-
ble numerical solution for non-smooth geometry without al-
tering the physical representation of non-smooth geometry.

The Waller Creek test case in Sect. 4.3 provides a more
challenging comparison of SPRNT-RS to HEC-RAS. For
this test case, the geometry discontinuities include adverse
slopes and local S0 that are ±400% of the reach-average
slope, which contrasts with perturbations of ±30% used in
the synthetic test cases of Sect. 4.2. Again, SPRNT-RS is
shown to be close to the unsteady HEC-RAS solution. The
model differences are within reasonable ranges, as illustrated
by the fact that they are similar to the differences between
HEC-RAS steady and unsteady versions. Nevertheless, it re-
mains possible that the minor differences between HEC-RAS
and SPRNT-RS are caused by a latent defect in coding the
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Figure 15. Water depth, h0, (left column) and normalized difference, ρ, (right column) for synthetic test cases with perturbed bathymetry.

Figure 16. Comparison of SPRNT-RS to unsteady HEC-RAS for water surface elevations in Waller Creek simulations with expanded detail
to show similarities. For clarity, 5 m is subtracted from the channel z elevations.

RS method or in SPRNT itself, but it is difficult to envision
how such a defect could occur without also appearing in the
analytical and synthetic test cases. A simpler and more com-
pelling explanation is with the linear approximations used
in unsteady HEC-RAS that are not present in SPRNT-RS.
Specifically, Brunner (2016a) notes that for computational
efficiency and to reduce “troublesome convergence prob-
lems at discontinuities in the river geometry,” the unsteady
HEC-RAS code uses a linearization technique developed by
Liggett (1975) and Chen (1973) – note that the latter doc-
ument is cited by Brunner (2016a) but was not available to
us. It seems likely that strong geometry discontinuities in the
Waller Creek test case would be affected by this lineariza-
tion, which arguably would lead to artificial smoothing of

the water surface profile by HEC-RAS. Unfortunately, we do
not have direct access to the HEC-RAS code and thus rely on
the discussion of HEC-RAS stability in the literature (Hicks
and Peacock, 2005; Sharkey, 2014) and the methodology in
HEC-RAS manuals (Brunner, 2016a, b).

5.2 Why not just use ∂η/∂x?

One might wonder whether SR or S0 is at all necessary when
we could clearly just retain ∂η/∂x in the SVEs rather than us-
ing any split form. To understand the value of SR, it is worth
considering why S0 is presently used. We have not been
able to determine exactly when S0 was first used with the
SVEs, but from a hydrology viewpoint S0 provides consis-
tency between kinematic wave solutions (which use S0 = Sf)
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Figure 17. Normalized difference ρ(x) between SPRNT-RS and unsteady HEC-RAS.

Figure 18. Comparison of SPRNT-RS to steady HEC-RAS for water surface elevations in Waller Creek simulations with expanded detail to
show similarities. For clarity, 5 m is subtracted from the channel z elevations.

and the SVEs. Thus including S0 is a logical step when con-
sidering reduced-physics approaches (Di Baldassarre, 2012).
Arguably, a well-chosen SR that matches the large-scale S0
will serve the same purpose. The S0 approach is also fa-
vored in models that are built on a “conservative” SVE form
in which the hydrostatic pressure portion of the piezometric
head gradient is abstracted into the advective gradient term
(e.g., Sanders, 2001; Kesserwani, 2013). For these model,
the advantage of the S0 form is that, when S0 equals 0 and
Sf equals 0, the momentum equation can be written as a clas-
sic 1D homogenous advection equation, which is mathemat-
ically appealing. Our work in progress indicates that the SR
approach could be similarly adapted for a conservative form
of the SVEs, but this issue remains speculative.

Although the utility and simplicity of the η approach is
obvious, it has a key disadvantage when applied in large-
scale simulations. Over large distances the free surface is

monotonically increasing upstream, which has consequences
for employing implicit or semi-implicit numerical solutions
in a continental river dynamics framework (Hodges, 2013).
Briefly, when modeling a river system from an estuary (η ∼
0 m) to mountain headwaters (η ∼ 103 m), the solution vari-
able, η, nominally covers 3 orders of magnitude. Further-
more, as local variations on the order of 10−2 m affect the
hydrostatic pressure gradient, the solution of η requires pre-
cision over at least 5 orders of magnitude – i.e., a stiff nu-
merical solution that can be difficult to converge for either a
linear or nonlinear solver. Thus, splitting ∂η/∂x into a down-
slope body force (SR) and a local residual (∂ha/∂x) is ef-
fectively removing a large-scale gradient from the solution
variables, which will generally improve numerical behavior.

Despite the above disadvantages, the η form retains some
advantages in creating conservative finite-volume formula-
tions of the Saint-Venant equations (Hodges, 2019). Ar-
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Table 6. Difference metrics for Waller Creek simulation results. Nondimensional MAE and RMSE are shown in parentheses.

Case comparison Min (ρ) Max (ρ) ζ MAE (m) RMSE (m)

WCRS : WCHEC-U −3.07 % 4.14 % 0.85% 0.056 (0.883%) 0.077 (1.284%)
WCRS : WCHEC-S −8.43 % 4.58 % 1.25% 0.081 (1.287%) 0.122 (1.990%)
WCHEC-U : WCHEC-S −2.70 % 7.03 % 1.30% 0.086 (1.301%) 0.128 (1.931%)

guably, such methods should be confined to explicit time-
marching schemes or localized solutions, in which η covers
a smaller range, and the RS method should be preferred for
larger systems.

5.3 RS advantages and limitations

The fundamental difference between the SPRNT-RS ap-
proach and most, if not all, conventional models (including
unsteady HEC-RAS) is that our method algebraically revises
the Saint-Venant equations to exactly accommodate discon-
tinuous geometry while maintaining a smooth source term,
whereas other models typically introduce ad hoc changes
(e.g., linearization) to provide stable and faster numerical
behavior when discontinuities are likely to cause numeri-
cal instabilities. These differences in the governing equa-
tions can be expected to cause differences in the solution
– especially where nonlinear terms are strong. The present
scope is limited in that only a single model was modified
(SPRNT/SPRNT-RS) and only a single model (HEC-RAS)
was used as an external control. The validity of the under-
lying algebraic transformation in the RS method has been
demonstrated by these tests; however, it remains to be seen
how implementing the RS approach in other models – par-
ticularly well-balanced models – might alter residual errors,
convergence rates, and computational performance. We are
interested in collaborating with other researchers who have
access to and familiarity with source code of candidate well-
balanced models.

An important limitation to the present work is that we fo-
cus solely on subcritical flow. The Preissmann scheme used
in the underlying SPRNT model is known to exhibit instabil-
ities with transcritical flows (Samuels and Skeels, 1990; Sart
et al., 2010; Meselhe and Holly, 1997), which can be sup-
pressed with the ad hoc local partial inertia (LPI) scheme of
Fread et al. (1996). Our preliminary work (not shown) in-
dicates that the RS approach can stabilize the Preissmann
scheme without using LPI, but further work is required to
test and validate the RS method for transcritical and super-
critical flows.

Overall, the RS method can ensure the Lipschitz smooth-
ness of slope representation in the momentum source term
(without smoothing geometry), thus reducing one source of
oscillatory or unstable behavior in numerical solutions. How-
ever, application of the RS method is not without some
limitations. Although the switch from S0 to SR is alge-

braically exact, the application of the RS method requires
some method to select the distributed zR(x) and to determine
SR(x). Poor selection of zR can theoretically result in non-
smooth SR. In the present work, the profile of zR in the Waller
Creek case is generated by the cubic B-spline technique,
which is controlled by the number of knots and their spacing.
In general, the distance between knots must be longer than
the spacing between cross sections so that the generated SR is
smooth at the model’s discretization scale. It is not clear that
a mathematical “optimum” for selection of knots will neces-
sarily exist, but there are likely (unknown) practical limits on
knot selection spacing for “adequate” smoothness of zR(x).
Our results indicate that approximating cubic B-splines is ad-
equate for producing smooth zR for the tested geometries
and that the solutions are robust for the selection of zR as
long as SR is smooth (Yu et al., 2019b). However, it is likely
there are limitations to applying the RS method in large-scale
river network simulations that will make it difficult to use a
simple globally applied knot spacing. Such networks might
consist of 104 to 105 reaches spanning wide geographical re-
gions with a variety of topology and inconsistent data avail-
ability. Some reaches may have well-defined cross sections
at close spacing, other reaches might be poorly documented
(Hodges, 2013). Thus, it seems likely that a method for au-
tomatically generating approximating splines (or some other
form of smoothing) would be useful, but such an advance
arguably requires a method for quantitatively evaluating the
goodness of a particular set of zR(x), which remains an open
question. We speculate that simple window filtering tech-
niques may be adequate for river databases such as NHDplus
(United States National Hydrography Dataset Plus), but fur-
ther investigation and examination are needed to better un-
derstand the interplay between the smoothing scales and the
numerical solution using the RS method for large networks.

This study has implemented RS only in the SPRNT code,
as discussed in more detail in Sect. 3. The baseline govern-
ing equations for SPRNT are of the form of Eq. (2), the so-
called “nonconservative” form, which simply means that the
entirety of the hydrostatic pressure gradient is effectively a
source term, in contrast to “conservative” equations such as
the Cunge–Liggett form (Cunge et al., 1980), in which a por-
tion of the hydrostatic pressure gradient is abstracted to the
advection term. Although it remains to be shown in future
work, the algebraic transformation implied in Eq. (4) can ar-
guably be applied in the Cunge–Liggett form or any other
conservative form of the SVEs. Similarly, the fundamental
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algebraic transformation to SR and ∂ha/∂x will be equally
valid in any finite-volume method using S0 and h0.

The greatest barrier to the adoption of the RS method in
an existing model is likely the need to rewrite the geom-
etry functions to accept ha, hR, and zR in place of h0 and
z0. The difficulties involved in this effort depend on whether
or not the model geometry functions are sufficiently isolated
from the main solution algorithm. Indeed, we can imagine
codes where the geometry functions are essentially dispersed
throughout and require extensive effort to alter, debug, and
verify.

5.4 The future for RS methods

The RS method as introduced above might be just a starting
point. Although the present work focused on the nonconser-
vative form, the concepts presented herein will likely be ef-
fective in addressing the well-balanced problem for conser-
vative forms as reviewed in Kesserwani (2013) and Hodges
(2019). Furthermore, the algebra in the RS demonstration
above leads to the conjecture that the method could be ex-
tended to 2D reference slopes for bathymetry in 2D or 3D
models. Undoubtedly there are unknown numerical chal-
lenges in extending to higher dimensions – particularly in
ensuring a 2D spline function is adequately spaced to ensure
smoothness – but there does not appear to be any fundamen-
tal conceptual difficulty in such efforts.

6 Conclusions

The reference slope (RS) method introduces a new form of
the Saint-Venant equations for 1D river flow. The advantage
of the RS method is that it ensures the body force (slope)
source term is smooth and cannot destabilize the numeri-
cal solution. The RS method introduces the concept of an
arbitrary smooth reference elevation, zR(x), with computed
reference slopes, SR(x), and associated depths, ha(x). These
geometries are algebraically related to the traditional chan-
nel thalweg elevation, depth, and bottom slope (z0,h0,S0)
used in many models. The RS method is implemented in an
open-source Saint-Venant solver as SPRNT-RS. In this study,
SPRNT-RS was compared to both analytical solutions and
the conventional HEC-RAS model for synthetic test reaches
and an urban creek for subcritical flows. The model–model
comparisons are within the expected truncation error for both
the analytical and synthetic test cases and within acceptable
differences for simulating flow through the complex geom-
etry of an urban creek. The slightly larger simulation differ-
ences in the urban creek test case are likely due to ad hoc lin-
earization algorithms used in HEC-RAS that do not appear
in SPRNT-RS.

As discussed in the Sect. 2, when faced with non-smooth
geometries in a channel reach, prior researchers have re-
sorted to limiting or smoothing discontinuous source terms
or employing numerical techniques that mitigate oscilla-
tory/unstable numerical behaviors. In contrast, the new RS
method transforms a discontinuous bottom slope source term
into a smooth expression without losing either complexity
in the geometry or introducing ad hoc smoothing of the ge-
ometry, the numerical method, or the solution. An important
advantage of the RS method is that it is entirely mechani-
cal, requiring only the selection of control knot spacing for
the approximating spline at some length scale larger than
the cross-section spacing. That is to say that RS does not
require the model designer or user to introduce smoothing
thresholds or ad hoc algorithm bounds. As such, we believe
the RS method could be particularly valuable as we move
from fine-resolution reach-scale modeling to large-scale con-
tinental river dynamic simulations (Hodges, 2013) or develop
massively parallel stormwater network models for megacities
(Morales-Hernandez et al., 2020)

The RS method is not specific to SPRNT but can be
adapted to any Saint-Venant solver that uses a bottom slope
(S0) term in the discretization. The mathematical change is
conceptually trivial, but the actual effort depends on how
cross-section geometry is embedded in the code. The code
for both SPRNT and SPRNT-RS are available under open-
source license at GitHub (Liu, 2014).
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Appendix A: Geometry adjustments for stable unsteady
HEC-RAS simulations

As discussed in Sect. 3, the stability of the SPRNT-RS sim-
ulations for Waller Creek was ensured by merging 36 com-
putational elements in which the cross-section spacing was
closer than 10 m. This minimum spacing cutoff was selected
as being well below the median spacing of 28.6 m and mean
spacing of 37.7 m and proved adequate for ensuring SPRNT-
RS stability in the tested simulations. Unfortunately, stabil-
ity of unsteady HEC-RAS required the further removal of
three cross-section elements (shown in Fig. A1) and reduc-
ing Manning’s n at six additional cross sections (listed in Ta-
ble A1). Selecting these changes was a matter of art rather
than science as we could not identify clear criteria for cross-
section removal or Manning’s n adjustments for HEC-RAS –
other than that these locations appeared to be where instabil-
ities appeared in unsteady HEC-RAS model runs. Although
SPRNT-RS could run without these changes, for consistency
in the model comparisons the geometry of the SPRNT-RS
model was modified to exactly match the adjusted geometry
required for the HEC-RAS model.

Figure A1. Cross sections removed from Waller Creek data set to provide numerical stability of unsteady HEC-RAS.

Table A1. Modified Manning’s n for cross-section stations in
Waller Creek data set to provide numerical stability of unsteady
HEC-RAS.

Station Reach location Original Modified
number (m) n n

30104 1384 0.06 0.04
30014 1412 0.06 0.04
29871 1454 0.055 0.04
29752 1490 0.06 0.04
29647 1522 0.055 0.04
29482 1572 0.055 0.04

Hydrol. Earth Syst. Sci., 24, 4001–4024, 2020 https://doi.org/10.5194/hess-24-4001-2020



C.-W. Yu et al.: A new form of the Saint-Venant equations for variable topography 4021

Appendix B: Notation

A cross-section area (m2)
g gravitational acceleration (ms−2)
h0 water depth (m)
ha associated water depth (m)
hR reference height (m)
n Gauckler–Manning–Strickler roughness (m−1/3s)
Pw wetted perimeter (m)
Q volumetric flow rate (m3s−1)
q` flow rate per unit length through channel sides (m2 s−1)
S0 channel bottom slope
Sf channel friction slope
SR channel reference slope
SSW channel sidewall slope
t time (s)
W channel width (m)
WB channel bottom width ((m))
x along-channel spatial coordinate
z0 channel bottom elevation (m)
zR reference elevation (m)
α bottom displacement coefficient
ε second derivative of water surface elevation (m−1)
η water surface elevation (m)
ρ normalized difference between results
ζ absolute mean normalized difference (AMND)
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