Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4001-2020
https://doi.org/10.5194/hess-24-4001-2020
Research article
 | 
18 Aug 2020
Research article |  | 18 Aug 2020

A new form of the Saint-Venant equations for variable topography

Cheng-Wei Yu, Ben R. Hodges, and Frank Liu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (12 Jun 2020) by Roberto Greco
AR by Cheng-Wei Yu on behalf of the Authors (16 Jun 2020)  Author's response    Manuscript
ED: Publish as is (09 Jul 2020) by Roberto Greco
Download
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.