Articles | Volume 24, issue 7
Hydrol. Earth Syst. Sci., 24, 3835–3850, 2020
Hydrol. Earth Syst. Sci., 24, 3835–3850, 2020

Research article 29 Jul 2020

Research article | 29 Jul 2020

Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates

Dieter Scherer

Related authors

Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144,,, 2021
Short summary
The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Alexander Krug, Daniel Fenner, Hans-Guido Mücke, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 20, 3083–3097,,, 2020
Short summary
Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau
Julia Curio and Dieter Scherer
Earth Syst. Dynam., 7, 767–782,,, 2016
Short summary
The role of building models in the evaluation of heat-related risks
Oliver Buchin, Britta Jänicke, Fred Meier, Dieter Scherer, and Felix Ziegler
Nat. Hazards Earth Syst. Sci., 16, 963–976,,, 2016
Short summary
A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau
J. Curio, F. Maussion, and D. Scherer
Earth Syst. Dynam., 6, 109–124,,, 2015

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973,,, 2021
Short summary
A new fractal-theory-based criterion for hydrological model calibration
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 25, 3675–3690,,, 2021
Short summary
The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673,,, 2021
Short summary
Machine learning deciphers CO2 sequestration and subsurface flowpaths from stream chemistry
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci., 25, 3397–3409,,, 2021
Short summary
Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453,,, 2021
Short summary

Cited articles

An, Z., Kutzbach, J. E., Prell, W. L., and Porters, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411, 62–66, 2001. 
Bai, L., Wen, Y., Shi, C., Yang, Y., Zhang, F., Wu, J., Gu, J., Pan, Y., Sun, S., and Meng, J.: Which precipitation product works best in the Qinghai-Tibet Plateau, multi-source blended data, global/regional reanalysis data, or satellite retrieved precipitation data?, Remote Sens., 12, 683,, 2020. 
Broccoli, A. J. and Manabe, S.: The Effects of Orography on Midlatitude Northern Hemisphere Dry Climates, J. Climate, 5, 1181–1201, 1992. 
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293, 2018. 
Cai, M., Fang, X., Wu, F., Miao, Y., and Appel, E.: Pliocene–Pleistocene stepwise drying of Central Asia: Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau, Global Planet. Change, 94–95, 72–81, 2012. 
Short summary
During the Pliocene, the Qaidam Basin on the Tibetan Plateau contained a mega-lake system. During the Pleistocene, it disappeared almost completely. Today, hyperarid climates prevail in the low-altitude parts of the basin. This study reveals that today's mean water balance of the Qaidam Basin is nearly zero and is positive during warmer, less dry years. The results explain how the mega-lake system could survive for a long time in the past and could eventually be restored in the future.