Articles | Volume 24, issue 2
Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020
https://doi.org/10.5194/hess-24-1011-2020
Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020
https://doi.org/10.5194/hess-24-1011-2020

Research article 03 Mar 2020

Research article | 03 Mar 2020

Comparison of probabilistic post-processing approaches for improving numerical weather prediction-based daily and weekly reference evapotranspiration forecasts

Hanoi Medina and Di Tian

Related authors

CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States
Di Tian, Eric F. Wood, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 1477–1490, https://doi.org/10.5194/hess-21-1477-2017,https://doi.org/10.5194/hess-21-1477-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021,https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: an experiment in the northeastern Tibetan Plateau
Yingzhao Ma, Xun Sun, Haonan Chen, Yang Hong, and Yinsheng Zhang
Hydrol. Earth Syst. Sci., 25, 359–374, https://doi.org/10.5194/hess-25-359-2021,https://doi.org/10.5194/hess-25-359-2021, 2021
Short summary
Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021,https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021,https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang
Hydrol. Earth Syst. Sci., 24, 5937–5951, https://doi.org/10.5194/hess-24-5937-2020,https://doi.org/10.5194/hess-24-5937-2020, 2020
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO, Irrigation and drainage paper 56, FAO, Rome, 300, p. D05109, 1998. 
Archambeau, C., Lee, J. A., and Verleysen, M.: On Convergence Problems of the EM Algorithm for Finite Gaussian Mixtures, in: ESANN'2003 proceedings – European Symposium on Artificial Neural Networks, 23–25 April 2003, Bruges, Belgium, 99–106, ISBN 2-930307-03-X, 2003. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. 
Bentzien, S. and Friederichs, P.: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE, Weather Forecast., 27, 988–1002, 2012. 
Download
Short summary
Reference evapotranspiration (ET0) forecasts play an important role in agricultural, environmental, and water management. This study evaluated probabilistic post-processing approaches for improving daily and weekly ensemble ET0 forecasting based on single or multiple numerical weather predictions. The three approaches used consistently improved the skill and reliability of the ET0 forecasts compared with the conventional method, due to the adjustment in the spread of the ensemble forecast.