Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-1011-2020
https://doi.org/10.5194/hess-24-1011-2020
Research article
 | 
03 Mar 2020
Research article |  | 03 Mar 2020

Comparison of probabilistic post-processing approaches for improving numerical weather prediction-based daily and weekly reference evapotranspiration forecasts

Hanoi Medina and Di Tian

Related authors

Customized deep learning for precipitation bias correction and downscaling
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023,https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States
Di Tian, Eric F. Wood, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 1477–1490, https://doi.org/10.5194/hess-21-1477-2017,https://doi.org/10.5194/hess-21-1477-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
140-year daily ensemble streamflow reconstructions over 661 catchments in France
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024,https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024,https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO, Irrigation and drainage paper 56, FAO, Rome, 300, p. D05109, 1998. 
Archambeau, C., Lee, J. A., and Verleysen, M.: On Convergence Problems of the EM Algorithm for Finite Gaussian Mixtures, in: ESANN'2003 proceedings – European Symposium on Artificial Neural Networks, 23–25 April 2003, Bruges, Belgium, 99–106, ISBN 2-930307-03-X, 2003. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. 
Bentzien, S. and Friederichs, P.: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE, Weather Forecast., 27, 988–1002, 2012. 
Download
Short summary
Reference evapotranspiration (ET0) forecasts play an important role in agricultural, environmental, and water management. This study evaluated probabilistic post-processing approaches for improving daily and weekly ensemble ET0 forecasting based on single or multiple numerical weather predictions. The three approaches used consistently improved the skill and reliability of the ET0 forecasts compared with the conventional method, due to the adjustment in the spread of the ensemble forecast.