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Abstract. Reference evapotranspiration (ET0) forecasts play
an important role in agricultural, environmental, and wa-
ter management. This study evaluated probabilistic post-
processing approaches, including the nonhomogeneous
Gaussian regression (NGR), affine kernel dressing (AKD),
and Bayesian model averaging (BMA) techniques, for im-
proving daily and weekly ET0 forecasting based on sin-
gle or multiple numerical weather predictions (NWPs)
from the THORPEX Interactive Grand Global Ensemble
(TIGGE), which includes the European Centre for Medium-
Range Weather Forecasts (ECMWF), the National Centers
for Environmental Prediction (NCEP) Global Forecast Sys-
tem (GFS), and the United Kingdom Meteorological Office
(UKMO) forecasts. The approaches were examined for the
forecasting of summer ET0 at 101 US Regional Climate Ref-
erence Network stations distributed all over the contiguous
United States (CONUS). We found that the NGR, AKD,
and BMA methods greatly improved the skill and reliabil-
ity of the ET0 forecasts compared with a linear regression
bias correction method, due to the considerable adjustments
in the spread of ensemble forecasts. The methods were espe-
cially effective when applied over the raw NCEP forecasts,
followed by the raw UKMO forecasts, because of their low
skill compared with that of the raw ECMWF forecasts. The
post-processed weekly forecasts had much lower rRMSE
values (between 8 % and 11 %) than the persistence-based
weekly forecasts (22 %) and the post-processed daily fore-
casts (between 13 % and 20 %). Compared with the single-
model ensemble, ET0 forecasts based on ECMWF multi-
model ensemble ET0 forecasts showed higher skill at shorter
lead times (1 or 2 d) and over the southern and western re-
gions of the US. The improvement was higher at a daily

timescale than at a weekly timescale. The NGR and AKD
methods showed the best performance; however, unlike the
AKD method, the NGR method can post-process multi-
model forecasts and is easier to interpret than the other meth-
ods. In summary, this study demonstrated that the three prob-
abilistic approaches generally outperform conventional pro-
cedures based on the simple bias correction of single-model
forecasts, with the NGR post-processing of the ECMWF and
ECMWF–UKMO forecasts providing the most cost-effective
ET0 forecasting.

1 Introduction

Reference crop evapotranspiration (ET0) represents the
weather-driven component of the water transfer from plants
and soils to the atmosphere. It plays a fundamental role in
estimating mass and energy balance over the land surface
as well as in agronomic, forestry, and water resource man-
agement. In particular, ET0 forecasting is important for aid-
ing water management decision-making (such as irrigation
scheduling, reservoir operation, and so on) under uncertainty
by identifying the range of future plausible water stress and
demand (Pelosi et al., 2016; Chirico et al., 2018). While ET0
forecasts have mostly been focused on the daily timescale
(e.g., Perera et al., 2014; Medina et al., 2018), weekly ET0
forecasts are also important for users. Studies show that
both daily and weekly forecasts have increasing influence
on the decision makers in agriculture (Prokopy et al., 2013;
Mase and Prokopy, 2014) and water resource management
(Hobbins et al., 2017). For example, irrigation is commonly
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scheduled considering both daily and weekly forecasts, while
weekly evapotranspiration forecasts are useful for planning
water allocation from reservoirs, especially in cases of short-
ages. Weekly ET0 anomalies can also provide warnings re-
garding wildfires (Castro et al., 2003) and evolving flash
drought conditions (Hobbins et al., 2017).

However, ET0 forecasting is highly uncertain due to the
chaotic nature of weather systems. In addition, ET0 estima-
tion requires full sets of meteorological data which are usu-
ally not easy to obtain. Due to the improvement of numerical
weather predictions (NWPs), studies have recently emerged
that forecast ET0 using outputs from NWPs over differ-
ent regions of the world (Silva et al., 2010; Tian and Mar-
tinez, 2012a, b, 2014; Perera et al., 2014; Pelosi et al., 2016;
Chirico et al., 2018; Medina et al., 2018). Operationally,
experimental ET0 forecast products are being developed,
such as the Forecast Reference EvapoTranspiration (FRET)
product (https://digital.weather.gov/, last access: 26 Febru-
ary 2020), as part of the US National Weather Service (NWS)
National Digital Forecast Database (NDFD; Glahn and Ruth,
2003) and the Australian Bureau of Meteorology’s Water
and Land website (http://www.bom.gov.au/watl, last access:
26 February 2020), which provide current and forecasted
ET0 at the continental scale.

The improved performance of NWPs in recent years is
largely due to the improvement of physical, statistical rep-
resentations of the major processes in the models as well as
the use of ensemble forecasting (Hamill et al., 2013; Bauer
et al., 2015). Nevertheless, NWP forecasts still commonly
show systematic inconsistencies with measurements, which
are often caused by inherent errors in the NWPs or local
land–atmospheric variability that is not well resolved in the
models. Post-processing methods, which are defined as any
form of adjustment to the model outputs in order to get better
predictions (e.g., Hagedorn et al., 2012), are highly recom-
mended to attenuate, or even eliminate, these inconsistencies
(Wilks, 2006). Until a few years ago, most post-processing
applications only considered single-model predictions (i.e.,
predictions generated by a single NWP model) and addressed
errors in the mean of the forecast distribution while ignoring
those in the forecast variance (Gneiting, 2014). These pro-
cedures regularly adopted some form of model output statis-
tics (MOS; Glahn and Lowry, 1972; Klein and Glahn, 1974)
method, focusing on correcting current ensemble forecasts
based on the bias in the historical forecasts.

As no forecast is complete without an accurate descrip-
tion of its uncertainty (National Research Council of the Na-
tional Academies, 2006), the dispersion of the forecast en-
semble often misrepresents the true density distribution of
the forecast uncertainty (Krzysztofowicz, 2001; Smith, 2001;
Hansen, 2002). The ensemble forecasts are, for example,
commonly under-dispersed (e.g., Buizza et al., 2005; Leut-
becher and Palmer, 2008), which cases the probabilistic pre-
dictions to be overconfident (Wilks, 2011). Therefore, an-
other generation of probabilistic techniques has been pro-

posed to also address dispersion errors in the ensembles
(Hamill and Colucci, 1997; Buizza et al., 2005; Pelosi et al.,
2017), in some cases via the manipulation of multi-model
weather forecasts.

Nonhomogeneous Gaussian regression (NGR; Gneiting et
al., 2005), Bayesian model averaging (BMA; Raftery et al.,
2005; Fraley et al., 2010), extended logistic regression (ELR;
Wilks et al., 2009; Whan and Schmeits, 2018), quantile map-
ping (Verkade et al., 2013), and the family of kernel dressing
(Roulston and Smith, 2003; Wang and Bishop, 2005), such as
the affine kernel dressing (AKD; Brocker and Smith, 2008),
are state-of-the-art probabilistic techniques (Gneiting, 2014).
However, ELR has been reported to fall short with respect
to using the information contained in the ensemble spread
in efficient way (Messner et al., 2014), whereas the quan-
tile mapping method has been found to degrade rather than
improve the forecast performance under some circumstances
(Madadgar et al., 2014). NGR, AKD, and BMA are some-
times considered as variants of dressing methods (Brocker
and Smith, 2008), as they produce a continuous forecast
probability distribution function (pdf) based on the original
ensemble. This property makes them particularly useful for
decision-making (Gneiting, 2014) compared with methods
that provide post-processed ensembles. Another common ad-
vantage is that they perform equally well with relatively short
training datasets (Geiting et al., 2005; Raftery et al., 2005;
Wilks and Hamill, 2007). A limitation of NGR (compared
with the AKD and BMA methods) is that the resulting fore-
cast pdf is invariably Gaussian, whereas a limitation of AKD
is that it only considers single-model ensembles. Instead,
the NGR and AKD methods provide more flexible mecha-
nisms for simultaneous adjustments in the forecast mean and
spread–skill (Brocker and Smith, 2008).

Studies have suggested that the post-processing of NWP-
based ET0 forecasts are crucial for informing decision-
making (e.g., Ishak et al., 2010). Medina et al. (2018) com-
pared single- and multi-model NWP-based ensemble ET0
forecasts, and the results showed that the performance of the
multi-model ensemble ET0 forecasts was considerably im-
proved via a simple bias correction post-processing and that
the bias-corrected multi-model ensemble forecasts were gen-
erally better than the single-model ensemble forecasts. In re-
ality, while most applications for ET0 forecasting have in-
volved some form of post-processing, these have been of-
ten limited to simple MOS procedures of single-model en-
sembles (e.g., Silva et al., 2010; Perera et al., 2014). The
poor treatment of uncertainty and variability is considered
to be a main issue affecting users’ perceptions and adop-
tions of weather forecasts (Mase and Prokopy, 2014). The
appropriate representation of the second and higher moments
of the ET0 forecast probability density is especially impor-
tant to predict extreme values, as shown by Williams et al.
(2014). Therefore, the use of probabilistic post-processing
techniques, such as NGR, AKD, and BMA, may greatly en-
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hance the overall performance of the ET0 forecasts compared
with simple MOS procedures.

Only a few studies have considered probabilistic meth-
ods for the post-processing of ET0 forecasts; these include
the works of Tian and Martinez (2012a, b, 2014) and, more
recently, Zhao et al. (2019). The former authors showed
the analog forecast (AF) method to be useful for the post-
processing of ET0 forecasts based on Global Forecast Sys-
tem (GFS, Hamill et al., 2006) and Global Ensemble Fore-
cast System (GEFS, Hamill et al., 2013) reforecasts. Tian and
Martinez (2014) found that water deficit forecasts produced
with the post-processed ET0 forecasts had higher accuracy
than those produced with climatology. Zhao et al. (2019), in
contrast, improved the skill and the reliability of the Aus-
tralian BoM model using a Bayesian joint probability (BJP)
post-processing approach, which is based on the parametric
modeling of the joint probability distribution between fore-
cast ensemble means and observations. However, a main dis-
advantage of the BJP method compared with the aforemen-
tioned state-of-the-art probabilistic approaches is that, while
the probabilistic approaches transform the spread of the en-
sembles, they rely on the mean of retrospective reforecasts,
thereby neglecting information about their dispersion. The
AF approach has the disadvantages of requiring long time se-
ries of retrospective forecasts and possibly being unsuitable
for extreme events forecasting (e.g., Medina et al., 2019).
The use of new ET0 forecasting strategies relying on the post-
processing of single- and multi-model ensemble forecasts
with the NGR, AKD, and the BMA probabilistic techniques
provide good opportunities to improve the predictions.

In this paper, we address several scientific questions that
have not been adequately studied in previous literature, in-
cluding the following:

– How effective are state-of-the-art probabilistic post-
processing methods compared with the traditional MOS
bias correction methods for post-processing ET0 fore-
casts?

– Is it worth implementing probabilistic post-processing
for multi-model rather than single-model ensemble
forecasting?

For the first time, this work aims to evaluate and compare
multiple strategies for post-processing both daily and weekly
ET0 forecasts using the NGR, AKD, and BMA approaches.
The study represents a major step forward with respect to
Medina et al. (2018), who evaluated the performance of raw
and linear regression bias-corrected daily ET0 forecasts pro-
duced with single- and multi-model ensemble forecasts. It
provides a broad characterization of the performance for dif-
ferent probabilistic post-processing strategies but also diag-
noses the causes of better and worse performance.

2 Methods and datasets

2.1 The probabilistic methods

The NGR, AKD, and BMA techniques follow a common
strategy: they yield a predictive probability density function
(pdf) of the post-processed forecasts y given the raw fore-
casts x and some fitting parameters θ (p(y |x,θ )). The pa-
rameters θ are fitted using a training dataset of ensemble
forecasts and observations, as in the MOS techniques. A brief
description of each technique is given in the following.

2.1.1 Nonhomogeneous Gaussian regression

Nonhomogeneous Gaussian regression (Gneiting et al.,
2005) produces a Gaussian predictive (pdf) based on the cur-
rent ensemble (of typically multi-model) forecasts. If xij de-
notes the j th (j = 1, . . .,mi) ensemble forecast member of
model i (i = 1, . . .,n), then p(y |x,θ ) ∼ N (µ,v); here, the
mean

µ= a+
∑n

i=1
bi x̄i (1)

is a linear combination of the mean ensemble forecasts x̄i ,
and the variance

v = c+ dS2 (2)

is a linear function of the ensemble variance S2. The fitting
parameters a, bi , c, and d are determined by minimizing the
continuous rank probability score (CRPS) using the training
set of forecasts and observations. Notice that parameters a,
c, and d are indistinguishable among members; therefore, bi
can be seen as a weighting parameter that reflects the better
or worse performance of one model compared with the oth-
ers. The NGR technique is implemented in R (R Core Team)
using the ensembleMOS package (Yuen et al., 2018).

2.1.2 Affine kernel dressing

The affine kernel dressing method (Bröcker and Smith, 2008)
only considers single-model ensemble forecasts. It estimates
p(y |x,θ ) using a mixture of normally distributed variables

p(y |x,θ )=
1
mσ

∑m

j=1
K

(
y− zj

σ

)
, (3)

where K represents a standard normal density kernel
(K(ξ)= 1/

√
2π exp(−1/2ξ2)), centered at zj , such that

zj = axj + r1+ r2x̄ (4)

and

σ 2
= h2

s (s1+ s2u(z)) . (5)

Here, hs is the Silverman’s factor (Bröcker and Smith,
2008)l; u(z) is the variance of z; and a, r1, r2, s1, and s2
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are fitting parameters obtained by minimizing the mean ig-
norance score. For clarity, we use the same nomenclature for
the parameters as in the original study. From Eqs. (4) and (5),
we can obtain that the predictive variance v is a function of
the ensemble variance S2 (Brocker and Smith, 2008)

v = h2
s s1+ a

2
(

1+h2
s s2

)
S2
= c∗+ d∗S2. (6)

Here, S2 represents the variance of the ensemble of ex-
changeable members.

The AKD technique is implemented through the
SpecsVerification R package (Siegert, 2017).

2.1.3 Bayesian model averaging

The BMA method (Raftery et al., 2005; Fraley et al., 2010)
also produces a mixture of normally distributed variables (as
in the AKD method), but they are based on multi-model en-
semble forecasts. In this case, the predictive pdf is given by a
weighted sum of component pdfs, gi(y|xi,j ;θi), with one for
each member, as follows:

p(y|x,θ)=
∑n

i=1

∑mi

j=1
wigi(y|xi,j ,θi), (7)

such that the weights and the parameters are invariable
among members of the same model and∑n

i=1
miwi = 1.

In this study, the component pdfs are assumed normal, as in
the affine kernel dressing method. Estimates of wis and θis
are produced by maximizing the likelihood function using
an expectation-maximization algorithm (Casella and Berger,
2002). The BMA technique is implemented using the ensem-
bleBMA R package (Fraley et al., 2016).

2.2 Measurement and forecast datasets

ET0 observations and forecasts were computed using the
FAO-56 PM equation (Allen et al., 1998), with daily mete-
orological data as inputs. They covered the same period: be-
tween May and August from 2014 to 2016. The observations
used daily measurements of minimum and maximum tem-
perature, minimum and maximum relative humidity, wind
speed, and surface incoming solar radiation from 101 US
Climate Reference Network (USCRN) weather stations. The
USCRN stations are distributed over nine climatologically
consistent regions in CONUS (Fig. 1). The ET0 forecasts
used daily maximum and minimum temperature, solar radia-
tion, wind speed, and dew point temperature reforecasts from
the European Centre for Medium-Range Weather Forecasts
model (ECMWF) outputs, United Kingdom Meteorological
Office (UKMO) model outputs, and the National Centers for
Environmental Prediction (NCEP) model from the THOR-
PEX Interactive Grand Global Ensemble (TIGGE; Swinbank
et al., 2016) database at each of these stations, considering

Figure 1. US climate regions: NW (Northwest), WNC (West north
central), ENC (East north central), NE (Northeast), C (Central), SE
(Southeast), S (South), SW (Southwest), and W (West). The circles
represent the sampled USCRN stations in the experiment.

a maximum lead time of 7 d. We used the same models as
Medina et al. (2018) for comparison purposes, and because
they are considered to be among the most skillful globally
(e.g., Hagedorn et al., 2012). The forecasts were interpolated
to the same 0.5◦× 0.5◦ grid using the TIGGE data portal.
The weekly forecasts accounted for the sum of the daily pre-
dictions generated on a specific day of each week, and the
weekly observations considered the sum of the daily obser-
vations over the corresponding forecasting days; thus, the
weekly observations were independent of one another. In this
study, we used the nearest-neighbor approach to interpolate
the forecasts to the USCRN stations, which does not account
for the effects of elevation. While the use of interpolation
techniques considering the effects of elevation (e.g., van Os-
nabrugge et al., 2019) may correct part of the forecast errors
before post-processing, it could also affect the multivariate
dependence of the weather variables. Hagedorn et al. (2012)
showed that post-processing can not only address the dis-
crepancies related to the model’s spatial resolution, but it can
also serve as a means of downscaling the forecasts.

2.3 Post-processing schemes

2.3.1 Training and verification periods

The training data for the daily post-processing comprised
the pairs of daily forecasts and corresponding observations
from 30 d prior to the forecast initial day, as in Medina
et al. (2018). Instead, the training data for the weekly post-
processing included all of the other pairs of weekly forecasts
and observations available for the forecast location, similar
to a leave-one-out cross-validation framework. In the study,
both the daily and weekly forecasts were verified for events
between June and August from 2014 to 2016.

Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020 www.hydrol-earth-syst-sci.net/24/1011/2020/
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2.3.2 Baseline approaches

Linear regression bias correction (BC) of the ECMWF fore-
cast was used as a baseline approach for measuring the effec-
tiveness of the NGR, AKD, and BMA methods considering
both daily and weekly forecasts. Here, the current forecast
bias is estimated as a linear function of the forecast mean,
and the members of the ensemble are shifted accordingly.
The function is calibrated using the forecast mean and the
actual biases based on the same training periods as for the
other post-processing methods. Persistence is also used as a
baseline approach for weekly forecasts, considering its ap-
plicability in productive systems. In this case, the ET0 for
a current week is estimated as the observed ET0 during the
previous week.

2.3.3 Forecasting experiments

Table 1 summarizes the daily and weekly NWP-based ET0
forecasting experiments based on different post-processing
methods and model combinations. The analyses of the daily
forecasts put more emphasis on the differences among the
post-processing methods. They include an examination of
the effect of the duration of the training period on the fore-
cast assessments as well as the regression weights from the
tested post-processing methods. In contrast, the weekly fore-
casts put more emphasis on the differences among the sev-
eral single- and multi-model ET0 forecasts under baseline
and probabilistic post-processing.

2.4 Forecast verification metrics

In this study, we use several metrics to evaluate deterministic
and probabilistic forecast performance of the post-processed
ET0 forecasts. For consistency purposes, the metrics of the
tested methods were assessed using 50 random samples, i.e.,
the same number of samples as the number of members in
the bias-corrected ECMWF forecasts. The deterministic ET0
forecast was produced by taking the average of the ensem-
ble members. The deterministic forecast performance was as-
sessed using the bias or mean error (ME) and the relative ME
(rME), the root-mean-square error (RMSE) and the relative
RMSE (rRMSE), and the correlation (ρ), which are common
measures of agreement in many studies. The absolute bias
and relative bias were calculated and reported.

The ME and rME were computed as follows:

ME=
1
n

∑n

i=1

(
f̄i − oi

)
(8)

rME=

∑n
i=1

(
f̄i − oi

)
nō

, (9)

where f̄i represents the average ensemble forecast for the
event i (i = 1. . .n), oi is the corresponding observation, and
ō is the mean observed data.
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The RMSE and the rRMSE were computed as

RMSE=

√
1
n

∑n

i=1

(
f̄i − oi

)2 (10)

rRMSE=

√
1
n

∑n
i=1
(
f̄i − oi

)2
ō

. (11)

The correlation was obtained as follows:

ρ =

∑n
i=1

(
f̄i − f

)
(oi − ō)

sf̄ so
, (12)

where f is the mean of the average ensemble forecast, and
sf̄ and so are the standard deviation of the average forecasts
and the observations, respectively.

The probabilistic forecast performance was assessed using
a range histogram, the spread–skill relationship (see Wilks,
2011), and the forecast coverage as measures of the fore-
cast reliability; the Brier skill score (BSS) as a measure of
the skill; and the continuous rank probability score (CRPS)
to provide an overall view of the performance (Hersbach,
2000), as the latter is simultaneously sensitive to both errors
in location and spread.

Here, reliability refers to statistical consistency (as in Toth
et al., 2003), which is met when the observations are statis-
tically indistinguishable from the forecast ensembles (Wilks,
2011). To obtain the rank histogram, we get the rank of the
observation when merged into the ordered ensemble of ET0
forecasts and then plot the rank’s histogram. The spread–
skill relationships are represented as binned-type plots (e.g.,
Pelosi et al., 2017), accounting for the mean of the ensem-
ble standard deviation deciles (as an indication of the ensem-
ble spread) against the mean RMSE of the forecasts in each
decile over the verification period. The plots include the cor-
relation between these two quantities. Calibrated ensembles
should show a 1:1 relationship between the standard devia-
tions and the RMSE. If the forecasts are unbiased and the
spread is small compared with the RMSE, the ensembles tend
to be under-dispersive. The inverse of the spread provides an
indication of sharpness, which is the level of “compactness”
of the ensemble (Wilks, 2011).

In addition to the spread–skill relationship, we also re-
port the ratio between the observed and nominal coverage
(hereinafter referred to as the coverage ratio). The coverage
of a (1−α)100%, α ∈ (0, 1), central prediction interval is
the fraction of the observations from the verification dataset
that lie between the α/2 and 1−α/2 quantiles of the pre-
dictive distribution. It is empirically assessed by considering
the observations that lie between the extreme values of the
ensembles. The nominal or theoretical coverage of a cali-
brated predictive distribution is (1−α)100%. A calibrated
forecast of m ensemble members provides a nominal cover-
age of about a (m−1)/(m+1)100% central prediction inter-
val (e.g., Beran and Hall, 1993). For example, an ensemble

of 50 members provides a 96 % central prediction interval.
The ratio between the observed and nominal coverages pro-
vides a quantitative indicator of the quality of the forecast
dispersion under unbiasedness: a ratio lower or higher than
1 suggests that the forecasts tend to be under-dispersive or
over-dispersive, respectively.

The BSS is computed as follows:

BSS= 1−
BS

BSclim
, (13)

where BS is the Brier score of the forecast and is calculated
as

BS=
1
N

N∑
i=1

(pi − oi)
2. (14)

Here, p is the forecast probability p of the event (which is
estimated based on the ensemble), and o is equal to 1 if the
event occurs and 0 otherwise.

BSclim in Eq. (8) represents the Brier score of the sample
climatology, computed as follows (Wilks, 2010):

BSclim = ō (1− ō) , (15)

where ō is the sample climatology computed as the mean of
the binary observations oi in the verification dataset.

In this study, we compute the BSS associated with the ter-
cile events of the ET0 forecasts (upper or first, middle or sec-
ond, and lower or third terciles). Therefore, the sample cli-
matology is equal to 0.33̄ and BSclim is equal to 0.22̄.

The CRPS was computed as follows:

CRPS=
1
n

n∑
i=1

∞∫
−∞

(
F f
i (h)−F

o
i (h)

)2
dh, (16)

where F f and F o are the cumulative distribution function of
the forecast and the observations, respectively, and h repre-
sents the threshold value; F o

i (h)=H(h−oi), whereH is the
Heaviside function, which is 0 for h < oi and 1 for h≥ oi .

3 Results

3.1 Comparing the NGR, AKD, and BMA methods at
the daily scale

3.1.1 Deterministic forecast performance

Figure 2 shows the rME and rRMSE as well as the correlation
of the forecasts post-processed using different approaches
over the southeast (SE) and northwest (NW) regions. These
regions are representative of the eastern and western zones,
which tended to provide the worst and best rRMSE values
and correlations, respectively. In general, the probabilistic
post-processing methods add no additional skill to the de-
terministic forecast performance compared with the simple

Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020 www.hydrol-earth-syst-sci.net/24/1011/2020/



H. Medina and D. Tian: Comparison of probabilistic post-processing approaches 1017

bias correction. While the rRMSE values are relatively high,
the rME values are very low, which indicates that the errors
are mostly random. The BMA and the simple linear regres-
sion methods provided lower bias values than the NGR and
AKD methods. However, the BMA method provided higher
rRMSE values and lower correlations than the other three
methods at long lead times. The rRMSE values and the cor-
relations tended to be more variable among lead times and re-
gions than among post-processing methods, whereas the op-
posite was found for the rME values. In addition, the changes
in rRMSE and correlation values with lead time tended to be
larger over the eastern regions.

3.1.2 Probabilistic forecast performance

Figure 3 shows the spread–skill relationship and the rank his-
tograms using all pairs of forecasts and observations for lead
times of 1 and 7 d. The spread–skill relationship shows that
the probabilistic post-processing methods considerably im-
proved the reliability of the ET0 forecasts compared with the
linear regression bias correction. The former methods tend
to correct evident shortcomings in the ensemble raw fore-
casts which are unresolved by simple post-processing, i.e.,
the considerable under-dispersion at short lead times, and the
poor consistency between the ensemble spread and the RM-
SEs at longer lead times. The adjustments had a low cost in
terms of sharpness, judging by the range of ensemble spreads
for the different line plots, but seemed slightly insufficient.
The correlations between the ensemble standard deviation
and the RMSE were fairly low, suggesting a limited predic-
tive ability of the spread (Wilks, 2011). Nonetheless, they
were consistently higher for probabilistic post-processing
methods (compared with the linear regression method) and
at short lead times (compared with long lead times). The
rank histograms in Fig. 3 show that the probabilistic methods
provided a better calibration than the linear regression ap-
proach at lead times of both 1 and 7 d, but the improvements
were considerably larger at 1 d. At the short lead time, the
three methods slightly over-forecasted ET0, suggesting that
departures from the predictive mean have a negative skew,
but, in general, they were fairly confident. In this case, all
of the methods provided almost the same result. At the long
lead time, there was also an overestimation and then a posi-
tive bias, in addition to a slight U-shaped pattern; this was
associated with some under-dispersion in the range of the
low and medium observations, which is coherent with the
spread–skill relationships. These issues are more pronounced
when using the BMA method and less pronounced when us-
ing the AKD methods. Scheuerer and Büermann (2014) re-
ported similar issues when post-processing ensemble fore-
casts of temperatures using the NGR method and a version
of the BMA method. Conversely, the calibration was affected
little by the choice of a single- or multi-model strategy for a
given post-processing method. Nevertheless, the probabilis-
tic methods provided a coverage ratio close to 100 % that

was independent of the lead time (see Table 2) and the region
(not shown). The simple bias correction method instead pro-
vided coverage ratios that were much lower and more vari-
able among regions (see Table 2) and lead times.

The NGR and AKD methods provided a better Brier skill
score (BSS) than the BC method for the three categories of
ET0 values, with improvements being higher for the middle
tercile than for the lower and upper terciles (Fig. 4). The
BMA-based skill scores tended to decrease with lead time.
In the western regions (SW, W, and NW) and at short lead
times, the multi-model ensemble forecasts post-processed
using NGR were the most skillful; in the other cases, the
ECMWF forecasts post-processed using the NGR and AKD
methods tended to be best. The differences in the BSS among
regions were larger at longer lead times because the skill de-
creased more sharply over the eastern regions. This issue is
somewhat addressed by the NGR and AKD methods based
on the ECMWF.

3.1.3 Summary of average performance for daily
forecast

Table 2 shows the average performance for the lead times of
1 and 7 d by weighting the values of each metric according to
the number of stations in each region. The ECMWF–UKMO
forecasts post-processed using the NGR method were best
at short lead times (1–2 d), whereas the ECMWF forecasts
post-processed using the AKD and NGR methods were the
first and second best at longer lead times. The BMA method
performed well at short lead times but poorly at long times,
whereas the simple bias correction method performed well
for deterministic forecasts but poorly for the probabilistic
forecasts. The forecast performance across climate regions
is also associated with the choice of the ECMWF ensemble
forecasts or the multi-model ensemble forecasts (Table A1
in the Appendix). The single-model ECMWF forecasts per-
formed better over northern climate regions than the multi-
model ensemble forecasts, whereas the multi-model showed
better performance than any single-model forecast over the
western regions. The performance over the other regions
was more variable among strategies. The performance of the
ECMWF–UKMO forecasts was generally better than that of
the ECMWF–NCEP–UKMO forecasts (see Table A1, and
Figs. 2 and 4). Unlike other performance metrics, the cov-
erage was mostly better for the ECMWF ensemble fore-
casts than for the multi-model ensemble forecasts. Our CRPS
values are comparable with those reported by Osnabrugge
(2019) based on the ECMWF ensemble forecasts of poten-
tial evapotranspiration over the Rhine Basin in Europe.

3.1.4 Effect of the training period length

The choice of an “optimum” training period is an impor-
tant issue related to the operational use of post-processing
techniques for ET0 forecasts. Here, we compared the perfor-
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Figure 2. Relative mean error (rME), relative root-mean-square error (rRMSE), and correlation values considering daily forecasts for differ-
ent lead times over the southeast and northwest regions.

Figure 3. Binned spread–skill plots accounting for the mean of the ensemble standard deviation deciles against the mean RMSE of the
forecasts in each decile over the verification period based on all pairs of forecasts and observations at lead times of (a) 1 d and (b) 7 d. The
inset panels show the corresponding rank histograms. The correlation between the standard deviations and the absolute errors is included in
the legend. The solid line represents the 1 : 1 relationship.
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Figure 4. (a) The BSS for every region and lead time of the daily ECMWF forecasts post-processed using simple bias correction (utilized as
reference BSS values); (b–e) differences between the BSS of the daily ECMWF forecasts post-processed using the (b) NGR and (c) AKD
methods; and the daily ECMWF–NCEP–UKMO forecasts post-processed using the (d) NGR and (e) BMA methods and the reference BSS.

mance of different forecasts post-processed using the NGR
and AKD techniques with training times of 45 and 30 d. The
results suggest that the payoff from using 45 d is minimal.
Table A2 in the Appendix shows the percentage differences
in the forecasting performance when using training times of
45 and 30 d for post-processing. While there are generally
some minor improvements when using 45 d over 30 d (which
tend to be higher at longer lead times than at shorter times),
these improvements usually represent less than 3 % of orig-

inal statistics. The largest percentage difference, accounting
for the BSS in the middle tercile, actually represented a neg-
ligible gain in absolute terms as they were affected by the
close-to-zero range of the variable. The improvements were
slightly higher for multi-model ensemble forecasts than for
single-model forecasts. Notice that, while testing two differ-
ent periods may be limited to evaluating the methods’ sen-
sitivity to the training period, the periods comprised a range
for which methods such as the NGR and BMA have been re-
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ported to provide stable results (Gneiting et al., 2005; Raftery
et al., 2005).

3.1.5 Weighting coefficients

The weighting coefficients reflect both the performance of
the ensemble models and the performance of the post-
processing techniques relative to their counterparts. Figure 5
shows the mean bi (Eq. 1) weighting coefficients of the
NGR technique and the wi (Eq. 7) weighting coefficient of
the BMA techniques for each region and lead time for the
post-processed the post-processed ECMWF-NCEP-UKMO,
respectively. The coefficients for the NGR and BMA tech-
niques exhibited some common patterns of variability across
regions and lead times. Both methods show that the weights
of the ECMWF forecasts are highest overall, with a clear
maximum at medium lead times. The weights of the UKMO
model are the highest at 1 and 2 d but sharply decrease with
lead time, whereas the weights of the NCEP model are gen-
erally the lowest, although they consistently increase with
lead time (most likely due to the stronger decrease in per-
formance with lead time by the other two models). This ex-
plains the most outstanding features of the performance as-
sessments well in relation to the role of each model and the
dependence among regions and lead times. Compared with
the NGR method, the BMA method gives the UKMO fore-
casts a higher relative weight, although it is at the expense
of the ECMWF forecast weights. For example, the weight-
ing coefficients of the BMA method over the western regions
are consistently higher for the UKMO forecasts than for the
ECMWF forecasts. This suggests that the lower performance
of the BMA post-processing relative to the NGR and AKD
methods may be related to a misrepresentation of the model
weights on the performance. This, in turn, may be caused
by convergence problems during the parameter optimization
with the expectation-maximization algorithm (Vrugt et al.,
2008).

We observed considerable similarities in the distribution
of the variance coefficients for the NGR method (Eq. 2) and
the AKD (Eq. 6) method after post-processing the ECMWF
forecasts. The two methods also provide very similar adjust-
ments in the mean forecast because, unlike the BMA method,
they independently bias correct the mean and optimize the
spread–skill relationship (Bröcker and Smith, 2008). How-
ever, in the experiment, the NGR method was about 60 times
faster than the AKD method. The BMA method was also
faster than the AKD method, but it was still considerably
slower than the NGR method. Considering the effectiveness
of the NGR method, and its versatility with respect to post-
processing both single- and multi-model ensemble forecasts,
we applied this probabilistic technique to weekly ET0 fore-
casts based on single- and multi-model ensembles.
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Figure 5. Regional mean weighting coefficient b of the NGR technique (a–c) and the weighting coefficient w of the BMA technique (d–e)
for the post-processed daily ECMWF-NCEP-UKMO forecasts at different lead times.

3.2 Assessing the NGR method for post-processing
weekly ET0 forecasts

3.2.1 Deterministic forecast assessments

As for the daily predictions, the bias, the RMSE, and the
correlation of the weekly forecasts post-processed with the
NGR method and the linear regression methods were similar
(Fig. 6). However, while the RMSE of daily forecasts based
on ECMWF model varied between 12 % and 20 % of the total
ET0 (Fig. 2), the RMSE for any of weekly forecasting strate-
gies commonly varied between 8 % and 11 %, which is lower
than for daily forecasts; this made the latter more useful for
operational purpose. The post-processed forecasts showed
much lower RMSE values as well as correlation values that
were twice as high as the predictions based on persistence,
with the weekly predictions based on ECMWF forecasts gen-
erally being better, followed by the predictions based on the
UKMO forecasts.

3.2.2 Probabilistic forecast assessments

Both the skill and the reliability of the weekly forecasts con-
siderably improved when using NGR post-processing com-
pared with bias correction post-processing (Table 3). The im-
provements were different among ET0 forecast models. In
most cases, the better the forecasts performance, the lower
the improvements were. The adjustments in the coverage ra-

tio and the Brier skill score were about 2.5 and 5 times larger
for the UKMO and NCEP forecasts, respectively, than for
the ECMWF forecasts. The bias-corrected ECMWF fore-
casts were generally better than both the UKMO and NCEP
forecasts post-processed with the NGR method. We found
that post-processing the NCEP forecasts with methods like
NGR is almost mandatory in order to get reasonable proba-
bilistic weekly forecasts of ET0. For example, the coverage
ratio of the bias-corrected forecasts in the west region was
only 29 % due to the considerable under-dispersion. How-
ever, it is notable that, once the forecasts were post-processed
using the NGR technique, they performed almost as well as
the UKMO forecasts post-processed using the same method,
increasing the coverage ratio to 98.4 %. Table 3 also shows
that the multi-model ECMWF–UKMO weekly forecasts are
commonly the best among those post-processed using the
NGR method, followed by the ECMWF and the ECMWF–
NCEP–UKMO forecasts.

The improvements in the reliability occurred due to sub-
stantial adjustments in both the ensemble spread and the
spread–skill relationship of the raw forecasts (Fig. 7). The
correlations between the standard deviation of the ensem-
bles and the RMSEs were more than twice as high with
NGR post-processing than with linear regression bias cor-
rection. These adjustments seemed even slightly more effec-
tive than adjustments resulting from the probabilistic post-
processing of the daily forecasts (Fig. 3), although at the ex-
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Figure 6. Whisker plot showing the 2.5th, 25th, 50th, 75th, and 97.5th percentiles of the distribution of the rME, rRMSE, and correlation
values of weekly forecasts across different regions.

Table 3. Spatial weighted average values of weekly forecast metrics over all climate regions. See the caption of Table 1 for explanations of
the acronyms. The best performance is shown in bold.

Persistence BC NGR

ECMWF NCEP UKMO ECMWF NCEP UKMO ECMWF–UKMO ECMWF–NCEP–UKMO

rME (%) −0.288 0.683 0.296 0.097 0.846 0.496 0.305 0.764 0.814
rRMSE (%) 22.108 8.872 10.453 9.460 8.952 10.571 9.599 8.753 8.661
ME (mm week−1) −0.086 0.217 0.077 0.007 0.277 0.145 0.080 0.246 0.268
RMSE (mm week−1) 7.541 3.059 3.634 3.306 3.086 3.675 3.353 3.059 3.064
Correlation 0.530 0.872 0.806 0.835 0.870 0.801 0.829 0.863 0.856
Coverage ratio (%) 78.40 48.07 62.92 99.29 98.58 98.13 97.74 97.40
CRPS (mm) 1.836 2.406 2.072 1.727 2.071 1.884 1.708 1.715
BSS_first 0.508 0.326 0.448 0.529 0.430 0.501 0.547 0.506
BSS_second 0.164 −0.147 0.069 0.238 0.150 0.204 0.255 0.225
BSS_third 0.528 0.371 0.468 0.553 0.461 0.515 0.558 0.550

pense of a greater loss in sharpness. These contrasts in the
post-processing effectiveness are probably associated with
the differences in the training strategies.

In the case of the probabilistic forecast skill (Fig. 8), the
improvements were larger for the middle tercile than for
the other two terciles (similar to the daily forecasts). Un-
like the bias-corrected forecasts, any of the probabilistically
post-processed forecasts outperformed climatology for prac-
tically any tercile and in any region. Maybe more impor-
tantly, the Brier scores for the lower- and upper-tercile events
of the forecasts that had been post-processed using the NGR
method were over 30 % better than the scores of climatology
in most cases. In the coastal regions, from the south to the
northwest, the score was commonly over 50 % better, which
was similar to the daily forecasts. Finally, the improvements
resulting from the use of multi-model ensemble forecasts
compared with single-model ensemble forecasts were gen-
erally small, except for in the southwest region.

4 Discussion

4.1 Effects of probabilistic post-processing on ET0
forecasting performance

This study showed that NGR, AKD, and BMA post-
processing schemes considerably improved the probabilis-
tic forecast performance (coverage ratio, calibration, spread–
skill, BSS, and CRPS) of the daily and weekly ET0 forecasts
compared with the simple (i.e., linear regression based on en-
semble mean) bias correction method. While sharpness is a
desired quality for any forecast, the daily and weekly bias-
corrected ET0 forecasts from NWP are spuriously sharp; this
leads to poor consistency between the range of the ET0 fore-
casts and the true values and ultimately undermines the con-
fidence in those forecasts. The forecasts also exhibit a poor
consistency in that the variance of the ensembles are com-
monly insensitive to the size of the forecast error. The proba-
bilistic post-processed methods provided a much better relia-
bility (with a coverage that was close to the nominal value) at
a low cost with respect to sharpness. Therefore, these meth-

Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020 www.hydrol-earth-syst-sci.net/24/1011/2020/



H. Medina and D. Tian: Comparison of probabilistic post-processing approaches 1023

Figure 7. Binned spread–skill plots for the weekly forecasts ac-
counting for the mean of the ensemble standard deviation deciles
against the mean RMSEs of the forecasts in each decile over the
verification period using all pairs of forecasts and observations. The
inset panel shows the corresponding rank histograms. The correla-
tion between the standard deviations and the absolute errors is in-
cluded in the legend. The solid line represents the 1 : 1 relationship.

ods lead to a much better agreement between the forecasted
probability of an ET0 event occurring between certain thresh-
olds and the proportion of times that the event occurs (see
Gneiting et al., 2005).

In the case of the weekly ET0 forecasts, the rate of im-
provement is considerably smaller for the ECMWF forecasts
than for the UKMO and, especially, the NCEP forecasts.
This seems to be largely due to the better performance of
the ECMWF raw forecasts compared with the other forecast-
ing systems. The probabilistic post-processing of the weekly
NCEP forecasts seemed practically mandatory to produce
reasonable predictions, but, once implemented, it provided
performance assessments that were almost comparable to
those based on the UKMO forecasts. These results have im-
portant implications for operational ET0 forecasts that are
based on the NCEP forecasts, such as the US National Digi-
tal Forecast Database (one of the few operational products of
its type).

Unlike the probabilistic forecast metrics, the determinis-
tic metrics (the ME, RMSE, and correlation of the ensem-
ble mean) had a low sensitivity to the form (deterministic
or probabilistic) of post-processing. In particular, the RMSE
and correlation seemed more affected by the choice of the
single- or multi-model ensemble forecast strategy than the
choice between the NGR, AKD or simple bias correction

post-processing method. However, the RMSE and correla-
tion provided by the BMA method were consistently worse
at long lead times. The daily errors using any post-processing
method were relatively large, although mostly random, and,
therefore, tended to cancel out at weekly scales. Thus, while
the RMSE varied between 12 % and 20 % of the daily to-
tals, it represented between 8 % and 11 % of the weekly to-
tals. The RMSE for weekly ET0 forecasts was more than
100 % lower than for the persistence-based ET0 forecasts in
all cases and was potentially more skillful than the forecasts
that exploited the temporal persistence of the ET0 time series
(e.g., Landeras et al., 2009; Mohan and Arumugam, 2009).

4.2 Comparing the three probabilistic post-processing
methods

The NGR- and AKD-based post-processing methods for the
ECMWF forecasts produced comparable results, indicating
that the simple Gaussian predictive distribution from the
NGR method represents the uncertainty of the ET0 predic-
tions fairly well. The methods led to a similar distribution
of the first two moments of the predictive probability func-
tion and similar performance statistics (with the AKD-based
forecasts being only slightly better). However, the NGR
method is more versatile as it can be applied to correct both
single-model and multi-model ensemble forecasts, whereas
the AKD method can only be applied to correct single-model
forecasts. The NGR-based predictive distribution function is
also easier to interpret than the AKD-based predictive distri-
bution, which is given by an averaged sum of standard Gaus-
sians.

The BMA method showed slightly less desirable perfor-
mance compared with the NGR and AKD methods, which
was presumably due to issues with the parameter iden-
tifiability. The implemented method uses the expectation-
maximization (EM) algorithm to produce maximum likeli-
hood estimates of the fitting coefficients; this algorithm is
susceptible to converging to local minima, especially when
dealing with multi-model ensemble forecasts with very dif-
ferent ensemble sizes (Vrugt et al., 2008). Archambeau et al.
(2003) demonstrated that this algorithm also tends to iden-
tify local maximums of the likelihood of the parameters of
a Gaussian mixture model in the presence of outliers or re-
peated values. Tian et al. (2012) found that adjusted BMA
coefficients using both a limited-memory quasi-Newtonian
algorithm and the Markov chain Monte Carlo were more ac-
curate than those fitted with the EM algorithm; thus, this is a
procedure that is worth testing in future studies.

4.3 Multi-model ensemble versus single-model
ensemble forecasts

Daily multi-model ensemble forecasts performed better (in
terms of the ME, RMSE, correlation, CRPS, and BSS) than
daily ECMWF forecasts at short lead times (1–2 d) and over
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Figure 8. Comparison between BC- and NGR-based Brier skill scores considering (a) ECMWF and ECMWF–UKMO forecasts, (b) NCEP,
and (c) UKMO forecasts across the different climate regions.

the western and southern regions, whereas the ECMWF fore-
casts are better over the northeastern regions for longer lead
times. For other region–lead time combinations, the perfor-
mance of single-model ensemble and multi-model ensemble
forecasts did not differ much. We observed similar patterns
for the raw and simple bias-corrected forecasts (Medina et
al., 2018). However, the weekly multi-model ensemble fore-
cast where only consistently better than the weekly single-
model forecasts in the southwest region, seemingly because
the weekly forecasts logically involve both short and long
lead time assessments, and the effectiveness of the multi-
models is degraded for long lead times. The observed behav-
ior is associated with the performance of the ECMWF fore-
casts relative to the UKMO forecasts. While the ECMWF
forecasts are generally better than the UKMO and NCEP
forecasts, they are much better over the northeastern regions
for medium lead times (4–6 d). In many cases, the UKMO
forecasts are the best at lead times of 1–2 d, but they tend to
be the worst at the longest times (6–7 d), especially over the
abovementioned regions. The NCEP forecasts had a small
contribution with respect to the ECMWF and UKMO fore-
casts at short lead times. These forecasts are comparatively

better at longer lead times, but they still maintain a minor
role regarding the ECMWF forecasts.

When considering daily forecasts, we adopted a 30 d train-
ing period length and showed that improvements were small
(commonly lower than 3 %) when increasing the training pe-
riod length to 45 d. This seems a plausible range for future
works and represents an obvious advantage over methods
such as the analog forecast, which provide similar perfor-
mance (Tian and Martinez, 2012a, b, 2014) but require long
training datasets. Gneiting et al. (2005) and Wilson (2007)
found that lengths between 30 and 40 d provided good and al-
most constant performance assessments of sea level pressure
forecasts post-processed using the NGR method and temper-
atures forecasts post-processed using the BMA method, re-
spectively.

4.4 Post-processing the individual inputs versus
post-processing ET0

While we considered the post-processing of ET0 ensembles
produced with raw NWP forecasts in this study, it is possible
that better predictions may be obtained by post-processing
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the forcing variables such as temperature, radiation and wind
speed first, and then computing the ET0. The NGR method
has been shown to be successful for post-processing sur-
face temperatures (e.g., Wilks and Hamill, 2007) that have a
fairly Gaussian distribution. For example, Hagedorn (2008)
and Hagedorn et al. (2008) showed gains in the lead time
of between 2 and 4 d, with the gains being larger over areas
where the raw forecast showed poor skill. Kann et al. (2009,
2011) used the NGR method to improve short-range ensem-
ble forecasts of 2 m temperature. Recently, Scheuerer and
Büermann (2014) provided a generalization of the original
approach of Gneiting et al. (2005) that produces spatially cal-
ibrated probabilistic temperature forecasts. The wind speed
forecasts have been commonly post-processed using of quan-
tile regression method (e.g., Bremnes, 2004; Pinson et al.,
2007; Møller et al., 2008). Even more recently, Sloughter
et al. (2010) extended the original BMA method of Raftery
et al. (2005) for wind speed by considering a gamma dis-
tribution for modeling the distribution of every member of
the ensemble, which considerably improved the CRPS, the
absolute errors, and the coverage. Vanvyve et al. (2015) and
Zhang et al. (2015), in comparison, used the analog method
following the methodology of Delle Monache (2013). Accu-
rate solar radiation forecasting is particularly challenging be-
cause it requires a detailed representation of the cloud fields
(Verzijlbergh et al., 2015), which are usually not resolved
well by the NWP models. Davò et al. (2016) used artifi-
cial neural networks (ANN) and analog method approaches
for the post-processing of both wind speed and solar radia-
tion ensemble forecasts, which outperformed a simple bias
correction approach. However, the post-processing of mete-
orological forecasts for producing ET0 ensemble forecasts
may require the consideration of the multivariate dependence
among the forcing variables, which is often difficult (e.g.,
Wilks, 2015). Kang et al. (2010) found that post-processing
of streamflow forecasts provided more accurate predictions
than post-processing the forcing alone, whereas Vekade et
al. (2013) showed that the improvements in precipitation and
temperature via post-processing hardly benefited streamflow
forecasts. Lewis et al. (2014) showed that the performance of
the ET0 forecasts can largely surpass the performance of in-
dividual input variables. Therefore, it is unclear if any benefit
is obtained by using the post-processed inputs (instead of the
raw forecasts) to construct ET0 forecasts.

4.5 Future outlook

It is worth noting that, while the ET0 forecasts are produced
for use in agriculture, they have been tested over USCRN
stations, which are not representative of agricultural settings.
In real applications, the bias between the forecasts with no
post-processing and the measurements based on agricultural
stations could be higher than the bias resolved in this study. A
question that should be addressed in the future studies is the
extent to which the improvements in the predictive distribu-

tion of the ET0 forecasts can be translated into a more reliable
representation of the crop water use in agricultural lands and,
ultimately, in water savings and economic gains. As ET0 es-
timations can have remarkable impacts on soil moisture esti-
mations (Rodriguez-Iturbe et al., 1999), we envision that new
studies relying on a combination of rainfall and ET0 fore-
casts post-processed using probabilistic methods will lead to
considerable reductions on the uncertainty of soil moisture
forecasts. New attempts should also investigate the role of
the state-of-the-art probabilistic post-processing techniques
on ET0 forecasts produced from regional numerical weather
prediction models, which have had improved spatial resolu-
tion and have already been used by different meteorological
services (e.g., Baldauf et al., 2011; Seity et al., 2011; Hong
and Dudhia, 2012; Bentzien and Friederichs, 2012).

5 Conclusions

To our knowledge, this study is the first work evaluat-
ing probabilistic methods based on NGR, AKD, and BMA
techniques for post-processing daily and weekly ET0 fore-
casts derived from single- or multi-model ensemble numer-
ical weather predictions. The different ET0 post-processing
methods were compared against the simple linear regression
bias correction method using both daily and weekly forecasts
as well as against persistence in the case of weekly forecasts.
The probabilistic post-processing techniques largely modi-
fied the spread of the original ET0 forecasts, with very favor-
able impacts on the probabilistic forecast performance. They
corrected the notable under-dispersion and the poor consis-
tency between the spread of the ET0 forecasts and the di-
mension of the errors, leading to a better BSS, reliability
(both the coverage ratio and spread–skill relationship), and
CRPS. The adjustments were crucial for the performance of
the weekly NCEP forecasts and the weekly UKMO forecasts,
whose bias-corrected versions showed a clear disadvantage
compared with simply post-processed ECMWF forecasts.

The deterministic performance based on the NGR, AKD,
and BMA methods was comparable to the performance based
on the linear regression bias correction for both daily and
weekly forecasts, and the skill was about 100 % higher than
that based on persistence in the case of the weekly fore-
casts. The rRMSE values were between 12 % and 20 % for
the daily totals and 8 % and 11 % for the weekly totals. The
NGR and AKD methods provided similar estimates of the
first- and second-order moments of the predictive density
distribution; they showed similar effectiveness, but the NGR
method had the advantage of being able to post-process both
single- and multi-model ensemble forecasts. Both the NGR
and AKD post-processing methods outperformed the BMA
method when considering daily forecasts at long lead times.

Multi-model ensemble forecasting provided benefits at
daily scales compared with the ECMWF ensemble fore-
casting, while the benefits were marginal at weekly scales.
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The multi-model ensemble forecasting seems a better choice
when the UKMO forecasts are comparable or slightly bet-
ter than the ECMWF forecasts, such as at short lead times
(1–2 d) and over the southern and western regions. Post-
processing single-model forecasts is a better choice than
post-processing multi-model ensemble forecasts in circum-
stances where the ECMWF forecasts perform considerably
better than the UKMO and NCEP forecasts, such as at
medium and long lead times, especially over the northeastern
regions. While we considered a 30 d training period length
for daily post-processing, the increase of the training period
to 45 d only led to minimal improvements. In conclusion, our
results suggest that the NGR post-processing of ET0 fore-
casts generated from the ECMWF or ECMWF–UKMO pre-
dictions is the most plausible strategy among those evaluated,
and it is recommended for operational implementations; this
is due to the fact that the accuracy and reliability require-
ments for practical applications have not been discussed.
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Appendix A

Table A1. Percentage differences (averaged over all lead times) of the ECMWF–UKMO and ECMWF–NCEP–UKMO forecast performance
with the ECMWF forecast performance, after post-processing using the nonhomogeneous Gaussian regression (NGR) method. See the
caption of Table 1 for an explanation of the forecast model acronyms.

Western climate regions Northern climate regions

SW W NW NE ENC WNC

ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF– ECMWF–
UKMO NCEP– UKMO NCEP– UKMO NCEP– UKMO NCEP– UKMO NCEP– UKMO NCEP–

UKMO UKMO UKMO UKMO UKMO UKMO

ME −26.75 −30.83 −9.11 9.42 −13.91 −18.80 −4.27 25.05 −2.15 −1.45 −10.12 0.76
RMSE −4.68 −4.01 −3.46 −2.51 −3.97 −2.84 1.90 4.33 1.46 2.00 −1.31 −0.92
Correlation 1.76 0.63 0.95 0.71 1.20 0.61 −4.18 −4.60 −3.28 −3.14 −2.31 −2.06
Coverage ratio −1.39 −2.09 −0.98 −1.19 −1.02 −1.14 −0.84 −1.66 −0.85 −0.99 −0.84 −1.40
CRPS −4.84 −3.89 −3.42 −1.99 −3.90 −2.81 1.41 4.02 1.58 2.45 −1.00 −0.27
BSS_first 12.02 7.48 3.22 2.85 3.55 4.24 −12.00 −9.68 −9.64 −9.38 −3.68 −5.18
BSS_second 8.99 −6.50 5.79 9.04 4.98 3.96 −112.95 −93.09 −19.09 −13.64 −15.73 −27.95
BSS_third 2.30 −1.81 3.58 6.56 4.20 2.37 −9.11 −8.99 −6.42 −10.61 −4.60 −5.84

Table A2. Percentage differences (averaged over regions) of forecast performance using a 45 d training period compared with using a 30 d
training period for lead times of 1 and 7 d. See the caption of Table 1 for an explanation of the acronyms.

NGR(ECMWF– NGR(ECMWF–
NGR(ECMWF) AKD(ECMWF) UKMO) NCEP–UKMO)

1 d 7 d 1 d 7 d 1 d 7 d 1 d 7 d

ME 16.57 18.73 21.65 22.86 4.71 10.09 −0.50 7.07
RMSE −0.70 −2.64 −1.01 −3.12 −0.40 −3.72 −0.05 −4.74
Correlation −0.16 0.53 −0.14 0.61 −0.10 1.33 −0.47 0.74
Coverage Ratio 1.28 0.95 1.62 1.26 1.70 1.50 1.94 1.34
CRPS (mm) −0.77 −3.00 −1.22 −3.51 −0.92 −3.89 −0.01 −4.53
BSS_first −0.88 2.18 −1.16 2.76 −0.21 5.06 −2.60 6.28
BSS_second −1.26 2.76 −1.28 5.68 3.61 8.96 −2.29 5.56
BSS_third −0.38 −1.59 −0.90 −0.21 −1.34 2.63 −1.63 0.24
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