Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-4969-2019
https://doi.org/10.5194/hess-23-4969-2019
Research article
 | 
05 Dec 2019
Research article |  | 05 Dec 2019

Improving lake mixing process simulations in the Community Land Model by using K profile parameterization

Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null

Related authors

Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022,https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging
Jessica R. Dzara, Bethany T. Neilson, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 2965–2982, https://doi.org/10.5194/hess-23-2965-2019,https://doi.org/10.5194/hess-23-2965-2019, 2019
Short summary
Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017,https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary
Modeling insights from distributed temperature sensing data
C. R. Buck and S. E. Null
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9999-2013,https://doi.org/10.5194/hessd-10-9999-2013, 2013
Manuscript not accepted for further review

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024,https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary

Cited articles

Arp, C. D., Jones, B. M., Liljedahl, A. K., Hinkel, K. M., and Welker, J. A.: Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes, Water Resour. Res., 51, 9379–9401, https://doi.org/10.1002/2015WR017362, 2015. 
Banks, R. B.: Some features of wind action in shallow lakes, Proc. Am. Soc. Civ. Eng., 101, 813–827, 1975. 
Berger, S. A., Diehl, S., Kunz, T. J., Albrecht, D., Oucible, A. M., and Ritzer, S.: Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths, Limnol. Oceanogr., 51, 1898–1905, https://doi.org/10.4319/lo.2006.51.4.1898, 2006. 
Bonan, G. B.: Sensitivity of a GCM simulation to inclusion of inland water surface, J. Climate, 8, 2691–2704, https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2, 1995. 
Bryson, R. A. and Ragotzkie, R. A.: On internal waves in lakes, Limnol. Oceanogr., 5, 397–408, https://doi.org/10.4319/lo.1960.5.4.0397, 1960. 
Download
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.