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Abstract. We improved lake mixing process simulations by
applying a vertical mixing scheme, K profile parameteri-
zation (KPP), in the Community Land Model (CLM) ver-
sion 4.5, developed by the National Center for Atmospheric
Research. Vertical mixing of the lake water column can sig-
nificantly affect heat transfer and vertical temperature pro-
files. However, the current vertical mixing scheme in CLM
requires an arbitrarily enlarged eddy diffusivity to enhance
water mixing. The coupled CLM-KPP considers a boundary
layer for eddy development, and in the lake interior water
mixing is associated with internal wave activity and shear in-
stability. We chose a lake in Arctic Alaska and a lake on the
Tibetan Plateau to evaluate this improved lake model. Results
demonstrated that CLM-KPP reproduced the observed lake
mixing and significantly improved lake temperature simula-
tions when compared to the original CLM. Our newly im-
proved model better represents the transition between strat-
ification and turnover. This improved lake model has great
potential for reliable physical lake process predictions and
better ecosystem services.

1 Introduction

Lake thermal processes are vital to improving our under-
standing of regional climate systems. Lakes significantly
affect regional temperature, precipitation, and surface heat
fluxes (Jeffries et al., 1999; Lofgren, 2004; Long et al., 2007;
Rouse et al., 2008; Thiery et al., 2015). In fact, lakes can re-
duce diurnal temperature variation by cooling near-surface

air temperature during the day and warming it at night (Bo-
nan, 1995; Krinner, 2003; Samuelsson et al., 2010). Regional
climate modeling has shown that lakes can have a strong
effect on seasonal precipitation (Diallo et al., 2018; Zhu et
al., 2017). For instance, lakes cool the lower atmosphere
during the summer and increase its stability, reducing sum-
mer precipitation as compared to the land (Gu et al., 2016;
Sun et al., 2015). Additionally, large lakes, like the Great
Lakes in North America, often produce strong snowstorms
during early winter or spring from high surface evaporation
(Dai et al., 2018; Laird et al., 2009). Furthermore, Rouse et
al. (2005) indicated that lakes affect surface energy balance,
with higher net radiation, subsurface heat storage, and evap-
oration than the nearby land.

Lake temperatures shape lake ecosystems (Marshall et al.,
2013; Michalski and Lemmin, 1995). For example, Berger
et al. (2006) showed that plankton biomass is negatively
correlated with lake mixed layer depth. Some studies have
proven that strong temperature stratification stimulates the
spring phytoplankton bloom (Chiswell, 2011; Mahadevan et
al., 2012). What is more, the frequency and intensity of wa-
ter turnover, a product of the thermal processes within a lake,
is critical for replenishing and circulating hypolimnetic O2
and nutrients (Dodson, 2004; Foley et al., 2012; Shimoda et
al., 2011). Stratification plays an important role in lake pro-
duction and food webs. Stratification and warmer epilimnion
temperatures create conditions necessary for phytoplankton
production. Also, when Arctic lakes become strongly strati-
fied, the hypolimnion can become anoxic, which in turn in-
creases nutrient recycling and leads to elevated production
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the following spring (O’Brien et al., 2005). Increased food
availability and warmer lake temperatures in the epilimnion
from stratification increase Arctic char growth. Finally, sim-
ulations of stratification date and epilimnion temperature are
used in bioenergetic models to estimate fish growth and
consumption and better understand Arctic char production
with global environmental change (Budy and Luecke, 2014).
Hence, it is important to accurately quantify lake thermal
processes in order to fully comprehend how temperatures af-
fect lake ecosystems.

Numerical models are important tools for investigating
lake thermal processes. Vertical mixing processes need to
be parameterized in these models. The usefulness of these
models depends on whether they can represent lake pro-
cesses accurately and in a dynamic consistent manner. Sev-
eral one-dimensional (1-D) lake models have been devel-
oped over the last three decades with varying levels of
sophistication in terms of how model physics and struc-
ture are represented (Henderson-Sellers, 1985; Hostetler
and Bartlein, 1990; Goudsmit et al., 2002; Mironov, 2008;
Stepanenko et al., 2016). The Lake Model Inter-comparison
Project (LakeMIP) assessed the simulation skill of different
models (Stepanenko et al., 2010) and concluded that no sin-
gle lake model is capable of simulating thermal processes
for a wide range of lakes with different depths (Kheyrol-
lah Pour et al., 2012; Stepanenko et al., 2014; Martynov et
al., 2010; Perroud et al., 2009; Yao et al., 2014). Stepanenko
et al. (2013) indicated that the poor skill in modeling lake
thermal processes was due to the simplification of water mix-
ing processes. Perroud et al. (2009) showed that insufficient
water mixing weakened heat transfer within the lake, result-
ing in unrealistic temperature profile simulations. Hence, ef-
forts have been made to improve lake mixing simulations
through enlarged eddy diffusivity (Gu et al., 2013; Perroud
et al., 2009). However, such an approach mostly strengthens
mixing in the entire water body, which often greatly overes-
timates water mixing in the lower part of lakes (Subin et al.,
2012; Zhang et al., 2018).
K profile parameterization (KPP) (Large et al., 1994),

an advanced water mixing scheme used mostly in ocean
models, significantly improves oceanic water mixing simu-
lations (Li et al., 2001; Roekel et al., 2018; Shchepetkin and
McWilliams, 2005; Wang et al., 2013). In KPP, eddy diffu-
sivity is estimated separately for the lake boundary layer and
lake interior. It considers a boundary layer for eddy devel-
opment, and explicit inclusion of arbitrarily enlarged eddy
diffusivity is avoided. The objective of this study is to im-
prove lake mixing process simulations by using KPP with
the Community Land Model (CLM) version 4.5, developed
by the National Center for Atmospheric Research (Oleson et
al., 2013). This newly improved model was then applied to an
Arctic Alaskan lake and a lake called Nam Co in the Tibetan
Plateau (TP) for model verification. In this paper, Sect. 2 in-
troduces the mixing schemes, data, and methodology; Sect. 3

presents simulation results and analysis; and conclusions and
discussion are given in Sect. 4.

2 Mixing schemes, data, and methodology

2.1 Mixing scheme descriptions

2.1.1 The original mixing scheme in the CLM lake
model

The 1-D lake model embedded in the current CLM ver-
sion (CLM-ORG) simulates heat and water exchanges be-
tween the air and lake surface, water phase changes, and ra-
diation transfer and water mixing within the lake. The lake
model consists of up to 5 snow layers on the lake ice, 10 wa-
ter and ice layers, 10 soil layers, and 5 bedrock layers. Mix-
ing processes in CLM-ORG contain wind-driven eddy diffu-
sion, an enhanced diffusion, molecular diffusion, and con-
vective mixing. The convective adjustment scheme is ac-
tivated when there is an unstably stratified water column
(Hostetler and Bartlein, 1990). The first three diffusion terms
are included in the water diffusivity parameterization. The
total diffusivity in the lake model is calculated as follows
(Subin et al., 2012):

KORG
w =md (κe+Ked+ κm) , (1)

where κe represents wind-driven diffusivity (m2 s−1), Ked is
the enhanced eddy diffusivity to strengthen mixing processes
(m2 s−1), κm is a constant molecular diffusivity equal to
1.4×10−7 m2 s−1, and md is a parameter to increase the dif-
fusivity for deep lakes, which is equal to 10 when lake depth
is greater than 25 m. Wind-driven diffusivity, κe, is formu-
lated as follows:

κe =

{
κw∗z

P0
(
1+37R2

i

) exp(−k∗z), Tg > Tf,

0, Tg ≤ Tf,
(2)

where Tg is the water surface temperature (WST) (K); Tf is
the freezing temperature, equal to 273.15 K; κ is the von Kar-
man constant; P0 is the turbulent Prandtl number, equal to 1;
and z is depth, which increases downward (m). w∗ is the sur-
face friction velocity (m s−1), calculated as follows:

w∗ = Cdu2, (3)

where u2 is the 2 m wind speed (m s−1), and Cd is the drag
coefficient equal to 0.0012. k∗ is related to latitude ϕ:

k∗ = 6.6u−1.84
2

√
|sinϕ|. (4)

Ri is the Richardson number, given as follows:

Ri =
−1+

√
1+ 40N2κ2z2

w∗2 exp(−2k∗z)

20
, (5)
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where N is the local buoyancy frequency representing the
stability of water (s−1),

N2
=
g

ρ

∂ρ

∂z
. (6)

g is gravity acceleration (m s−2), and ρ is the density of wa-
ter (kg m−3). The equation of the enhanced diffusivity is as
follows:

Ked = 1.04× 10−8
(
N2
)−0.43

,
(
N2
≥ 7.5× 10−5 s−2

)
. (7)

WhenN2 reaches at least 7.5×10−5 s−2, the enhanced diffu-
sivity is about 6 times greater than the molecular diffusivity
(Fang and Stefan, 1996). The wind-driven diffusivity is typ-
ically at least 2 orders larger than the molecular diffusivity
(Hostetler and Bartlein, 1990). Thus, winds have a dominant
effect on water mixing in the CLM lake model. In practical
application, the total diffusivity computed by Eq. (1) gener-
ally produces unrealistically weak mixing and causes large
errors in temperature profile simulations (Gu et al., 2013;
Zhang et al., 2018).

2.1.2 KPP

KPP has two different diffusivity parameterizations for the
lake boundary layer and the layer below, which is different
from the total diffusivity represented in the original CLM
lake model. The diffusivity of the lake boundary layer, a
function of surface forcing and the lake boundary layer
depth, is based on the Monin–Obukhov similarity theory
(Monin and Obukhov, 1954):

KKPP
w (σ )= hw(σ)G(σ)+ κm, (8)

where σ = d/h is the dimensionless vertical coordinate
varying from 0 at the lake surface to 1 at the bottom of
the lake boundary layer h, w(σ) is the velocity scale, and
G(σ) is the shape function. κm is a constant molecular diffu-
sivity (m2 s−1), as in Eq. (1). The velocity scale is as follows:

w(σ)=


κu∗

∅
(
εh
L

) , ε < σ < 1,ζ < 0,

κu∗

∅
(
σh
L

) , otherwise,
(9)

where κ is the von Karman constant (0.4), ε is equal to 0.1,
and u∗ is the surface friction velocity (m s−1) calculated as
follows (Large and Pond, 1982):

u∗2 =
ρa

ρ
CdU

2, (10)

103Cd =
2.70
U
+ 0.142+ 0.0764U, (11)

where ρa and ρ are the air and lake water densities (kg m−3),
respectively; Cd is the drag coefficient; and U is the 10 m

wind speed (m s−1). ∅(ζ ) is a non-dimensional flux pro-
file associated with the stability parameter ζ = d/L= σh/L,
andL is the Monin–Obukhov length scale defined as follows:

L= u∗3/κBf, (12)

where Bf is the buoyancy flux (m2 s−3):

Bf =H
∗gαC−1

p ρ−1. (13)

H ∗ is the sum of the surface turbulent heat fluxes, net long-
wave radiation, and net shortwave radiation for the lake
boundary layer (W m−2). α is the constant thermal expan-
sion coefficient, and Cp is the specific heat capacity of water
(J kg−1 K−1). The non-dimensional shape function G(σ) is
a third-order polynomial (see the Appendix). Water mixing
below the lake boundary layer considers vertical shear and
internal waves. The equation is as follows:

KKPP
w = ks+ kw+ κm, (14)

where ks is the diffusivity due to shear instability (m2 s−1),
and kw is the internal wave diffusivity set to a constant
(10−7 m2 s−1) as the background diffusivity (Bryson and
Ragotzkie, 1960; Powell and Jassby, 1974; Thorpe and Jiang,
1998). The shear mixing term is calculated as follows:

ks =


k0, Rig < 0,

k0

[
1−

(
Rig/Ri0

)2]p
, 0<Rig <Ri0,

0, Ri0 <Rig,

(15)

where k0 = 10−5 m2 s−1 (Etemad-Shahidi and Imberger,
2006; Sweers, 1970), Ri0 = 0.7, and p = 3. Rig is the local
gradient Richardson number:

Rig =
N2(
∂V
∂z

)2 , (16)

V = Vsfc

(
3
( z
D

)2
− 4

( z
D

)
+ 1

)
, (17)

Vsfc = 0.028W, (18)

where V is the horizontal velocity of water (m s−1), D is
the lake depth (m), Vsfc is the surface water flow velocity
(m s−1), and W is the surface wind (m s−1). To apply KPP
in the CLM lake model, we use Eq. (17) to represent the
change of water flow in the vertical direction over the entire
lake depth D (Banks, 1975; Verhagen, 1994). We can see in
Eq. (18) that Vsfc is linked with W (Stanichny et al., 2016;
Wu, 1975).

The boundary layer depth depends mainly on the buoy-
ancy and horizontal water flow velocity profiles. In order to
compute the boundary layer depth, the bulk Richardson num-
ber is first computed as follows:

Rib(d)=
(Br−B(d))d

|Vr−V (d)|
2
+V 2

t (d)
, (19)
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Figure 1. (a) Fog3 Lake and (b) Nam Co (b from © Google Earth).

where Rib is the bulk Richardson number, and B is the buoy-
ancy. When Rib is equal to 0.25 (Kunze et al., 1990; Peters
et al., 1995), the shallowest water depth (d) is treated as the
depth of the lake boundary layer. The subscript “r” represents
the near-surface water layer with a depth of 0.1 m (Br, B(d),
V 2

t (d); see the Appendix).
In this study, KPP was implemented into the CLM lake

model (CLM-KPP) to improve lake mixing process simu-
lations. In KPP, eddy diffusivity is estimated separately for
the lake boundary layer and lake interior. In the lake bound-
ary layer, the eddy diffusivity is determined not by the lo-
cal gradient of mean variables, but by surface forcing and
the boundary layer depth. The non-local effect is taken into
account by estimating the boundary layer depth first, and
eddy diffusivity is then specified with a prescribed profile
in the lake boundary layer. In the lake interior, mixing is
associated with internal wave activity and shear instability.
However, CLM-ORG does not consider a boundary layer for
eddy development, and insufficient water mixing is enhanced
through an ad hoc parameter, which is often unable to reflect
reality (Zhang et al., 2018). Thus, the coupling of CLM-KPP
is essential for better understanding of lake mixing processes.

2.2 Study area

We selected two lakes with available data to evaluate the
original lake mixing scheme and KPP. Fog3 Lake is in Arc-
tic Alaska at 68.67◦ N, 149.10◦W (Fig. 1a). In 2018 it had
a surface area of 38 863 m2 and a maximum depth of 21 m.
The lake has a long ice duration, and ice-off is usually in late
June, while ice-on typically occurs in early October (Arp et
al., 2015). Around this lake, the mean annual air temperature
is ∼−6 ◦C, and the mean annual precipitation is ∼ 200 mm
(Ping et al., 1998). This kettle lake is surrounded by lower
hills covered mainly with shrubs and tundra. Due to the tree-
less landscape, there are no shielding effects on the wind.
In addition, Fog3 Lake is formed by glaciers and has less
connection to other surrounding surface waters. The second
lake is Nam Co, the highest and largest lake in the central TP

(Fig. 1b from © Google Earth). It is situated over 30.5–
30.95◦ N, 90.2–91.05◦ E with an altitude of 4730 m and a
surface area of about 2021 km2 in 2010 (Lei et al., 2013; Zhu
et al., 2010). Its maximum depth reaches more than 95 m,
and the mean depth is about 40 m (Wang et al., 2009). The
main water supply to Nam Co is precipitation and melting
glaciers. Nam Co is a closed lake with no outflow, and water
loss occurs mainly through evaporation (Ma et al., 2016).

2.3 Data

Observed hourly meteorological station data for Fog3
Lake were used to drive CLM-ORG and CLM-KPP.
Fog3 Lake is about 1.5 km from Toolik Field Station
(68◦37.796′ N, 149◦35.834′W), in the northern foothills of
the Brooks Mountain Range, Alaska (https://toolik.alaska.
edu/edc/abiotic_monitoring/index.php, last access: 8 Octo-
ber 2019). The forcing variables include downward short-
wave and longwave radiation, wind speed, air temperature,
air pressure, and specific humidity. Observed lake tempera-
tures from 1 July through 31 August 2018 are for lake depths
of 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, and 16 m for model
initialization and evaluation.

For Nam Co, the forcing data were from the grid-
ded China meteorological dataset developed by the hydro-
meteorological research group at the Institute of Tibetan
Plateau Research, Chinese Academy of Sciences (ITPCAS)
(Chen et al., 2011; He and Yang, 2011). The forcing vari-
ables in this dataset are the same as those for the Alaskan
lake. The ITPCAS data cover the period 1979–2015 with a
spatial resolution of 0.1◦ and a time step of 3 h. We used the
Nam Co meteorological station data for the period of Oc-
tober 2005 through December 2010 to assess the ITPCAS
forcing variables. These forcing variables agreed very well
with the Nam Co station data, except that the wind speed
showed significant biases (Figs. not shown). Linear regres-
sion with the station wind speed was applied to correct these
biases. Monthly Moderate Resolution Imaging Spectrora-
diometer (MODIS) surface temperature data at a spatial res-

Hydrol. Earth Syst. Sci., 23, 4969–4982, 2019 www.hydrol-earth-syst-sci.net/23/4969/2019/

https://toolik.alaska.edu/edc/abiotic_monitoring/index.php
https://toolik.alaska.edu/edc/abiotic_monitoring/index.php


Q. Zhang et al.: Improving lake mixing process simulations in the Community Land Model 4973

olution of 0.05◦ (Savtchenko et al., 2004; Wan et al., 2010)
were applied to evaluate the model results for Nam Co. Pre-
vious studies have verified MODIS WST data for lakes with
in situ observations (Crosman and Horel, 2009; Schneider et
al., 2009). Zhang et al. (2014) found that the nighttime WST
of MODIS for Nam Co had a 0.89 correlation coefficient and
a −1.4 ◦C bias when compared with surface observations.
All these studies show that the MODIS WST has acceptable
accuracy for studying lake thermal processes.

2.4 Experiment design

Simulations for Fog3 Lake were conducted with both CLM-
ORG and CLM-KPP from 1 July through 31 August 2018.
The depth for this lake was set at 20 m in both models. Ob-
served lake temperatures for Fog3 Lake are for lake depths
of 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, and 16 m. The lake
model has 10 lake layers by default, and the center point
depths of these layers are 0.05, 0.3, 0.9, 1.9, 3.3, 5.1, 7.5,
10.3, 13.79, and 17.94 m, generated automatically by the lay-
ering scheme in the model based on the input lake depth. For
this study, we tried to keep each layer thin in the top part of
the lake to reflect diurnal cycles (layers 1–5) in both CLM-
ORG and CLM-KPP. Below layer 5, we used mostly the ob-
served points to layer the rest of the lake column. Finally, we
produced 24 layers for the entire lake column in both mod-
els, and the center point depths of these lake layers are 0.05,
0.15, 0.25, 0.35, 0.45, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, and 19.25 m, respectively. The lake tem-
peratures were initialized with observations for 1 July 2018.
The WST and temperature profile simulations with CLM-
ORG and CLM-KPP were compared with the observed lake
temperatures. For Nam Co, we also used 10 default layers for
lake depths in our models without observed vertical tempera-
ture profiles, and lake depths were set based on observations
(Wang et al., 2009), which ranged from 20 to 95 m. There
were 34 model grid cells covering Nam Co with a spatial
resolution of 0.1◦. The temperature of each layer was initial-
ized with 277 K. The simulated period for Nam Co was from
2001 through 2012. The simulations for the first two years
were discarded as model spin-up, and the remaining simula-
tions were used for analysis. The metrics used for evaluating
the performance of the model included the root mean square
error (RMSE) and correlation coefficient (R).

3 Results

3.1 Simulations for Fog3 Lake with CLM-ORG and
CLM-KPP

WST simulations with CLM-KPP were more accurate than
those with CLM-ORG, especially in August. The RMSE of
WST decreased from 0.8 ◦C with CLM-ORG to 0.4 ◦C with
CLM-KPP (Fig. 2). CLM-KPP also produced better verti-
cal lake temperature profile simulations than CLM-ORG,

Figure 2. WST observations (black line) and simulations with
CLM-ORG (blue line) and CLM-KPP (red line) (unit: ◦C).

Table 1. RMSE (◦C) and R of temperature profile simulations with
CLM-ORG and CLM-KPP for Fog3 Lake for the periods of 1 July–
15 August, and 16–31 August 2018.

1 July–15 August 2018 16–31 August 2018

RMSE R RMSE R

(◦C) (◦C)

CLM-ORG 1.1 0.93 1.4 0.57
CLM-KPP 1.3 0.92 0.3 0.99

particularly in mid-August to late August. The observations
showed that the lake mixed on 16 August (Fig. 3a). CLM-
KPP accurately captured the mixing event (Fig. 3c), while
CLM-ORG produced strong stratification in the upper part
of the lake throughout the simulation period (Fig. 3b). In-
significant differences were seen between CLM-ORG and
CLM-KPP when compared to observations for the period be-
fore 16 August (Table 1), while remarkable improvements
were achieved with CLM-KPP during 16–31 August after
a strong wind event occurred (Fig. 3d and e). The RMSE
of the temperature profile simulations decreased from 1.4 ◦C
with CLM-ORG to 0.3 ◦C with CLM-KPP, and R increased
from 0.57 to 0.99 for 16–31 August 2018 (Table 1). In
general, CLM-KPP had superior performance in simulating
well-mixed conditions when compared with CLM-ORG, in-
dicating a successful implementation of KPP into CLM.

Simulations of total diffusivity (m2 s−1)KKPP
w with CLM-

KPP were compared with those of KORG
w with CLM-

ORG. KKPP
w within the boundary layer was generally larger

than KORG
w , especially in August (Fig. 4). However, the to-

tal diffusivity with CLM-ORG was higher than that with
CLM-KPP below the boundary layer (Fig. 4). The pattern
of the diffusivity with CLM-ORG was consistent with that
of the squared buoyancy frequency N2 (Fig. 5), implying
that the enhanced diffusivity (Ked) was weighted very highly
in KORG

w in this model. In the meantime, KKPP
w was mostly

on the order of 10−7 m2 s−1 and was the sum of internal-
wave diffusivity, molecular diffusivity, and diffusivity due
to shear instability (Eq. 14). The first two terms were also
on the order of 10−7 m2 s−1, indicating that the total diffu-

www.hydrol-earth-syst-sci.net/23/4969/2019/ Hydrol. Earth Syst. Sci., 23, 4969–4982, 2019



4974 Q. Zhang et al.: Improving lake mixing process simulations in the Community Land Model

Figure 3. Lake temperature profiles of (a) observations and simulations with (b) CLM-ORG and (c) CLM-KPP. Lake temperature profile
differences between simulations and observations: (d) CLM-ORG minus observations and (e) CLM-KPP minus observations (unit: ◦C).

Figure 4. Simulated (a) log10K
ORG
w with CLM-ORG, and (b) log10K

KPP
w with CLM-KPP (unit: m2 s−1). The black line in (b) shows the

lake boundary layer depth (unit: m).
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Figure 5. Simulated N2 with (a) CLM-ORG and (b) CLM-KPP (unit: 10−5 s−2). The black line in (b) shows the lake boundary layer depth
(unit: m).

Figure 6. Time series of (a) observed downward shortwave radiation (W m−2), (b) observed air temperature and WST (◦C), (c) observed
specific humidity (kg kg−1), (d) observed wind speed (m s−1), (e) simulated net radiation (W m−2), (f) simulated turbulent heat flux (W m−2)
(red line) with latent heat flux (gray line) and sensible heat flux (black line), (g) simulated buoyancy flux (m2 s−3), and (h) simulated boundary
layer depth (m). The gray shading covers 1 through 15 August. The simulations were from CLM-KPP.
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sivity with CLM-KPP was controlled mostly by these two
terms. In early July, KKPP

w sometimes appeared to be on the
order of 10−5 m2 s−1, which was consistent with that of the
last term, shear instability diffusivity, implying that this term
dominatedKKPP

w . The diffusivity increase was closely related
to the strong winds occurring at the same time (Fig. 4b).

The squared buoyancy frequency N2 of simulations with
both CLM-KPP and CLM-ORG were also compared for our
study period. N2 was related to the water density gradient
(Eq. 6) determined by the temperature gradient in both mod-
els. A greater N2 produced more stable water and stronger
water stratification. From 1 July through 15 August, the sim-
ulated N2 with CLM-KPP near the bottom of the boundary
layer was slightly larger than that with CLM-ORG (Fig. 5).
Thus, the simulated water stratification with CLM-KPP at
the bottom of the boundary layer was stronger than that in
CLM-ORG before 16 August. However, after 16 August, the
maximum N2 with CLM-ORG occurred in the middle layer
of the lake, maintaining stratification there. Conversely, the
maximum N2 with CLM-KPP moved down to near the bot-
tom of the lake during the same 16 d period (Fig. 5).

3.2 Analysis of CLM-KPP simulations for Fog3 Lake

We examined our simulations and meteorological forcing
data in detail to physically understand water mixing condi-
tions simulated by CLM-KPP, especially over the period of
16–31 August 2018. Figure 6a shows that downward short-
wave radiation was 45 W m−2 lower during 1–15 August
(shaded area) than in July. Meanwhile, over the same pe-
riod, air temperature and specific humidity decreased dramat-
ically, while wind speed showed almost no trend (Fig. 6b–d).
In this period, the simulated net radiation with CLM-KPP
was 54 W m−2 lower than that for July (Fig. 6e). The tur-
bulent heat flux, the sum of sensible and latent heat fluxes,
increased over this 15 d period due mainly to the decreased
air temperature and humidity (Fig. 6f). Figure 6g shows that
buoyancy flux, defined as net radiation minus turbulent heat
flux in the boundary layer with a different unit (m2 s−3), was
mostly negative during 1–15 August, showing that the lake
was losing heat. Due to this heat loss, the temperature in
the upper lake decreased, reducing the temperature differ-
ence between the upper and lower parts of the lake and thus
weakening the stratification. Therefore, we can see that the
boundary layer depth increased over the period of 1–15 Au-
gust (Fig. 6h) when the wind had no systematic changes, but
the buoyancy flux played a significant role in this increase.

During 15–16 August, a wind event (12 m s−1) mixed the
lake, dramatically increasing the boundary layer depth in
addition to the negative buoyancy flux. The deep boundary
layer was maintained through the end of August, even though
the winds returned to normal conditions. Such strong mixing
was not seen in CLM-ORG, where the water stratification
could not be broken up by the high wind event without help
from the negative buoyancy flux. Hence, without an ad hoc

Figure 7. Time series over the period of 2003 through 2012 of
monthly WST observations from MODIS (black starred line) and
simulations with CLM-ORG (blue line) and CLM-KPP (red line)
(unit: ◦C).

parameter to enhance the water diffusivity as in CLM-ORG,
CLM-KPP still reproduced the observed water mixing pro-
cesses.

3.3 Model validation with Nam Co data

We validated both CLM-ORG and CLM-KPP with MODIS
data for Nam Co by conducting 10 km spatial resolution sim-
ulations for this lake over the period of 2003 through 2012.
We can see that CLM-KPP improved WST simulations aver-
aged over the entire lake (34 model grid cells) when com-
pared with the MODIS data and CLM-ORG simulations
(Fig. 7). The RMSE of WST decreased from 4.58 ◦C with
CLM-ORG to 2.23 ◦C with CLM-KPP, and R increased
from 0.90 to 0.96 at the same time.

The improved WST simulations with CLM-KPP were
closely related to the water diffusivity simulations with KPP
as discussed above. We averaged the KORG

w and KKPP
w sim-

ulations over water columns with depth greater than 25 m
for Nam Co, as shown in Fig. 8, and the total of such
columns was 28 out of 34 for this lake. Figure 8 indicates
that KKPP

w was slightly smaller than KORG
w , mostly in the

mixing layer of the lake, over the summer. The difference
likely resulted from the enlarged KORG

w in CLM where this
parameter was increased by a factor of 10 when the lake
depth was greater than 25 m. In the deeper part of the lake,
KKPP

w was much smaller than KORG
w over the summer due

much to the contribution of Ked to KORG
w . In the spring and

fall, KKPP
w was significantly larger than KORG

w . During the
winter when the lake froze, both CLM-KPP and CLM-ORG
were set to use KORG

w . We can see that the most significant
improvements in WST for Nam Co occurred during the ice-
free seasons when KPP was activated. Overall, CLM-KPP
can enhance the water diffusivity during spring and fall and
maintain weak water diffusivity in the lake interior during
summer when stratification is strong.
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Figure 8. Simulated (a) log10K
ORG
w with CLM-ORG, (b) log10K

KPP
w with CLM-KPP (unit: m2 s−1) averaged over water columns with

depth greater than 25 m (28 of 34 grid cells), and (c) differences between log10K
KPP
w and log10K

ORG
w (log10K

KPP
w − log10K

ORG
w ).

4 Conclusions and discussion

We improved lake mixing process simulations by applying
the vertical mixing scheme KPP in CLM. The improved lake
model was applied to an Arctic Alaskan lake and to Nam Co
lake in the TP for model evaluation. Results for the Alaskan
lake indicate that the WST and lake temperature profile sim-
ulations using KPP are greatly improved when compared to
the original vertical mixing scheme in CLM. During the tran-
sition season in August, the improvement is most obvious.
This improvement is associated with negative heat flux and
high wind, which can cause deepening of the boundary layer
and strong mixing. However, the original vertical mixing
scheme of CLM cannot capture these strong mixing events
and causes a positive lake temperature bias in its simulation.
CLM-KPP was further validated with the observed data from
Nam Co, and results showed that WST simulations were sig-
nificantly improved when compared with the MODIS data
and CLM-ORG simulations.

More data are needed to further verify CLM-KPP, includ-
ing atmospheric forcing data over lakes and observed lake
temperature profiles. It should also be noted that although
CLM-KPP has improved thermal process simulations, large
WST biases still existed during the ice freezing period for
Nam Co. Such biases most likely resulted from the oversim-
plified lake ice scheme in the CLM lake model. Therefore, a
more realistic ice scheme in lake models is needed for better
understanding of the effects of water mixing on ice forma-
tion. In general, this coupled model provides an important
tool for lake hydrology and ecosystem studies.

Code and data availability. The model configuration and input
data used in this study are available upon request.
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Appendix A

Lake temperature is calculated as follows:

∂T

∂t
=
∂

∂z

{
Kw(z, t)

∂T

∂z

}
+

1
Cw

∂φ

∂z
, (A1)

where T is lake temperature (K) at depth z (m) and time t (s),
φ is the absorbed solar radiation flux as a heat source term
(W m−2), Cw is the volumetric heat capacity of lake water
(J m−3 K−1), and Kw is the total diffusivity (m2 s−1).

The non-dimensional flux profiles are calculated as fol-
lows:

∅=


1+ 5ζ, 0≤ ζ,
(1− 16ζ )−1/2, −1.0≤ ζ < 0,
(−28.86− 98.96ζ )−1/3, ζ <−1.0.

. (A2)

The non-dimensional shape function G(σ) is a third-order
polynomial:

G(σ)= a0+ a1σ + a2σ
2
+ a3σ

3. (A3)

a0, a1, a2, and a3 are given as follows:

a0 = 0, (A4a)
a1 = 1, (A4b)

a2 =−2+ 3
υ(h)

hw(1)
+
∂υ(h)

w(1)
+
υ(h)∂w(1)
hw(1)2

, (A4c)

a3 = 1− 2
υ(h)

hw(1)
−
∂υ(h)

w(1)
−
υ(h)∂w(1)
hw(1)2

, (A4d)

where υ(h) is the total diffusivity as a function of lake
depth (h), w(1) is the velocity scale at the bottom of the lake
boundary layer, ∂υ(h) is the lake depth derivative of υ, and
∂w(1) is the lake depth derivative of w at the bottom of the
lake boundary layer.
B(d) is the buoyancy calculated with a depth of d as fol-

lows:

B(d)= g

(
1−

ρr

ρ(d)

)
. (A5)

V 2
t is calculated as follows:

V 2
t (d)=

CvdNws(−βTCsε)
−1/2

Ricκ2 , (A6)

where Ric = 0.25, Cv = 1.6, βT = 0.2, and Cs =−98.96.
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