Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4153-2019
https://doi.org/10.5194/hess-23-4153-2019
Research article
 | 
09 Oct 2019
Research article |  | 09 Oct 2019

Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation

Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen

Related authors

Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Winter Precipitation Measurements in New England: Results from the Global Precipitation Measurement Ground Validation Campaign in Connecticut
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162,https://doi.org/10.5194/essd-2025-162, 2025
Preprint under review for ESSD
Short summary
Delayed stormflow generation in a semi-humid forested watershed controlled by soil water storage and groundwater dynamics
Zhen Cui and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2275–2291, https://doi.org/10.5194/hess-29-2275-2025,https://doi.org/10.5194/hess-29-2275-2025, 2025
Short summary
Mitigating the Impact of Increased Drought-Flood Abrupt Alternation Events under Climate Change: The Role of Reservoirs in the Lancang-Mekong River Basin
Keer Zhang and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-1126,https://doi.org/10.5194/egusphere-2025-1126, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
An analysis of cloud microphysical features over United Arab Emirates using multiple data sources
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025,https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
Evaluation of remote sensing and reanalysis based precipitation products for agro-hydrological studies in semi-arid tropics of Tamil Nadu
Aatralarasi Saravanan, Daniel Karthe, Selvaprakash Ramalingam, and Niels Schütze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2369,https://doi.org/10.5194/egusphere-2024-2369, 2024
Short summary
Extent of gross underestimation of precipitation in India
Gopi Goteti and James Famiglietti
Hydrol. Earth Syst. Sci., 28, 3435–3455, https://doi.org/10.5194/hess-28-3435-2024,https://doi.org/10.5194/hess-28-3435-2024, 2024
Short summary
A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024,https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023,https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023,https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary

Cited articles

Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteorol. Soc., 138, 2151–2162, https://doi.org/10.1002/qj.1949, 2012. 
Angulo-Martinez, M. and Barros, A. P.: Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains, Geomorphology, 228, 28–40, https://doi.org/10.1016/j.geomorph.2014.07.036, 2015. 
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler Radar Characteristics of Precipitation at Vertical Incidence, Rev. Geophys., 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973. 
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, Chicago, 324 pp., 1973. 
Baumgardner, D. C. and Colpitt, A.: Monster drops and rain gushes: unusual precipitation phenomena in Florida marine cumulus, in: Proc. Conf. Cloud Physics, January 1995, Boston, USA, 15–20, 1995. 
Download
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Share