Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4033-2019
https://doi.org/10.5194/hess-23-4033-2019
Research article
 | 
30 Sep 2019
Research article |  | 30 Sep 2019

Does the weighting of climate simulations result in a better quantification of hydrological impacts?

Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li

Related authors

Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020,https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Transferability of climate simulation uncertainty to hydrological impacts
Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, and Hua Chen
Hydrol. Earth Syst. Sci., 22, 3739–3759, https://doi.org/10.5194/hess-22-3739-2018,https://doi.org/10.5194/hess-22-3739-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
Hydrol. Earth Syst. Sci., 29, 2003–2021, https://doi.org/10.5194/hess-29-2003-2025,https://doi.org/10.5194/hess-29-2003-2025, 2025
Short summary
Two-dimensional Differential-form of Distributed Xinanjiang Model
Jianfei Zhao, Zhongmin Liang, Vijay P. Singh, Taiyi Wen, Yiming Hu, Binquan Li, and Jun Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-377,https://doi.org/10.5194/hess-2024-377, 2025
Revised manuscript accepted for HESS
Short summary
Technical Note: Streamflow Seasonality using Directional Statistics
Wouter R. Berghuijs, Kate Hale, and Harsh Beria
EGUsphere, https://doi.org/10.5194/egusphere-2024-4117,https://doi.org/10.5194/egusphere-2024-4117, 2025
Short summary
Processes and controls of regional floods over eastern China
Yixin Yang, Long Yang, Jinghan Zhang, and Qiang Wang
Hydrol. Earth Syst. Sci., 28, 4883–4902, https://doi.org/10.5194/hess-28-4883-2024,https://doi.org/10.5194/hess-28-4883-2024, 2024
Short summary
Imprints of Increases in Evapotranspiration on Decreases in Streamflow during dry Periods, a large-sample Analysis in Germany
Giulia Bruno, Laurent Strohmenger, and Doris Duethmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2678,https://doi.org/10.5194/egusphere-2024-2678, 2024
Short summary

Cited articles

Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam. 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. 
Alder, J. R. and Hostetler, S. W.: The Dependence of Hydroclimate Projections in Snow-Dominated Regions of the Western United States on the Choice of Statistically Downscaled Climate Data, Water Resour. Res., 55, 2279–2300, https://doi.org/10.1029/2018wr023458, 2019. 
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation, J. Hydrol., 529, 754–767, https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015. 
Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011wr010602, 2011. 
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins, J. Hydrol., 479, 200–214, https://doi.org/10.1016/j.jhydrol.2012.11.062, 2013. 
Download
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Share