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S1 Weighting methods 

S1.1 Reliability ensemble averaging (REA) 

The reliability ensemble averaging method of Giorgi and Mearns (2002) considers two reliability criteria for a GCM. The 

first one is the model performance criterion that evaluates the ability of a climate model to simulate historical observation, and 

the other is the model convergence criterion that examines the difference of a model to the multi-model mean in the future 10 

period. The reliability factor of a model is defined as 

where ∈ represents the natural climate variability estimated by the interval between the maximum and minimum of 20-year 

moving averages of yearly observation series. 𝐵  is the bias of a simulation to the observation in terms of the climatological 

mean, and 𝐷  is the distance between the change of a given model and the REA-weighted mean change. In addition, if the 

absolute value of bias 𝐵  or distance 𝐷  is smaller than climate variability ∈, this climate simulation is regarded to be reliable 15 

in the corresponding respect (i.e. ∈/ abs(𝐵) or ∈/ abs(𝐷) is set to 1). The parameters 𝑚 and 𝑛 represent the weight assigned 

to performance and convergence criteria, respectively, and are both set to 1 in this study.  

S1.2 Weighing scheme accounting for performance and interdependence (PI) 

Since many climate models share similar modules or parts of codes, they cannot be regarded as independent of each other 

as in model democracy. Thus, Knutti et al. (2017) proposed a weighting scheme accounting for both performance and 20 

interdependencies (PI). The interdependence score I of an 𝑖th model is evaluated as 
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where 𝐷 measures the distance between the 𝑖th and the 𝑗th model in terms of the climatological mean. The uniqueness radius 

𝜎 determines how strongly the model interdependency criterion is stressed. When a model is far from all the other models, 

its interdependence score becomes larger but no more than 1. The performance score P of the 𝑖th model is evaluated as 
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where 𝐵  measures the distance of the 𝑖th model to the observation in terms of the climatological mean. The skill radius 𝜎 

determines how strongly the model performance criterion is stressed. The overall score of the 𝑖th model is calculated by 

multiplying its interdependence score and performance score as follows:  

Two parameters, 𝜎 and 𝜎, are measured by the multiples of the median distances across all model pairs, and are chosen 

by visual inspection based on two standards. First, the choice of 𝜎 should attempt to guarantee that the group of models that 5 

are known to be similar (i.e. MIROC-ESM-CHEM, MIROC-ESM and MIROC5 in this study) should gain an I about 1/𝑘 (𝑘 

is the number of alike models) (Sanderson et al., 2017). Second, 𝜎 is sampled via perfect model tests (cross validation), in 

which each model is alternatively regarded as the truth model and the others are used to calculate the PI weights (Knutti et al., 

2017). The determination of 𝜎 should attempt to guarantee that 80% of the truth models fall into the 10-90% range projected 

by the corresponding weighted ensemble in the future period. For the Manicougan-5 watershed, 𝜎 = 0.35 and 𝜎 = 2. For 10 

the Xiangjiang watershed, 𝜎 = 0.25 and 𝜎 = 2.8. 

S1.3 Representation of the annual cycle (RAC) 

The skill score of representation of the annual cycle (RAC) is developed based on the Taylor diagram, which is used to 

indicate the similarity between a climate simulation series and an observation series (Taylor, 2001). The RAC method can be 

expressed as the following 4th order formulation. 15 

where 𝑟 is the correlation coefficient between the monthly observed and simulated series, and 𝑟 is the maximum correlation, 

which is set to 1 in this study. The parameter 𝜎 = 𝜎௦ 𝜎⁄  is the ratio between the standard deviation of a monthly simulated 

series and that of a monthly observed series. 

S1.4 Upgraded reliability ensemble averaging (UREA) 

Since the REA method may artificially reduce uncertainty by its convergence criterion and only consider one metric (i.e. 20 

climatological mean), Xu et al. (2010) proposed upgraded reliability ensemble averaging (UREA) to eliminate the model 

convergence criterion and to introduce other statistics. Even though multiple climate variables were simultaneously evaluated 

by multiplying their skill scores in Xu et al. (2010), this study individually evaluated each variable as follows.  

where 𝐵, and 𝐵௩, are the biases of a climate simulation in the average and variance, respectively. ∈ and ∈௩ represent the 

natural climate variability in terms of annual average and inter-annual variation, respectively. The variation is measured by the 25 

standard deviation for temperature series and by the coefficient of variation for precipitation and runoff series. In addition, if 

 PI = P × I (S4)
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the absolute value of bias in the average 𝐵, or variance 𝐵௩, is smaller than climate variability ∈, this climate simulation is 

regarded to be reliable in the corresponding respect (i.e. ∈/ abs൫𝐵,൯ or ∈௩/ abs൫𝐵௩,൯ is set to 1). The parameters 𝑚ଵ and 

𝑚ଶ represent the weight assigned to two metrics and are both set to 1 in this study. 

S1.5 Bayesian model averaging (BMA) 

Bayesian model averaging (BMA) is a statistical inference approach to obtain probabilistic forecasts from multi-model 5 

ensemble simulations based on Bayes theory. BMA has been used to develop probabilistic predictions for ensembles of weather 

forecasting models, climate models or hydrological predictions (Duan et al., 2007; Min et al., 2007; Raftery et al., 2005). 

Denote 𝑦 as the variable to be predicted, 𝐷 = [𝑦ଵ
 , 𝑦ଶ

 , … , 𝑦்
] as the observed series with a length of 𝑇, and 𝑓 = [𝑓ଵ, 𝑓ଶ, … , 𝑓ே] 

as the ensemble of series simulated by climate models. Based on the total probability rule, the probability density function of 

the prediction 𝑝(𝑦|𝐷) can be presented as follows. 10 

where each simulation 𝑓  is associated with a conditional probability density function, 𝑝(𝑦|𝑓, 𝐷) , which represents the 

conditional distribution of 𝑦 on 𝑓, given that 𝑓 is regarded as the best simulation for 𝐷. The posterior probability 𝑝(𝑓|𝐷) 

represents the likelihood that a simulation is the right simulation. It can also be seen as the weight, 𝑤 = 𝑝(𝑦|𝑓 , 𝐷), which 

reflects the capability of a simulation to reproduce the observation. Then, the posterior mean is as follows. 

As the use of BMA in Duan et al. (2007), this study assumed that 𝑝(𝑦|𝑓, 𝐷) consists of a Gaussian distribution; monthly 15 

data series were then adopted as model simulated series 𝑓. For the variables that do not follow a Gaussian distribution (i.e. 

precipitation and streamflow in this study), the Box-Cox transformation was used to transform the variables before the BMA 

algorithm. This study used the Expectation-Maximization algorithm to solve the BMA weights. More details of this algorithm 

can be found in Duan et al. (2007). 

S1.6 Climate prediction index (CPI) 20 

The Climate prediction index (CPI) was introduced by Murphy et al. (2004) to weight climate models based on their 

relative reliability to correctly simulate climate observation. Assuming that the simulated variable belongs to the Gaussian 

distribution, the likelihood of a simulated statistic is proportional to the following equation. 

where the climatological mean of a simulated series 𝑠 is assumed to have a Gaussian distribution with an expectation of 𝑜  

(the observational climatological mean) and a variance simply estimated by 𝜎ேே
ଶ  (the inter-annual variance of the simulated 25 

series). 
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S1.7 Evaluation of the probability density function (PDF) 

Perkins et al. (2007) proposed a skill score to evaluate climate models’ ability to reproduce the probability density functions 

(PDF) of observation. Expressed formally, the skill score of a climate simulation is given as 

where the probability density function of simulated or observed daily series is separated into 𝐾 bins, and 𝑍௦ and 𝑍 represent 

the frequency in a given bin, respectively. 5 

S2 Hydrological model: GR4J-6 

 
Figure S1. The flowchart of the GR4J-6 hydrological model. 
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S3 Supplementary results 

S3.1 Weights of GCMs 

 
Figure S2. Weights assigned by 8 weighting methods based on raw temperature (RT) and precipitation (RP) of GCM outputs and bias-
corrected temperature (DT) and precipitation (DP) of GCM outputs for two watersheds. (Equal weight is presented in white. Weights greater 5 
than equal are presented in red, and weights less than equal in blue.) 
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S3.2 Impacts on the hydrological regime 

 
Figure S3. The envelope of monthly mean streamflows simulated by 29 raw and bias-corrected GCM outputs and the multi-model ensemble 
means of monthly mean streamflows weighted by 8 weighting methods based on raw temperature (RT) and precipitation (RP) of GCM 
outputs in both watersheds for the reference period (OBS is the hydrograph simulated from meteorological observation). 5 
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S3.3 Bias in multi-model mean 

 
Figure S4. Bias in mean annual streamflow, mean peak streamflow and mean center of timing of annual flow (𝑡େୈ) simulated using 29 
raw or bias-corrected GCM outputs and the multi-model means (MMM) combined by weights based on raw temperature (RT) and raw 
precipitation (RP) in both watershed for the reference period. (The depth of pink in bars of MMM represents the level of inequality of weights 5 
as indicated in Table 3.) 
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S3.4 Impacts on uncertainty 

 
Figure S5. Box plot of changes in four hydrological indices calculated by raw or bias-corrected GCM-simulated streamflows in the 
Manicouagan-5 watershed. The changes of hydrological variables were sampled through the Monte Carlo approach based on the weights 
calculated using raw (RQ) or bias-corrected (DQ) GCM-simulated streamflows. (The depth of pink represents the level of inequality of the 5 
weights.) 
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Figure S6. Box plot of changes in four hydrological indices simulated by raw GCM-simulated streamflows over both watersheds. The 
changes of hydrological variables were sampled through the Monte Carlo approach based on the weights calculated using raw temperature 
(RT) and precipitation (RP) of GCM outputs. (The depth of pink represents the level of inequality of weights.) 

  5 
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S3.5 Out-of-sample Testing 

 

Figure S7. Bias in mean annual streamflow, mean peak streamflow and mean center of timing of annual flow (𝑡େୈ) of weighted multi-
model ensemble mean in the out-of-sample testing over the Manicouagan-5 watershed; 29 lines of each weighting method represent the 
results when each of 29 climate models was regarded as the “truth” in turn, and the left and right points in each stick represent the biases for 5 
the reference and future periods, respectively. 
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