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Abstract. With the increase in the number of available global
climate models (GCMs), pragmatic questions come up in us-
ing them to quantify climate change impacts on hydrology:
is it necessary to unequally weight GCM outputs in the im-
pact studies, and if so, how should they be weighted? Some
weighting methods have been proposed based on the perfor-
mances of GCM simulations with respect to reproducing the
observed climate. However, the process from climate vari-
ables to hydrological responses is nonlinear, and thus the as-
signed weights based on performances of GCMs in climate
simulations may not be correctly translated to hydrological
responses. Assigning weights to GCM outputs based on their
ability to represent hydrological simulations is more straight-
forward. Accordingly, the present study assigns weights to
GCM simulations based on their ability to reproduce hy-
drological characteristics and investigates their influences
on the quantification of hydrological impacts. Specifically,
eight weighting schemes are used to determine the weights
of GCM simulations based on streamflow series simulated
by a lumped hydrological model using raw or bias-corrected
GCM outputs. The impacts of weighting GCM simulations
are investigated in terms of reproducing the observed hy-
drological regimes for the reference period (1970–1999) and
quantifying the uncertainty of hydrological changes for the
future period (2070–2099). The results show that when using
raw GCM outputs to simulate streamflows, streamflow-based
weights have a better performance in reproducing observed
mean hydrograph than climate-variable-based weights. How-
ever, when bias correction is applied to GCM simulations
before driving the hydrological model, the streamflow-based
unequal weights do not bring significant differences in the
multi-model ensemble mean and uncertainty of hydrologi-

cal impacts, since bias-corrected climate simulations become
rather close to observations. Thus, it is likely that using bias
correction and equal weighting is viable and sufficient for
hydrological impact studies.

1 Introduction

Multi-model ensembles (MMEs) consisting of climate simu-
lations from multiple global climate models (GCMs) have
been widely used to quantify future climate change im-
pacts and the corresponding uncertainty (Wilby and Harris,
2006; IPCC, 2013; Chiew et al., 2009; Chen et al., 2011;
Tebaldi and Knutti, 2007). The number of climate models
has increased rapidly, resulting in the obviously growing size
of MMEs. For example, the Coupled Model Intercomparison
Project Phase 5 (CMIP5) archive contains 61 GCMs from
28 modeling institutes, with some GCMs providing multiple
simulations (Taylor et al., 2012). Due to the lack of consen-
sus on the proper way to combine simulations of an MME,
the prevailing approach is the model democracy (“one model
one vote”) for the sake of simplicity, where each member in
an ensemble is considered to have equal ability in simulating
historical and future climates. The model democracy method
has been applied to many global and regional climate change
impact studies (e.g., IPCC, 2014; Minville et al., 2008; Mau-
rer, 2007). Although it has been reported that the equal av-
erage of an MME often outperforms any individual model
in regards to the reproduction of the mean state of observed
historical climate (Gleckler et al., 2008; Reichler and Kim,
2008), whether the equal weighting is a better strategy for
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hydrological impact studies remains to be investigated (Alder
and Hostetler, 2019).

Several studies have raised concerns about the strategy of
model democracy due to the following two reasons (Lorenz
et al., 2018; Knutti et al., 2017; Cheng and AghaKouchak,
2015). First, GCM simulations in an ensemble do not have
identical skills for representing historical climate observa-
tions. They may perform differently in simulating future cli-
mate. GCM performances may also vary by their variables
and locations (Hidalgo and Alfaro, 2015; Abramowitz et
al., 2019), which further challenges the rationality of model
democracy in regional impact studies. Second, equal weights
imply that the individual members in an ensemble are inde-
pendent of each other. However, some climate models share
common modules, parts of codes, parameterizations, and so
on (Knutti et al., 2010; Sanderson et al., 2017). Some pairs
of GCMs submitted to the CMIP5 database only differ in the
spatial resolution (e.g., MPI-ESM-MR and MPI-ESM-LR;
see Giorgetta et al., 2013). The replication or overlapping in
these GCMs may lead to the interdependence of MMEs, re-
sulting in common biases towards the replicating section and
inflating confidence in the projection uncertainty (Sanderson
et al., 2015; Jun et al., 2012).

With the intention of improving climate projections and
reducing the uncertainty, some weighting approaches have
been proposed to assign unequal weights to climate model
simulations according to their performances with respect
to reproducing some diagnostic metrics of historical cli-
mate observations (Murphy et al., 2004; Sanderson et al.,
2017; Cheng and AghaKouchak, 2015). For example, Xu et
al. (2010) apportioned weights for GCMs based on their bi-
ases to the observed data in terms of two diagnostic met-
rics (climatological mean and interannual variability) for
producing probabilistic climate projections. Lorenz and Ja-
cob (2010) used errors in the trends of temperature to evalu-
ate climate projections and determine weights. Other criteria
have also been introduced into model weighting as a com-
plement to the performance criterion. Some examples are
the convergence of climate projections for a future period
(Giorgi and Mearns, 2002) and the interdependence among
climate models (Sanderson et al., 2017).

Despite the different diagnostic metrics or definitions of
model performances employed in these weighting methods,
weights are commonly determined with respect to the ability
of climate simulations to reproduce observed climate vari-
ables, such as temperature and precipitation (e.g., Chen et
al., 2017; Wilby and Harris, 2006; Xu et al., 2010). However,
for the impact studies, the relationship between climate vari-
ables and the impact variable is often not straightforward or
explicit. In other words, the process from climate variables
to their impacts may not be linear (Wang et al., 2018; Ris-
bey and Entekhabi, 1996; Whitfield and Cannon, 2000). For
example, Mpelasoka and Chiew (2009) reported that in Aus-
tralia, a small change in annual precipitation can result in a
change in annual runoff that is several times larger. Thus, the

weights calculated in the climate field may not be effective
in the impact field.

In addition, a number of climate variables may determine
the climate change impacts on a single environmental sector.
For example, the runoff generation in a watershed is usually
determined by precipitation, temperature, and other climate
variables. Thus, it is not an easy task to determine the relative
importance of each climate variable in impact studies, which
is the other challenge in combining sets of weights based on
different climate variables into a single set of weights for im-
pact simulations. Previous studies have usually assumed that
all variables are equally important and had an equal weight
assigned to each climate variable (Xu et al., 2010; Chen et
al., 2017; Zhao, 2015). However, these climate variables are
usually not equally important in the impact field. For exam-
ple, precipitation may be more important than temperature
for a rainfall-dominated watershed, but this could be different
for a snowfall-dominated watershed. Thus, it may be more
straightforward to calculate the weights for GCMs based on
their ability to reproduce the single impact variable instead
of multiple climate variables. Such a method would integrate
the synthetic ability of GCMs in terms of simulating multiple
climate variables to that of one impact variable. In addition,
this method could also circumvent the previous problem of
potential nonlinearity between climate variables and the im-
pact variable.

Accordingly, the objectives of this study are to assign
weights to GCM simulations according to their ability to
represent hydrological observations and to assess the im-
pacts of these weighting methods on the quantification of hy-
drological responses to climate change. The case study was
conducted over two watersheds with different climatic and
hydrological characteristics. Since both bias correction and
model weighting are common procedures in regional and
local impact studies, this study considers two experiments
(raw and bias-corrected GCM outputs) to simulate stream-
flows and investigate the performances of weighting meth-
ods. Seven weighting methods were used to assign unequal
weights for streamflows simulated by raw or bias-corrected
GCMs. The impacts of unequal weights are then assessed and
compared to the equal-weighting method in terms of multi-
model ensemble mean and uncertainty related to the choice
of a climate model.

2 Study area and data

2.1 Study area

This study was conducted over two watersheds with
different climatic and hydrological characteristics: the
rainfall-dominated Xiangjiang watershed and the snowfall-
dominated Manicouagan-5 watershed (Fig. 1). The Xiang
River is one of the largest tributaries of the Yangtze River
in central–southern China, and its drainage area is about
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Figure 1. Locations of the (a) Xiangjiang and (b) Manicouagan-5 watersheds. (The study area in the Xiangjiang watershed is one of its
sub-basins, shown here as the green boundary.)

94 660 km2 (Fig. 1a). A catchment with a surface area of
about 52 150 km2 above the Hengyang gauged station was
used in this study. The catchment is heavily influenced by
the East Asian monsoon, which causes a humid subtropi-
cal climate with hot and wet summers and mild winters.
The average temperature over the catchment is about 17 ◦C,
with the coldest month averaging at about 7 ◦C. The aver-
age annual precipitation is about 1570 mm, of which 61 %
falls in the wet season from April to August. The daily av-
eraged streamflow at the Hengyang gauged station is around
1400 m3 s−1. The annual average of summer peak stream-
flow is about 4420 m3 s−1, which is mainly due to summer
extreme rainfalls.

The Manicouagan-5 watershed, located in the center of the
province of Quebec, Canada, is the largest sub-basin of the
Manicouagan watershed (Fig. 1b). Its drainage area is about
24 610 km2, most of which is covered by forest. The out-
let of the Manicouagan-5 watershed is the Daniel-Johnson
Dam. The Manicouagan-5 watershed has a continental sub-
arctic climate characterized by long and cold winters. The
average temperature over the watershed is about−3 ◦C, with
nearly half of the year having a daily temperature below 0 ◦C.
The average annual precipitation is about 912 mm. The aver-
age discharge at the outlet of the Manicouagan-5 watershed
is about 530 m3 s−1. Snowmelt contributes to the peak dis-
charge during May, which has an annual average of about
2200 m3 s−1.

2.2 Data

This study used daily maximum and minimum temperatures
and precipitation from observation and GCM simulations
for both watersheds. The observed meteorological data for
the Xiangjiang watershed were collected from 97 precipi-

tation gauges and 8 temperature gauges. Streamflow series
were collected from the Hengyang gauged station. For the
Manicougan-5 watershed, the observed meteorological data
were extracted from the gridded dataset of Hutchinson et
al. (2009), which is interpolated from daily station data us-
ing a thin-plate smoothing spline interpolation algorithm.
Streamflow series were the inflows of the Daniel-Johnson
Dam, which were calculated using mass balance calcula-
tions. All the observation data for both watersheds cover the
historical reference period (1970–1999).

For the climate simulations, maximum and minimum tem-
peratures and precipitation of 29 GCMs were extracted from
the CMIP5 archive over both watersheds (Table 1). All sim-
ulations cover both the historical reference period (1970–
1999) and the future projection period (2070–2099). One
Representative Concentration Pathway (RCP8.5) was used
in terms of climate projections in the future period. RCP8.5
was selected because it projects the most severe increase in
greenhouse gas emissions among the four RCPs, and it is
often used to design conservative mitigation and adaptation
strategies (IPCC, 2014).

3 Methodology

To begin the process of calculating the weights for each
GCM simulation, the multi-model ensemble constructed by
29 GCMs was utilized to drive a calibrated hydrological
model over the two watersheds. Two experiments were de-
signed to generate the ensembles of streamflow simulations.
The first experiment drives the hydrological model using
raw GCM outputs with no bias correction, while the second
drives the hydrological model using bias-corrected climate
simulations. Although it is not common to use raw GCM
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Table 1. Information about the 29 GCMs used.

No. Model name Resolution Institution
(long.× lat.)

1 ACCESS1.0 1.875× 1.25 Commonwealth Scientific and Industrial Research Organization
2 ACCESS1.3 1.875× 1.25 (CSIRO) and Bureau of Meteorology (BOM), Australia

3 BCC-CSM1.1 2.8× 2.8
Beijing Climate Center, China Meteorological Administration

4 BCC-CSM1.1(m) 1.125× 1.125

5 BNU-ESM 2.8× 2.8
College of Global Change and Earth System Science, Beijing
Normal University

6 CanESM2 2.8× 2.8 Canadian Centre for Climate Modelling and Analysis

7 CCSM4 1.25× 0.94 US National Center for Atmospheric Research

8 CESM1(CAM5) 1.25× 0.94 National Science Foundation, Department of Energy, NCAR, USA

9 CMCC-CMS 1.875× 1.875
Centro Euro-Mediterraneo sui Cambiamenti Climatici10 CMCC-CM 0.75× 0.75

11 CMCC-CESM 3.75× 3.7

12 CNRM-CM5 1.4× 1.4
Centre National de Recherches Météorologiques and Centre
Européen de Recherche et Formation Avancée en Calcul
Scientifique

13 CSIRO-Mk3.6.0 1.8× 1.8
Commonwealth Scientific and Industrial Research Organization
and Queensland Climate Change Centre of Excellence

14 FGOALS-g2 1.875× 1.25
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences,
and CESS, Tsinghua University

15 GFDL-CM3 2.5× 2.0
NOAA Geophysical Fluid Dynamics Laboratory16 GFDL-ESM2G 2.5× 2.0

17 GFDL-ESM2M 2.5× 2.0

18 INM-CM4 2.0× 1.5 Russian Institute for Numerical Mathematics

19 IPSL-CM5A-LR 3.75× 1.9
Institut Pierre Simon Laplace20 IPSL-CM5A-MR 2.5× 1.25

21 IPSL-CM5B-LR 3.75× 1.9

22 MIROC-ESM-CHEM 2.8× 2.8 Japan Agency for Marine-Earth Science and Technology,
23 MIROC-ESM 2.8× 2.8 Atmosphere and Ocean Research Institute (the University of

Tokyo), and National Institute for Environmental Studies

24 MIROC5 1.4× 1.4
Atmosphere and Ocean Research Institute (the University of
Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

25 MPI-ESM-LR 1.875× 1.875
Max Planck Institute for Meteorology

26 MPI-ESM-MR 1.875× 1.875

27 MRI-ESM1 1.125× 1.125
Meteorological Research Institute

28 MRI-CGCM3 1.1× 1.1

29 NorESM1-M 2.5× 1.875 Norwegian Climate Centre

simulations for hydrological impact studies, the rationale for
using them in this study is to examine the impacts of bias
correction on weighting GCMs. The bias correction may ad-
just the relative performances between climate simulations
and thus affect the determination of the relative weight for

each ensemble member. Based on the ensemble of hydrologi-
cal simulations from GCM outputs, eight weighting methods
were employed to determine the weights of each GCM and
to combine ensemble members for the assessment of hydro-
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logical climate change impacts. More detailed information is
given below.

3.1 Bias correction

Since the raw outputs of GCMs are often too coarse and bi-
ased to be directly input into hydrological models for impact
studies, bias correction is commonly applied to GCM outputs
prior to the runoff simulation (Wilby and Harris, 2006; Chen
et al., 2011; Minville et al., 2008). A distribution-based bias-
correction method, the daily bias-correction (DBC) method
of Chen et al. (2013), was used in this study. DBC is the
combination of the local intensity scaling (LOCI) method
(Schmidli et al., 2006) and the daily translation (DT) method
(Mpelasoka and Chiew, 2009). The LOCI method was used
to adjust the wet-day frequency of climate-model-simulated
precipitation. A threshold was determined for the reference
period to ensure that the simulated precipitation occurrence is
identical to the observed precipitation occurrence. The same
threshold was then used to correct the wet-day frequency for
the future period. The DT method was used to correct bi-
ases in the frequency distribution of simulated precipitation
amounts and temperature separately. The frequency distribu-
tion was represented by 100 percentiles, ranging from the
1st to the 100th, and the correction factors were calculated
for each percentile in the reference period. The same correc-
tion factors were then employed to correct the distributions
for the future period. The use of distribution-based biases
facilitates the use of different correction factors for differ-
ent levels of precipitation. Some studies have shown the ad-
vantages of distribution-based bias correction over other cor-
rection methods in the assessment of hydrological impacts
(Chen et al., 2013; Teutschbein and Seibert, 2012). Each vari-
able was corrected independently, and inter-variable depen-
dence was not considered in this study. Previous study has
shown that the use of a more complicated method does not
manifest much advantage over the use of the independent
bias-correction method for these two watersheds (Chen et al.,
2018).

3.2 Runoff simulation

The runoff was simulated using a lumped conceptual hydro-
logical model, GR4J-6 (Arsenault et al., 2015), which cou-
ples a snow accumulation and melt module, CemaNeige, to
a rainfall–runoff model, Génie Rural à 4 paramètres Jour-
nalier (GR4J). The CemaNeige model divides the precipi-
tation into liquid and solid according to the daily tempera-
ture range and generates snowmelt depending on the ther-
mal state and water equivalent of the snowpack (Valéry et al.,
2014). CemaNeige has two free parameters: the melting rate
and the thermal-state coefficient. The GR4J model consists
of a production reservoir and a routing reservoir (Perrin et
al., 2003). A portion of net rainfall (liquid precipitation with
evaporation subtracted) goes into the production reservoir,

whose leakage forms the effective rainfall when combined
with the other proportion of net rainfall. The effective rainfall
is then divided into two flow components. Ninety percent of
the effective rainfall routes via a unit hydrograph and enters
into the routing reservoir. The other 10 % generates the direct
flow through the other unit hydrograph. There is groundwa-
ter exchange with neighboring catchments in the direct flow
and the outflow nonlinearly generated by the routing reser-
voir. Four free parameters in GR4J must be calibrated: the
maximum capacity of the production reservoir, the ground-
water exchange coefficient, the 1 d ahead maximum capacity
of the routing reservoir, and the time base of unit hydrograph.
A brief flowchart of the GR4J-6 model is shown in the Sup-
plement (Fig. S1).

The time periods of the observed data used for hydrolog-
ical model calibration and validation are presented in Ta-
ble 2. The shuffled complex evolution optimization algo-
rithm (Duan et al., 1992) was employed to optimize the pa-
rameters of GR4J-6 for both watersheds. The optimized pa-
rameters were chosen to maximize the Nash–Sutcliffe effi-
ciency (NSE) criterion (Nash and Sutcliffe, 1970). The se-
lected sets of parameters yield NSEs greater than 0.87 for
both calibration and validation periods, indicating the rea-
sonable performance of GR4J-6 and the high quality of the
observed datasets for both watersheds.

3.3 Weighting methods

Raw and bias-corrected climate simulations were input to
the calibrated GR4J-6 model to generate raw and bias-
corrected streamflow data series, respectively. Eight weight-
ing methods were then employed to determine the weight of
each hydrological simulation, including the equal-weighting
method (model democracy) and seven unequal-weighting
methods. All of the unequal-weighting methods are de-
scribed in detail in the Supplement, so they are only briefly
presented herein. Seven unequal-weighting methods consist
of two multiple-criteria-based weighting methods and five
performance-based weighting methods. The two multiple-
criteria-based weighting methods are the reliability ensem-
ble averaging (REA) method and the performance and in-
terdependence skill (PI). The REA method of Giorgi and
Mearns (2002) considers both the bias of a GCM to obser-
vation in the reference period (performance criterion) and its
similarity to other GCMs in the future projection (conver-
gence criterion). The PI method (Knutti et al., 2017; Sander-
son et al., 2017) weights an ensemble member according to
its bias to historical observation (performance criterion) and
its distance to other ensemble members in the reference pe-
riod (interdependence criterion). The biases and distances in
the REA and PI methods were calculated based on the diag-
nostic metric of the climatological mean of streamflow.

The five performance-based weighting methods are the cli-
mate prediction index (CPI), upgraded reliability ensemble
averaging (UREA), the skill score of the representation of
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Table 2. Nash–Sutcliffe efficiency (NSE) of the hydrological model in the calibration and validation periods.

Country Watershed Area High Low Calibration NSE Validation NSE
name (km2) flow flow period calibration period validation

China Xiangjiang 52 150 Apr–Jun Jul–Nov 1975–1987 0.912 1988–2000 0.871
Canada Manicouagan-5 24 610 Mar–Jul Aug–Feb 1970–1979 0.926 1980–1989 0.881

the annual cycle (RAC), Bayesian model averaging (BMA),
and the evaluation of the probability density function (PDF).
All of these methods only consider the differences of climate
simulations to historical observation, but they differ in the
metrics or algorithms used to determine weights. The CPI as-
signs weights based on the biases in the climatological mean
and assumes that the simulated climatological mean follows
a Gaussian distribution (Murphy et al., 2004). UREA con-
siders biases in both the climatological mean and the inter-
annual variance to determine weights (Xu et al., 2010). Both
the RAC and BMA calculate weights based on monthly se-
ries. The RAC defines a skill score in simulating the annual
cycle according to the relationship among the correlation co-
efficient, standard deviations, and centered root-mean-square
error (Taylor, 2001). BMA combines the results of multi-
ple models through the Bayesian theory (Duan et al., 2007;
Raftery et al., 2005; Min et al., 2007). The PDF determines
weights according to the overlapping area of the probability
density function between daily simulations and observations
(Perkins et al., 2007).

Using all eight methods, the weights were calculated for
each of streamflow data series simulated by raw GCM out-
puts and bias-corrected outputs. For comparison, raw and
bias-corrected temperature and precipitation series were also
individually used to calculate climate-based weights using
the above weighting methods.

3.4 Data analysis

The extent of inequality of each set of weights was first inves-
tigated by the entropy of weights (Déqué and Somot, 2010).
The entropy of weights reflects the extent of how a weighting
method discriminates the relative reliability between GCM
simulations. Next, in order to investigate the impacts of
weighting GCM simulations for hydrological impact studies,
weights were used to combine the ensemble of hydrological
simulations. The impacts of unequal weights were compared
to the results obtained using the equal-weighting method.
The comparison focuses on three aspects: (1) the simulation
of reference and future hydrological regimes, (2) the bias of
the multi-model ensemble mean during the reference period,
and (3) the uncertainty of changes in hydrological indices
between future and reference periods.

To be specific, for the entropy of weights (Eq. 1), it reaches
a maximum value when the weights are equally distributed
among ensemble members. A smaller entropy indicates a

larger difference among the weights of ensemble members.
Thus, the entropy reflects the extent of inequality for a set of
weights:

E =−

N∑
i=1

wi lnwi, (1)

where wi is the weight assigned to the ith ensemble member,
and N is the total number of ensemble members.

Since weighting methods are usually proposed to reduce
biases in the ensemble of climate simulations, the multi-
model ensemble means determined by these weights were
then evaluated in terms of the representation of observa-
tion during the reference period. The multi-year averages of
three hydrological indices were calculated for each stream-
flow simulation: (1) annual streamflow, (2) peak streamflow,
and (3) the center of timing of annual flow (tCMD: the occur-
rence day of the midpoint of annual flow). Then, the multi-
model mean indices were obtained based on the weights as-
signed to each simulation and compared to the indices of ob-
servation.

The influences of model weighting on the uncertainty of
hydrological impacts related to the choice of GCMs were in-
vestigated through the changes in four hydrological indices
between the reference and future periods: (1) mean annual
streamflow, (2) mean streamflow during the high-flow pe-
riod, (3) mean streamflow during the low-flow period, and
(4) mean peak streamflow (the periods of high and low flow
are shown in Table 2). The Monte Carlo approach was intro-
duced to sample the uncertainty for unequally weighted en-
sembles (Wilby and Harris, 2006; Chen et al., 2017). The hy-
drological indices were randomly sampled 1000 times based
on the calculated weights. For example, if a climate model
simulation is assigned a weight of 0.2, the hydrological in-
dex simulated by that climate simulation has a probability
of 20 % of being chosen as the sample in each Monte Carlo
experiment.

4 Results

4.1 Weights of GCMs

Figure 2 presents the weights calculated based on the
streamflow series simulated by raw GCM outputs and bias-
corrected outputs for eight (one equal and seven unequal)
weighting methods over two watersheds. These results show
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Figure 2. Weights assigned by equal weighting and seven unequal-weighting methods based on raw GCM-simulated streamflow (RQ) and
bias-corrected GCM-simulated streamflow (DQ) for two watersheds. (Equal weight is presented in white; weights greater than equal are
presented in red, and weights less than equal are represented in blue.)

Table 3. The entropy of weights calculated by equal weighting and seven unequal-weighting methods based on raw GCM-simulated stream-
flow (RQ) and bias-corrected GCM-simulated streamflow (DQ) for two watersheds. The entropy of weights calculated based on raw and
bias-corrected temperature (RT and DT) and precipitation (RP and DP) are also presented for comparison.

Xiangjiang watershed Manicouagan-5 watershed

RT RP RQ DT DP DQ RT RP RQ DT DP DQ

REA 2.45 3.04 2.93 3.05 3.18 3.22 2.87 3.11 3.06 3.12 3.30 3.29
PI 3.34 3.35 3.33 3.37 3.37 3.37 3.34 3.34 3.34 3.36 3.36 3.37
CPI 2.46 2.92 2.86 3.37 3.36 3.35 2.99 3.12 3.00 3.37 3.37 3.37
UREA 2.72 3.00 2.73 3.33 3.22 3.15 3.02 3.15 3.10 3.33 3.35 3.36
RAC 3.37 3.35 3.25 3.37 3.36 3.36 3.37 3.36 3.32 3.37 3.36 3.36
BMA 3.34 3.36 3.33 3.36 3.36 3.36 3.35 3.36 3.35 3.37 3.36 3.36
PDF 3.36 3.37 3.36 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37

Equal 3.37 3.37

the ability of different weighting methods to distinguish the
performance or reliability of individual ensemble members.
The entropy of weights was also calculated to quantify the
extent of this disproportion for each set of weights (Table 3).
Some weighting methods tend to aggressively discriminate
the reliability of GCMs and assign differentiated weights
to ensemble members, while other methods assign similar
weights to each of them. Specifically, for the weights based
on raw GCM-simulated streamflows, REA, UREA, and CPI
produce the weights that most radically discriminate ensem-
ble members among all eight weighting methods for both
watersheds. The RAC method generates less differentiated
unequal weights, followed by the BMA and PI methods, but
weights assigned by the PDF method closely resemble the
equal-weighting method. However, when weights are calcu-
lated based on bias-corrected GCM-simulated streamflows,
the inequality of weights is reduced, and all the unequal-
weighting methods receive a lower entropy of weights for
both watersheds (Table 3). Most sets of these weights be-
come similar to the equal-weighting method, with the excep-
tion of REA and UREA for the Xiangjiang watershed and
REA for the Manicouagan-5 watershed (Fig. 2). This result is
expected, as the bias-correction method brings all GCM sim-

ulations closer to the observations. The differences among
GCM simulations are greatly reduced.

In addition, the weights based on the raw and bias-
corrected temperature and precipitation time series of GCM
simulations were also calculated and are shown in the Sup-
plement (Fig. S2). For the weights based on the raw tem-
perature and precipitation, REA, UREA, and CPI still gener-
ate the most unequal weights among these weighting meth-
ods over both watersheds, as Table 3 indicates. Again, the
weights become equalized when they are based on bias-
corrected temperature and precipitation.

4.2 Impacts on the hydrological regime

The weights determined by eight weighting methods were
first utilized to combine GCM-simulated streamflow series.
Figure 3 shows the weighted multi-model mean of monthly
mean streamflow for the Xiangjiang watershed. The gray
envelope represents the range of monthly mean streamflow
simulated using 29 GCM simulations. At the reference pe-
riod, streamflows simulated by raw GCMs cover a wide
range (Fig. 3a). However, the equally weighted multi-model
mean streamflow performs better than most of the stream-
flow series simulated by individual GCMs with respect to
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Figure 3. The envelope of monthly mean streamflows simulated by 29 raw and bias-corrected GCM outputs and the multi-model ensemble
means of monthly mean streamflows weighted by eight weighting methods based on GCM-simulated streamflows over the Xiangjiang
watershed for the reference and future periods (OBS is the hydrograph simulated from meteorological observation).

reproducing the observed streamflow; even so, the equally
weighted ensemble mean still underestimates the streamflow
before the peak (January–May) and overestimates it after the
peak (June–September).

For the ensemble mean combined by unequal weights,
the three weighting methods that generate highly differenti-
ated weights (REA, UREA, and CPI) outperform the equal-
weighting method with respect to reproducing the observed
monthly mean streamflow. The BMA and RAC methods im-
prove the performance of streamflow simulations before the
peak at the cost of performance after the peak, while an op-
posite pattern is observed when using the PI method. The
PDF method generates an ensemble mean of monthly mean
streamflows almost identical to that of the equal-weighting
method. This is an expected result, as the PDF method as-
signs almost identical weights to all GCM simulations.

Weights calculated based on the raw temperature and pre-
cipitation of GCM outputs were also used to construct the en-
semble mean of monthly mean streamflows (Fig. S3a and b).
Particularly, for the weights based on raw temperature, the
ensemble mean hydrographs combined by the REA, UREA,
and CPI methods largely deviate from the observation. Al-
though REA, UREA, and CPI generate highly differentiated
weights in this case, their ensemble mean streamflows are
significantly inferior to those combined by equal weights
(Fig. S3a). In addition, when using raw precipitation to cal-
culate weights, the weighting methods perform worse than

or similar to those calculated based on streamflow series
(Fig. S3b). This reflects the advantage of streamflow-based
weights in terms of reproducing the observed mean hydro-
graph.

The bias-correction method can reduce the biases of pre-
cipitation and temperature in representing the mean monthly
streamflow for the reference period, as indicated by the nar-
rowed envelope (Fig. 3c), although a small amount of uncer-
tainty is still observed. The reduction in biases brings about
similar weights for all ensemble members in the experiment
of using bias-corrected GCM-simulated streamflows. Thus,
the multi-model ensemble means of monthly mean stream-
flow constructed by all unequal-weighting methods are very
similar to those constructed by the equal-weighting method,
as shown in Fig. 3c.

For the bias-corrected GCM-simulated streamflow in the
future period (Fig. 3d), a larger uncertainty related to the
choice of climate models is observed, as indicated by the
wider envelope of the mean monthly streamflow. This may
be because the bias of GCM outputs is nonstationary. All
bias-correction methods are based on a common assumption
that the bias of climate model outputs is constant over time.
However, this assumption may not always be true because
of natural climate variability and climate sensitivity to vari-
ous forcings (Hui et al., 2019; Chen et al., 2015), and most
weighting methods still follow the same assumption. In other
words, the bias nonstationarity implies that climate models
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Figure 4. The same as Fig. 3 but for the Manicouagan-5 watershed.

differ in their ability to simulate the climate for the reference
and future periods. The weights calculated in the reference
period may not be applicable in the future period. The re-
sults of this study also prove this, as all of the weighting
methods project similar ensemble means of monthly mean
streamflows for the future period.

Figure 4 presents the same information as Fig. 3 but for
the Manicouagan-5 watershed. Nearly half of the monthly
mean streamflow time series simulated by raw GCM out-
puts have delayed peak (June) compared to the observed
one (May) at the reference period, which leads to the de-
layed peak streamflow of the weighted multi-model mean
streamflows for all weighting methods (Fig. 4a). Nonethe-
less, when raw GCM-simulated streamflow series are used
to calculate weights, the multi-model mean streamflows per-
form better than or similar to those calculated by weights
based on raw temperature and precipitation (Fig. S3c). How-
ever, for the bias-corrected streamflow series, the uncertainty
of monthly streamflows simulated by individual GCMs is
largely reduced and the problem of delayed peak streamflow
is corrected (Fig. 4c). Similar to the case in the Xiangjiang
watershed, all unequally weighted multi-model mean stream-
flows are identical to those of the equal-weighting method.
For the future period, although the uncertainty of single bias-
corrected GCM-simulated streamflows increases (Fig. 4d),
there are still very few differences among the future multi-
model mean streamflows combined by different weighting
methods.

4.3 Bias in multi-model mean

In order to quantify the performances of weighting methods
with respect to reproducing the multi-model ensemble mean,
biases of the multi-model ensemble mean relative to obser-
vation were calculated for the reference period in terms of
three hydrological indices (mean annual streamflow, mean
peak streamflow, and mean center of timing of annual flow;
tCMD). A smaller bias represents a better performance. Fig-
ure 5 presents the biases of weighted multi-model mean in-
dices over the Xiangjiang watershed. For the streamflows
simulated using raw GCM outputs, the weighting methods
show varied performance in terms of reproducing observed
indices (Fig. 5a–c). Except for the PI method, the unequally
weighted multi-model means more or less outperform the
equal-weighting method in terms of reducing biases in mean
annual streamflow and mean tCMD, while an opposite result
is observed in mean peak streamflow. This may be because
only the mean value (climatological mean or monthly mean
series) was used as the evaluation metric when weights are
determined, while peak or extreme values were not consid-
ered. Additionally, weights based on the raw temperature and
precipitation of GCM outputs were used to calculate multi-
model mean indices for comparison (Fig. S4a–c). When raw
temperature series are used to determine weights, they of-
ten bring about more biases in mean annual streamflow and
tCMD. The weights based on raw precipitation show some su-
periority in reducing bias in mean peak streamflow. However,
in the experiment of using bias-corrected GCM-simulated
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Figure 5. Bias in mean annual streamflow, mean peak streamflow, and mean center of timing of annual flow (tCMD) simulated using 29 raw
or bias-corrected GCM outputs and the multi-model means (MMM) combined by weights based on raw (RQ) and bias-corrected (DQ)
GCM-simulated streamflows in the Xiangjiang watershed in the reference period. (The depth of pink in the MMM bars represents the level
of inequality of weights, as indicated in Table 3.)

streamflows to calculate weights (Fig. 5d–f), the biases in
multi-model mean indices are much less varied among differ-
ent weighting methods. This is similar to the previous results
of hydrological regimes.

For the case in the Manicouagan-5 watershed (Fig. 6), 25
of the 29 streamflow series simulated by raw GCMs have
larger mean annual streamflows and mean peak streamflows
than those of the observations, and 26 series generate a de-
layed tCMD. This leads to the overestimation of multi-model
mean indices for all weighting methods (Fig. 6a–c). Com-
pared to the equal-weighting method, all unequal-weighting
methods more or less overcome this overestimation. The
three weighting methods that generate highly differentiated
weights (REA, UREA, and CPI) notably reduce biases for
all three hydrological indices. For most weights calculated
based on raw temperature and precipitation of GCM out-
puts (Fig. S4d–f), a certain improvement in mean indices
was also observed (the only exception is raw-precipitation-
based PDF weights), but compared to the weights calcu-
lated using streamflow series, nearly all streamflow-based

weights reduce more biases than those based on temper-
ature and precipitation. However, if bias-corrected GCM-
simulated streamflows are used (Fig. 6d–f), again, all weight-
ing methods generate very similar mean indices to the equal-
weighting method.

4.4 Impacts on uncertainty

In addition to the multi-model ensemble mean, the impacts of
weighting GCM simulations on uncertainty of hydrological
responses were also assessed. Figures 7 and S5 present the
box plots of changes in four hydrological indices (mean an-
nual streamflow, mean streamflow during the high- and low-
flow periods and mean peak streamflow) between the refer-
ence and future periods. The box plots of the equal-weighting
method are depicted through 29 values simulated by climate
simulations, while the box plots of seven unequal-weighting
methods are constructed using 1000 values sampled by the
Monte Carlo approach based on assigned weights. For exam-
ple, a simulation with 2 times the weight of another simula-
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Figure 6. The same as Fig. 5 but for the Manicouagan-5 watershed.

tion will occur 2 times as often as that in the 1000 samples of
Monte Carlo experiments. While the 1000 samples still only
consist of 29 values, the occurrence of each value reflects its
possibility to be chosen and presents the uncertainty related
to the choice of GCMs determined by assigned weights.

Figure 7 presents the uncertainty of hydrological changes
for the Xiangjiang watershed. In the experiment of using raw
GCM-simulated streamflows (Fig. 7a–d), depending on the
weighting methods, unequal weights show varying effects on
the uncertainty. Both the PDF and PI methods suggest simi-
lar uncertainties to those of the equal-weighting method for
all four hydrological indices. The BMA and RAC methods
generate slightly larger uncertainty for the change in mean
annual streamflow and slightly smaller uncertainty for the
change in low streamflow. The two weighting methods that
generate the most differentiated weights (REA and UREA)
largely reduce the uncertainty and increase the changes of
the upper and lower probabilities for all four hydrological
variables. The impacts of weights calculated based on raw
GCM temperature and precipitation series were also ana-
lyzed (Fig. S6a–d). When weights are calculated based on
raw temperature, REA, UREA, and CPI tend to aggressively

reduce the uncertainty in mean high streamflow and peak
streamflow. Precipitation-based weights show similar influ-
ences on uncertainty to the weights based on streamflows.
However, for the bias-corrected GCM-simulated streamflows
(Fig. 7e–h), the uncertainty of changes in the four hydrolog-
ical indices is similar among all weighting methods.

The uncertainty of hydrological impacts in terms of four
hydrological indices over the Manicouagan-5 watershed is
shown in the Supplement (Fig. S5). For weights calcu-
lated using raw GCM-simulated streamflows (Fig. S5a–d),
only UREA clearly reduces the uncertainty for mean annual
streamflow. The REA, UREA, and CPI methods reduce the
uncertainty for mean low streamflow and decrease its value
of upper probability. There are few differences in the uncer-
tainty of mean high streamflow and peak streamflow among
all weighting methods. However, when bias-corrected GCM-
simulated streamflows are used (Fig. S5e–h), again, the un-
certainty of changes in all four hydrological indices is very
similar among most of the weighting methods. Only CPI sug-
gests slight increases in changes of the lower probability.
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Figure 7. Box plot of changes in four hydrological indices calculated by raw or bias-corrected GCM-simulated streamflows in the Xiangjiang
watershed. The changes of hydrological variables were sampled through the Monte Carlo approach based on the weights calculated using
raw (RQ) or bias-corrected (DQ) GCM-simulated streamflows. (The depth of pink represents the level of inequality of the weights.)

4.5 Out-of-sample testing

In the above assessments except that of the impacts on uncer-
tainty, the weighting methods are mostly evaluated in terms
of their performances in simulating observations in the ref-
erence period. This kind of assessment has been referred
to as “in-sample” testing (Herger et al., 2018). But the per-
formances of weighting methods in the future period (“out-
of-sample” testing) may also need to be investigated. How-

ever, there are no observations to be compared with in the
future period. Thus, an out-of-sample testing was then per-
formed by conducting model-as-truth experiments (Herger et
al., 2018; Abramowitz et al., 2019). In model-as-truth exper-
iments, the output of each climate model was regarded as the
“truth” in turn, and the outputs of the remaining 28 climate
models were used as simulations of this truth model. Then,
the weights were recalculated for these remaining models.
Since there is a truth in the future period in this case, the per-
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Figure 8. Bias in mean annual streamflow, mean peak streamflow, and mean center of timing of annual flow (tCMD) of weighted multi-model
ensemble mean in the out-of-sample testing over the Xiangjiang watershed; 29 lines of each weighting method represent the results when
each of 29 climate models was regarded as the “truth” in turn, and the left and right points on each line represent the biases for the reference
and future periods, respectively.

formances of weighting methods can be evaluated in terms
of reproducing the future truth.

Figure 8 shows the results of out-of-sample testing over
the Xiangjiang watershed for biases of weighted multi-model
mean hydrological indices, which are the same as those in
Fig. 5. The left and right sides of each line respectively rep-
resent the biases at the reference and future periods when
one climate model is regarded as the truth. Similar to Fig. 5,
the bias of weighted mean being closer to zero means that
the corresponding weighting method performs better. In gen-
eral, the results of out-of-sample testing are similar to those
where historical observations are used. For the experiment of
streamflows simulated by raw GCM outputs, Fig. 8a–c show
that unequally weighted means more or less become closer
to the truth simulation than those of equal weighting for
both reference and future periods. The unequal streamflow-
based weights can help to reduce the biases. In particular, the
three methods with the most differentiated weights (REA,
UREA, and CPI) reduce more biases of annual streamflow
when compared with other methods in that the ranges of the
biases calculated by these three methods are narrower and
closer to zero. In addition, although the biases in the future
period tend to be larger than those in the reference period, the
unequally weighted means still have a slight improvement

in most cases. However, for the experiment of using bias-
corrected GCM outputs to simulate streamflows, as shown
by the similar patterns among weighting methods (Fig. 8d–
f), the unequally weighted multi-model means have similar
biases to those of using equal weighting at both reference
and future periods. In addition, the results of out-of-sample
testing over the Manicouagan-5 watershed are shown in the
Supplement (Fig. S7), and generally, they are also similar to
the results of using observations (Fig. 6).

5 Discussion

Model weighting is a necessary process in dealing with
multi-model ensembles in impact studies. No matter whether
bias correction is applied before driving the hydrological
model or not, a decision on the weighting methods is al-
ways necessary in order to obtain multi-model mean or un-
certainty evaluation. Besides the common equal weighting,
many studies have proposed unequal-weighting methods in
order to obtain a better quantification on climate change,
such as a more reliable multi-model ensemble mean or con-
strained uncertainty (e.g., Giorgi and Mearns, 2002; Sander-
son et al., 2017; Xu et al., 2010; Min et al., 2007; Murphy
et al., 2004). Most of these studies only use climate vari-
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ables to determine weights, which may cause two problems
for impact studies: uncertain trade-off between multiple vari-
ables and a nonlinear relationship between climate and im-
pact variables. Actually, the results of this study reflect these
problems. Some examples are the weights based on tempera-
ture in the experiment of raw GCM-simulated streamflows
in the Xiangjiang watershed (Fig. S3), which lead to ob-
viously biased multi-model mean hydrographs at the refer-
ence period. But using the weights calculated based on raw
GCM precipitation does not lead to such biases. This may
be because the runoff generation in the Xiangjiang water-
shed is dominated more by rainfall than temperature. In this
case, weights calculated using temperature may not reflect a
GCM’s reliability in terms of hydrological responses. On the
contrary, for the snow-dominated Manicouagan-5 watershed
(Fig. S3), the snowmelt-driven spring flood is an important
characteristic of its hydrological regime, and both temper-
ature and precipitation conditions have large influences on
this process. Thus, weights based on temperature and pre-
cipitation do not lead to obviously biased multi-model mean
hydrographs in this case. Furthermore, over both watersheds,
most weights based on raw GCM-simulated streamflows re-
duce more biases of the mean annual streamflow than those
based on raw temperature and precipitation (Figs. 5 and 6).
This is as expected because weights based on streamflows di-
rectly reflect how GCM simulations conform to the observed
streamflow and are not affected by the nonlinear relationship
between climate variables and impact variables. Generally, in
the experiment of using raw GCMs to simulate streamflows,
weights calculated based on streamflows not only circumvent
the above two problems but also bring about smaller biases
in mean annual streamflow for the multi-model means.

In addition, this study considered the differences in per-
formances of weighting methods when the bias-correction
method is applied or not. As shown in Figs. 3 and 4, bi-
ases in the simulated mean monthly streamflows are greatly
reduced for the reference period after bias correction. This
is also observed in other studies (e.g., Chen et al., 2017;
Hakala et al., 2018). This change in biases affects the abil-
ity of most unequal-weighting methods to discriminate the
performances of climate simulations. In this experiment, all
of the weighting methods assign similar weights to all sim-
ulations (as indicated by the decline of entropy of weights
calculated by each weighting method). This is because cli-
mate simulations become rather close to each other in the
reference period, and all weighting methods except REA
in this study only rely on reference performances. As for
the REA method, even though it considers future projec-
tions in its convergence criterion when calculating weights
and its weights are still the most differentiated for the bias-
corrected ensemble (as shown in Fig. 2), they have little im-
pact on the final results of the multi-model mean. In ad-
dition, the PI method considers independence among sim-
ulations, but it only relies on reference values which have
been tuned by the bias-correction method. The ability of in-

dependence criterion may be affected because of the bias
correction. In general, in this experiment, compared to the
equal-weighing method, unequal-weighting methods do not
bring about much disparateness to the results of hydrological
impacts. The out-of-sample testing also manifests the same
phenomena. Therefore, in hydrological impact studies, it is
likely that using equal weighting is viable and sufficient in
most cases when bias correction has been applied. Admit-
tedly, even though most of bias-correction methods can re-
duce the bias of climate model simulations in terms of a few
statistical metrics, no bias-correction methods are perfect for
removing all the biases. Besides this, hydrological simula-
tions reflect the overall performance of climate simulations,
and small biases in climate simulations (in terms of a few
metrics) may results in large biases in hydrological simula-
tions, especially taking nonlinear processes from climate to
hydrology worlds into account. Thus, if unequal-weighting
methods consider criteria that are different to the bias correc-
tion, they may have the potential to induce a better quantifica-
tion of hydrological impacts. This problem deserves further
study.

Despite the choices of variables used to calculate weights,
the establishment of any weighting method involves subjec-
tive choices of diagnostic metrics, its translation to perfor-
mance measurement, and normalization to weights (Knutti
et al., 2017; Santer et al., 2009). For example, in the RAC
method, the correlation coefficient and standard deviation are
used as diagnostic metrics, and GCM skills are measured
through the translation of a 4th-order formulation. The skill
scores are then divided by their sum to be normalized. Any of
these steps can ultimately affect the property of a weighting
method. For example, the REA, UREA, and CPI methods are
inclined to generate more differentiated weights, while other
methods assign more similar weights to ensemble members.
All of these aspects in weighting methods are often prede-
fined without detailed examination or are based on expert
experience and, thus, can actually introduce several layers of
subjective uncertainty. An improper weighting method may
even cause a risk of reducing projection accuracy (Weigel et
al., 2010), and extremely aggressive weighting may conceal
the uncertainty rather than reduce it (Chen et al., 2017). Thus,
notwithstanding the equal weighting not being a perfect solu-
tion, model weighting methods should be used with caution,
and the results of equal weighting should be presented along
with those of the unequal-weighting method.

Moreover, some risks may exist in the usage of weight-
ing methods in impact studies. Firstly, weights are generally
assigned to climate simulations in a static way (i.e., weights
in the future period are the same as those in the reference
period). This usage shares the same assumption with bias-
correction methods that the performances of GCM simula-
tions are stable and stationary. However, some studies have
shown that model skills are nonstationary in a changing cli-
mate (Weigel et al., 2010; Miao et al., 2016), and models with
better performance in the reference period do not necessar-
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ily provide more realistic signals of climate change (Reifen
and Toumi, 2009; Knutti et al., 2010). The way to deal with
the dynamic reliability of climate models in weighting meth-
ods deserves further study. Secondly, many researchers and
end users in hydrological impacts only consider one diag-
nostic metric to determine weights, such as the climatologi-
cal mean (e.g., Wilby and Harris, 2006; Chen et al., 2017).
It is not clear whether reducing the bias of one specific met-
ric can transfer to other metrics. The weights calculated us-
ing the raw GCM-simulated streamflows in the Xiangjiang
watershed are one negative example, where the bias in mean
annual streamflow is reduced while the bias in the mean peak
streamflow is enlarged. Some studies have also shown sim-
ilar problems (Jun et al., 2012; Santer et al., 2009). For ex-
ample, Jun et al. (2012) demonstrated that there is little rela-
tionship between a GCM’s ability to reproduce mean temper-
ature state and trend of temperature. Actually, a set of met-
rics can be introduced to determine weights (e.g., Sander-
son et al., 2017). Some studies suggested using calibrated
multiple metrics because it can improve the rationality of
weighted multi-model mean (Knutti et al., 2017; Lorenz et
al., 2018), while some argued that multiple metrics form an-
other level of uncertainty within weighting methods (Chris-
tensen et al., 2010). Thus, the best way to choose proper met-
rics and synthesize performances in multiple metrics still re-
mains in doubt and deserves further research.

There is a limitation in the hydrological modeling in this
study. Only large watersheds as well as a lumped hydrolog-
ical model were considered. When a lumped model is used,
the nonlinear relationship between the climate variables and
the impact variable (streamflow) may not be sufficiently re-
vealed. Spatial differences between different climate simula-
tions only affect the basin-averaged inputs to the hydrologi-
cal model but do not directly affect the process of runoff gen-
eration and streamflow routing (Lebel et al., 1987). Temporal
variations in climate simulations may be partially reduced
by the lumped hydrological model as well. With the help
of other more sophisticated hydrological models (such as
distributed models), the differences between climate-based
weights and streamflow-based weights may become more
obvious. For the experiment of raw GCM-simulated stream-
flows, the weights based on streamflow perform better than
those based on climate variables. This may be related to large
differences among climate simulations. But in the experi-
ment of streamflows simulated using bias-corrected GCM
outputs, the fact that not much discrepancy is seen in the
performances between unequal and equal weighting may be
partly because only a simple hydrological model is used. In
other words, the remaining differences among corrected cli-
mate simulations may not be presented well in streamflow
simulations when a lumped hydrological model is used in
such large watersheds.

In addition, the other limitation is that this study only con-
sidered two watersheds in humid regions. If weights are de-
termined on climate variables for watersheds in different cli-

mate regions, they may manifest different performances in
the hydrological impacts. For example, for arid watersheds,
whose hydrological regime is more characterized by the in-
tense flow and evaporation, a proper combination for the
weights based on temperature and precipitation may be nec-
essary in order to obtain a better quantification. For urban wa-
tersheds, storm water contributes to their runoff and weights
based on precipitation intensity may be more advantageous.
Nevertheless, based on the results of this study, using impact
variables to determine weights may help to circumvent the
problem of trade-off and choice of climate variables. How-
ever, specific advantages of weights based on impact vari-
ables and influences of bias correction on the performances
of weighting methods in other types of watersheds still de-
serve site-specific research.

6 Conclusion

In order to weight climate models based on the impact vari-
able and to quantify their influences on the impact assess-
ment, this study assigns weights to an ensemble of 29 CMIP5
GCMs over two watersheds through a group of weighting
methods based on GCM-simulated streamflow time series.
Streamflow series are simulated by separately inputting the
raw and bias-corrected GCM simulations to a hydrological
model. Using streamflows to determine weights is straight-
forward and can avoid the difficulty of combining weights
based on multiple climate variables. The influences of these
unequal weights on the assessment of hydrological impacts
were then investigated and compared to the common strategy
of model democracy.

This study concludes that for the streamflows simulated
using raw GCM outputs without bias correction, unequal
weights have some advantages over the equal-weighting
method in simulating observed mean hydrographs and reduc-
ing the biases of multi-model mean in mean annual stream-
flow. In particular, the weights calculated based on stream-
flows can reduce more biases of multi-model mean annual
streamflow and better reproduce observed hydrographs com-
pared with the weights calculated based on climate variables.
However, when using bias-corrected GCM outputs to simu-
late streamflow, GCM simulations are brought close to the
observations by the bias-correction method. Consequently,
the weights assigned to climate simulations become sim-
ilar to each other, resulting in similar multi-model means
and uncertainty of hydrological impacts for all unequal-
weighting methods. Therefore, the equal-weighting method
is still a conservative and viable option for combining the
bias-corrected multi-model ensembles, or, if an unequal-
weighting method is applied, it is better to present it to end
users with a detailed explanation of the weighting procedure
as well as the results of using the equal-weighting method.
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