Articles | Volume 23, issue 7
https://doi.org/10.5194/hess-23-3097-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-3097-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China
Zhongyi Liu
Center for Agricultural Water Research in China, China Agricultural
University, Beijing, 100083, China
Department of Biological and Environmental Engineering, Cornell
University, Ithaca, NY, USA
Xingwang Wang
Center for Agricultural Water Research in China, China Agricultural
University, Beijing, 100083, China
Zailin Huo
CORRESPONDING AUTHOR
Center for Agricultural Water Research in China, China Agricultural
University, Beijing, 100083, China
Department of Biological and Environmental Engineering, Cornell
University, Ithaca, NY, USA
Related authors
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020, https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Short summary
We have developed an integrated surrogate model for arid irrigated areas with shallow groundwater that links crop growth with soil water and salinity in the vadose zone. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model applies areas with shallow groundwater for which only very few surrogate models are available for most surface irrigation systems in the world without suffering from high groundwater.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Hang Chen, Zailin Huo, Lu Zhang, Jing Cui, Yingying Shen, and Zhenzhong Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-80, https://doi.org/10.5194/hess-2021-80, 2021
Manuscript not accepted for further review
Short summary
Short summary
With a parameter introduced, Fu's equation has been widely used to study the water allocation in natural catchments. For agricultural irrigation districts, the extra water sources including groundwater evaporation were considered as water availability to improve the applicability of Fu's equation in unsteady-state districts. Soil texture and vegetation cover have been considered to investigate the relationship between irrigation districts characteristics and Budyko parameter.
Ian White, Tingbao Xu, Jicai Zeng, Jian Yu, Xin Ma, Jinzhong Yang, Zailin Huo, and Hang Chen
Proc. IAHS, 383, 51–59, https://doi.org/10.5194/piahs-383-51-2020, https://doi.org/10.5194/piahs-383-51-2020, 2020
Short summary
Short summary
Balancing water allocations between upstream irrigated agriculture and downstream users and environments is a major challenge in China's Yellow River. Increasing temperatures in the Hetao Irrigation District indicate that solar radiation has decreased over the past 50 years but surprisingly actual evaporation has not changed. Expansion of the length of the irrigation growing season due to increasing temperatures could lead to higher demands for irrigation.
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020, https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Short summary
We have developed an integrated surrogate model for arid irrigated areas with shallow groundwater that links crop growth with soil water and salinity in the vadose zone. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model applies areas with shallow groundwater for which only very few surrogate models are available for most surface irrigation systems in the world without suffering from high groundwater.
Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu
Hydrol. Earth Syst. Sci., 24, 2399–2418, https://doi.org/10.5194/hess-24-2399-2020, https://doi.org/10.5194/hess-24-2399-2020, 2020
Short summary
Short summary
Due to increasing food demand and limited water resources, the quantification of the irrigation water productivity (IWP) is critical. Hydrological processes in irrigated areas differ in different watersheds owing to different irrigation–drainage activities, and this is more complex with shallow groundwater. Considering the complexity of the IWP, we developed a regional IWP model to simulate its spatial distribution; this informs irrigation managers on where they can improve IWP and save water.
Linh Hoang, Rajith Mukundan, Karen E. B. Moore, Emmet M. Owens, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 22, 5947–5965, https://doi.org/10.5194/hess-22-5947-2018, https://doi.org/10.5194/hess-22-5947-2018, 2018
Short summary
Short summary
The paper analyzes the effect of two input data (DEMs and the combination of soil and land use data) with different resolution and complexity on the uncertainty of model outputs (the predictions of streamflow and saturated areas) and parameter uncertainty using SWAT-HS. Results showed that DEM resolution has significant effect on the spatial pattern of saturated areas and using complex soil and land use data may not necessarily improve model performance or reduce model uncertainty.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016, https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Short summary
In tropical monsoonal Africa, sediment concentration data in rivers are lacking. Using occasional historically observed sediment loads, we developed a simple method for prediction sediment concentrations. Unlike previous methods, our techniques take into account that sediment concentrations decrease with the progression of the monsoon rains. With more testing, the developed method could improve sediment predictions in monsoonal climates.
Haimanote K. Bayabil, Tigist Y. Tebebu, Cathelijne R. Stoof, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 20, 875–885, https://doi.org/10.5194/hess-20-875-2016, https://doi.org/10.5194/hess-20-875-2016, 2016
F. A. Zimale, M. A. Mogus, M. L. Alemu, E. K. Ayana, S. S. Demissie, S. A. Tilahun, and T. S. Steenhuis
SOIL Discuss., https://doi.org/10.5194/soil-2015-84, https://doi.org/10.5194/soil-2015-84, 2016
Manuscript not accepted for further review
Short summary
Short summary
Sediment impact on tropical lakes is not well known, because of lack of data. In this study we extent the limited available data by first modeling the hydrology with saturation excess model. Then based on the flow prediction we predict sediment concentrations and loads. We found that yearly over 90% of the 16 million ton (lower bound) or more likely 37 million ton generated in the 12,000 square km Lake Tana watershed in Ethiopia is trapped on the flood plains and in lake.
A. W. Worqlul, A. S. Collick, S. A. Tilahun, S. Langan, T. H. M. Rientjes, and T. S. Steenhuis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-2081-2015, https://doi.org/10.5194/hessd-12-2081-2015, 2015
Revised manuscript not accepted
A. W. Worqlul, B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 18, 4871–4881, https://doi.org/10.5194/hess-18-4871-2014, https://doi.org/10.5194/hess-18-4871-2014, 2014
C. D. Guzman, S. A. Tilahun, A. D. Zegeye, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 17, 1067–1077, https://doi.org/10.5194/hess-17-1067-2013, https://doi.org/10.5194/hess-17-1067-2013, 2013
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
A comprehensive study of deep learning for soil moisture prediction
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Predicting soil hydraulic properties for binary mixtures – concept and application for constructed Technosols
Application of an improved distributed hydrological model based on the soil–gravel structure in the Niyang River basin, Qinghai–Tibet Plateau
Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters
Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes
Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria
Semi-continuum modeling of unsaturated porous media flow to explain Bauters' paradox
Effects of dynamic changes of desiccation cracks on preferential flow: experimental investigation and numerical modeling
Numerical assessment of morphological and hydraulic properties of moss, lichen and peat from a permafrost peatland
A robust upwind mixed hybrid finite element method for transport in variably saturated porous media
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
Gravity as a tool to improve the hydrologic mass budget in karstic areas
A scaling procedure for straightforward computation of sorptivity
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models
Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling
Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport
Investigating the impact of exit effects on solute transport in macroporous media
Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat
Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities
A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions
Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model
Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application
Efficient estimation of effective hydraulic properties of stratal undulating surface layer using time-lapse multi-channel GPR
Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties
Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models
Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: new HYDRUS package for MODFLOW
Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer
Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces
Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils
Water ages in the critical zone of long-term experimental sites in northern latitudes
Ecohydrological particle model based on representative domains
Impact of capillary rise and recirculation on simulated crop yields
Soil hydraulic material properties and layered architecture from time-lapse GPR
Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty
A pore-size classification for peat bogs derived from unsaturated hydraulic properties
Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater
Effect of unrepresented model errors on estimated soil hydraulic material properties
Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils
Ross scheme, Newton–Raphson iterative methods and time-stepping strategies for solving the mixed form of Richards' equation
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024, https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Short summary
Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change.
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024, https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Short summary
Contamination from fuel constituents poses a major threat to groundwater. However, studies devoted to identification of the driving parameters for fuel derivative transport in soils are scarce, and none have dealt with heterogeneous layered media. Here, we performed global sensitivity analysis (GSA) on a model of benzene transport to groundwater. The results identified the parameters controlling benzene transport in soils and showed that GSA is as an important tool for transport model analysis.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024, https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Short summary
LSTM temporal modeling suits soil moisture prediction; attention mechanisms enhance feature learning efficiently, as their feature selection capabilities are proven through Transformer and attention–LSTM hybrids. Adversarial training strategies help extract additional information from time series’ data. SHAP analysis and t-SNE visualization reveal differences in encoded features across models. This work serves as a reference for time series’ data processing in hydrology problems.
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023, https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary
Short summary
A generalized approach that requires limited field data and well-established models is tested for assessing groundwater recharge in the southern Lake Chad basin. E and T coefficients are estimated with the FAO-dual Kc concept at six locations. Measured soil water content and chloride concentrations along vertical soil profiles together with different scenarios for E and T partitioning and a Bayesian calibration approach are used to simulate water flow and chloride transport using Hydrus-1D.
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023, https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Short summary
This study proposes a model to predict soil hydraulic properties (SHPs) of constructed Technosols for urban greening. The SHPs are determined by the Technosol composition and describe their capacity to store and supply water to plants. The model predicts SHPs of any binary mixture based on the SHPs of its two pure components, facilitating simulations of flow and transport processes before production. This can help create Technosols designed for efficient urban greening and water management.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci., 27, 2681–2701, https://doi.org/10.5194/hess-27-2681-2023, https://doi.org/10.5194/hess-27-2681-2023, 2023
Short summary
Short summary
Considering the impact of the special geological and climatic conditions of the Qinghai–Tibet Plateau on the hydrological cycle, this study established the WEP-QTP hydrological model. The snow cover and gravel layers affected the temporal and spatial changes in frozen soil and improved the regulation of groundwater on the flow process. Ignoring he influence of special underlying surface conditions has a great impact on the hydrological forecast and water resource utilization in this area.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Marleen Schübl, Giuseppe Brunetti, Gabriele Fuchs, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 1431–1455, https://doi.org/10.5194/hess-27-1431-2023, https://doi.org/10.5194/hess-27-1431-2023, 2023
Short summary
Short summary
Estimating groundwater recharge through the unsaturated zone is a difficult task that is fundamentally associated with uncertainties. One of the few methods available is inverse modeling based on soil water measurements. Here, we used a nested sampling algorithm within a Bayesian probabilistic framework to assess model uncertainties at 14 sites in Austria. Further, we analyzed simulated recharge rates to identify factors influencing groundwater recharge rates and their temporal variability.
Jakub Kmec, Miloslav Šír, Tomáš Fürst, and Rostislav Vodák
Hydrol. Earth Syst. Sci., 27, 1279–1300, https://doi.org/10.5194/hess-27-1279-2023, https://doi.org/10.5194/hess-27-1279-2023, 2023
Short summary
Short summary
When rain falls on the ground, most of the water subsequently flows through the soil. The movement of water through the partially wet soil layer is surprisingly complicated. For decades, no mathematical model has been able to capture this process in its entire complexity. Here, we present a model that aims to solve this long-standing problem. In this paper, we show that the model correctly reproduces the transition between diffusion and preferential flow regimes.
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023, https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary
Short summary
This paper describes an experiment and modeling of the hydrological response of desiccation cracks under long-term wetting–drying cycles. We developed a new dynamic dual-permeability model to quantify the dynamic evolution of desiccation cracks and associated preferential flow and moisture distribution. Compared to other models, the dynamic dual-permeability model could describe the experimental data much better, but it also provided an improved description of the underlying physics.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 25, 5083–5104, https://doi.org/10.5194/hess-25-5083-2021, https://doi.org/10.5194/hess-25-5083-2021, 2021
Short summary
Short summary
Soil sorptivity is a crucial parameter for the modeling of water infiltration into soils. The standard equation used to compute sorptivity from the soil water retention curve, the unsaturated hydraulic conductivity, and initial and final water contents may lead to erroneous estimates due to its complexity. This study proposes a new straightforward scaling procedure for estimations of sorptivity for four famous and commonly used hydraulic models.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021, https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Jérôme Raimbault, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Thomas Bigot, Jaime Gil Roca, Béatrice Béchet, and Laurent Lassabatère
Hydrol. Earth Syst. Sci., 25, 671–683, https://doi.org/10.5194/hess-25-671-2021, https://doi.org/10.5194/hess-25-671-2021, 2021
Short summary
Short summary
Contaminant transport in soils is known to be affected by soil heterogeneities such as macropores. The transport properties of heterogeneous porous media can be studied in laboratory columns. However, the results reported in this study (a combination of breakthrough experiments, magnetic resonance imaging and computer simulations of transport) show that these properties can be largely affected by the boundary devices of the columns, thus highlighting the need to take their effect into account.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020, https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Short summary
We have developed an integrated surrogate model for arid irrigated areas with shallow groundwater that links crop growth with soil water and salinity in the vadose zone. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model applies areas with shallow groundwater for which only very few surrogate models are available for most surface irrigation systems in the world without suffering from high groundwater.
M. Shahabul Alam, S. Lee Barbour, and Mingbin Huang
Hydrol. Earth Syst. Sci., 24, 735–759, https://doi.org/10.5194/hess-24-735-2020, https://doi.org/10.5194/hess-24-735-2020, 2020
Short summary
Short summary
This study quantifies uncertainties in the prediction of long-term water balance for mine reclamation soil covers using random sampling of model parameter distributions. Parameter distributions were obtained from model optimization for field monitoring data. Variability in climate is a greater source of uncertainty than the model parameters in evaporation predictions, while climate variability and model parameters exert similar uncertainty on predictions of net percolation.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 3653–3663, https://doi.org/10.5194/hess-23-3653-2019, https://doi.org/10.5194/hess-23-3653-2019, 2019
Short summary
Short summary
This study suggests an efficient approach to obtain plot-scale soil hydraulic properties for the shallow structural soils via non-invasive ground-penetrating radar measurements. Facilitated by spatial information of lateral water flow, this approach is more efficient than the widely used inversion approaches relying on intensive soil moisture monitoring. The acquisition of such quantitative information is of great interest to fields such as hydrology and precision agriculture.
John C. Hammond, Adrian A. Harpold, Sydney Weiss, and Stephanie K. Kampf
Hydrol. Earth Syst. Sci., 23, 3553–3570, https://doi.org/10.5194/hess-23-3553-2019, https://doi.org/10.5194/hess-23-3553-2019, 2019
Short summary
Short summary
Streamflow in high-elevation and high-latitude areas may be vulnerable to snow loss, making it important to quantify how snowmelt and rainfall are divided between soil storage, drainage below plant roots, evapotranspiration and runoff. We examine this separation in different climates and soils using a physically based model. Results show runoff may be reduced with snowpack decline in all climates. The mechanisms responsible help explain recent observations of streamflow sensitivity to snow loss.
Mohammad Bizhanimanzar, Robert Leconte, and Mathieu Nuth
Hydrol. Earth Syst. Sci., 23, 2245–2260, https://doi.org/10.5194/hess-23-2245-2019, https://doi.org/10.5194/hess-23-2245-2019, 2019
Short summary
Short summary
Modelling of shallow water table fluctuations is usually carried out using physically based numerical models. These models have notable limitations regarding intensive required data and computational burden. This paper presents an alternative modelling approach for modelling of such cases by introducing modifications to the calculation of groundwater recharge and saturated flow of a conceptual hydrologic model.
Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 23, 637–655, https://doi.org/10.5194/hess-23-637-2019, https://doi.org/10.5194/hess-23-637-2019, 2019
Short summary
Short summary
Accurately capturing the soil-water–groundwater interaction is vital for all disciplines related to subsurface flow but is difficult when undergoing significant nonlinearity in the modeling system. A new soil-water flow package is developed to solve the switching-form Richards’ equation. A multi-scale water balance analysis joins unsaturated–saturated models at separated scales. The whole system is solved efficiently with an iterative feedback coupling scheme.
Noam Zach Dvory, Yakov Livshitz, Michael Kuznetsov, Eilon Adar, Guy Gasser, Irena Pankratov, Ovadia Lev, and Alexander Yakirevich
Hydrol. Earth Syst. Sci., 22, 6371–6381, https://doi.org/10.5194/hess-22-6371-2018, https://doi.org/10.5194/hess-22-6371-2018, 2018
Short summary
Short summary
This research is paramount given the significance of karst aquifers as essential drinking water sources. While CBZ is considered conservative, CAF is subject to sorption and degradation, and therefore each of these two pollutants can be considered effective tracers for specific assessment of aquifer contamination. The model presented in this paper shows how each of the mentioned contaminants could serve as a better tool for aquifer contamination characterization and its treatment.
Chen-Chao Chang and Dong-Hui Cheng
Hydrol. Earth Syst. Sci., 22, 4621–4632, https://doi.org/10.5194/hess-22-4621-2018, https://doi.org/10.5194/hess-22-4621-2018, 2018
Short summary
Short summary
The soil water retention curve (SWRC) is fundamental to researching water flow and chemical transport in unsaturated media. However, the traditional prediction models underestimate the water content in the dry range of the SWRC. A method was therefore proposed to improve the estimation of the SWRC using a pore model containing slit-shaped spaces. The results show that the predicted SWRCs using the improved method reasonably approximated the measured SWRCs.
Carlos García-Gutiérrez, Yakov Pachepsky, and Miguel Ángel Martín
Hydrol. Earth Syst. Sci., 22, 3923–3932, https://doi.org/10.5194/hess-22-3923-2018, https://doi.org/10.5194/hess-22-3923-2018, 2018
Short summary
Short summary
Saturated hydraulic conductivity (Ksat) is an important soil parameter that highly depends on soil's particle size distribution (PSD). The nature of this dependency is explored in this work in two ways, (1) by using the information entropy as a heterogeneity parameter of the PSD and (2) by using descriptions of PSD in forms of textural triplets, different than the usual description in terms of the triplet of sand, silt, and clay contents.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Joop Kroes, Iwan Supit, Jos van Dam, Paul van Walsum, and Martin Mulder
Hydrol. Earth Syst. Sci., 22, 2937–2952, https://doi.org/10.5194/hess-22-2937-2018, https://doi.org/10.5194/hess-22-2937-2018, 2018
Short summary
Short summary
Impact of upward flow by capillary rise and recirculation on crop yields is often neglected or underestimated. Case studies and model experiments are used to illustrate the impact of this upward flow in the Dutch delta. Neglecting upward flow results in yield reductions for grassland, maize and potatoes. Half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions; the other half from increased upward capillary rise.
Stefan Jaumann and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 2551–2573, https://doi.org/10.5194/hess-22-2551-2018, https://doi.org/10.5194/hess-22-2551-2018, 2018
Short summary
Short summary
Ground-penetrating radar (GPR) is a noninvasive and nondestructive measurement method to monitor the hydraulic processes precisely and efficiently. We analyze synthetic as well as measured data from the ASSESS test site and show that the analysis yields accurate estimates for the soil hydraulic material properties as well as for the subsurface architecture by comparing the results to references derived from time domain reflectometry (TDR) and subsurface architecture ground truth data.
Gaochao Cai, Jan Vanderborght, Matthias Langensiepen, Andrea Schnepf, Hubert Hüging, and Harry Vereecken
Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, https://doi.org/10.5194/hess-22-2449-2018, 2018
Short summary
Short summary
Different crop growths had consequences for the parameterization of root water uptake models. The root hydraulic parameters of the Couvreur model but not the water stress parameters of the Feddes–Jarvis model could be constrained by the field data measured from rhizotron facilities. The simulated differences in transpiration from the two soils and the different water treatments could be confirmed by sap flow measurements. The Couvreur model predicted the ratios of transpiration fluxes better.
Coleen D. U. Carranza, Martine J. van der Ploeg, and Paul J. J. F. Torfs
Hydrol. Earth Syst. Sci., 22, 2255–2267, https://doi.org/10.5194/hess-22-2255-2018, https://doi.org/10.5194/hess-22-2255-2018, 2018
Short summary
Short summary
Remote sensing has been popular for mapping surface soil moisture. However, estimating subsurface values using surface soil moisture remains a challenge, as decoupling can occur. Depth-integrated soil moisture values used in hydrological models are affected by vertical variability. Using statistical methods, we investigate vertical variability between the surface (5 cm) and subsurface (40 cm) to quantify decoupling. We also discuss potential controls for decoupling during wet and dry conditions.
Rafael Muñoz-Carpena, Claire Lauvernet, and Nadia Carluer
Hydrol. Earth Syst. Sci., 22, 53–70, https://doi.org/10.5194/hess-22-53-2018, https://doi.org/10.5194/hess-22-53-2018, 2018
Short summary
Short summary
Seasonal shallow water tables (WTs) in lowlands limit vegetation-buffer efficiency to control runoff pollution. Mechanistic models are needed to quantify true field efficiency. A new simplified algorithm for soil infiltration over WTs is tested against reference models and lab data showing WT effects depend on local settings but are negligible after 2 m depth. The algorithm is coupled to a complete vegetation buffer model in a companion paper to analyze pesticide and sediment control in situ.
Claire Lauvernet and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 22, 71–87, https://doi.org/10.5194/hess-22-71-2018, https://doi.org/10.5194/hess-22-71-2018, 2018
Short summary
Short summary
Vegetation buffers, often placed in lowlands to control runoff pollution, can exhibit limited efficiency due to seasonal shallow water tables (WTs). A new shallow water table infiltration algorithm developed in a companion paper is coupled to a complete vegetation buffer model to quantify pesticide and sediment control in the field. We evaluated the model on two field experiments in France with and without WT conditions and show WTs can control efficiency depending on land and climate settings.
Tobias Karl David Weber, Sascha Christian Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 21, 6185–6200, https://doi.org/10.5194/hess-21-6185-2017, https://doi.org/10.5194/hess-21-6185-2017, 2017
Yonatan Ganot, Ran Holtzman, Noam Weisbrod, Ido Nitzan, Yoram Katz, and Daniel Kurtzman
Hydrol. Earth Syst. Sci., 21, 4479–4493, https://doi.org/10.5194/hess-21-4479-2017, https://doi.org/10.5194/hess-21-4479-2017, 2017
Short summary
Short summary
We monitor infiltration at multiple scales during managed aquifer recharge with desalinated seawater in an infiltration pond, while groundwater recharge is evaluated by simplified and numerical models. We found that pond-surface clogging is negated by the high-quality desalinated seawater or negligible compared to the low-permeability layers of the unsaturated zone. We show that a numerical model with a 1-D representative sediment profile is able to capture infiltration and recharge dynamics.
Stefan Jaumann and Kurt Roth
Hydrol. Earth Syst. Sci., 21, 4301–4322, https://doi.org/10.5194/hess-21-4301-2017, https://doi.org/10.5194/hess-21-4301-2017, 2017
Short summary
Short summary
We investigate the quantitative effect of neglected sensor position, small-scale heterogeneity, and lateral flow on soil hydraulic material properties. Thus, we analyze a fluctuating water table experiment in a 2-D architecture (ASSESS) with increasingly complex studies based on time domain reflectometry and hydraulic potential data. We found that 1-D studies may yield biased parameters and that estimating sensor positions as well as small-scale heterogeneity improves the model significantly.
Joseph Alexander Paul Pollacco, Trevor Webb, Stephen McNeill, Wei Hu, Sam Carrick, Allan Hewitt, and Linda Lilburne
Hydrol. Earth Syst. Sci., 21, 2725–2737, https://doi.org/10.5194/hess-21-2725-2017, https://doi.org/10.5194/hess-21-2725-2017, 2017
Short summary
Short summary
Descriptions of soil hydraulic properties, such as soil moisture release curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, we developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). We further adaptations to this model to adapt it to dual-porosity structural soils.
Fadji Hassane Maina and Philippe Ackerer
Hydrol. Earth Syst. Sci., 21, 2667–2683, https://doi.org/10.5194/hess-21-2667-2017, https://doi.org/10.5194/hess-21-2667-2017, 2017
Short summary
Short summary
In many fields like climate change, hydrology and agronomy, water movement in unsaturated soils is usually simulated using the Richards equation. However, this equation requires lot of computational effort to be solved due to its highly nonlinear behavior, which hampers its use in simulations. In this paper, we analyze and developed some numerical strategies and we evaluate their reliability and efficiency.
Cited articles
Abrahart, R. J. and See, L.: Comparing neural network and autoregressive
moving average techniques for the provision of continuous river flow
forecasts in two contrasting catchments, Hydrol. Process., 14, 2157–2172,
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S, 2000.
Alcamo, J., Florke, M., and Marker, M.: Future long-term changes in global
water resources driven by socio-economic and climatic changes, Hydrol. Sci. J., 52, 247–275, https://doi.org/10.1623/hysj.52.2.247, 2007.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration. Guidelines for computing crop water requirements-FAO
Irrigation and Drainage Paper 56, FAO, Rome, 1998.
Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A review of
surrogate models and their application to groundwater modeling, Water Resour.
Res., 51, 5957–5973, https://doi.org/10.1002/2015WR016967, 2015.
Bahmani, O. and Bayram, M.: Investigating the hydraulic conductivity and
soil characteristics under compaction and soil texture and performances as
landfill liner, Arab. J. Geosci., 11, 453, https://doi.org/10.1007/s12517-018-3817-7, 2018.
Batalha, M. S., Barbosa, M. C., Faybishenko, B., van Genuchten, M. T.: Effect
of temporal averaging of meteorological data on predictions of groundwater
recharge, J. Hydrol. Hydromech., 66, 143–152, https://doi.org/10.1515/johh-2017-0051, 2018.
Bauters, T. W. J., Steenhuis, T. S., Dicarlo, D. A., Nieber, J. L., Dekker, L. W.,
Ritsema, C. J., Parlange, J. Y., and Haverkamp, R.: Physics of water repellent
soils, J. Hydrol., 231, 233–243, 2000.
Brooks, E. S., Boll, J., and McDaniel, P. A.: Distributed and integrated response
of a geographic information system-based hydrologic model in the eastern
Palouse region, Hydrol. Process., 21, 110–122, https://doi.org/10.1002/hyp.6230, 2007.
Bowden, G. J., Maier, H. R., and Dandy, G. C.: Optimal division of data for
neural network models in water resources applications, Water Resour. Res., 38, 1010, https://doi.org/10.1029/2001WR000266, 2002.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media,
Hydrology Paper 3, Colorado State University, Fort Collins, Colorado, 37 pp.,
1964.
Brown, A. and Matlock, M. D.: A review of water scarcity indices and
methodologies. White paper 106, University of Arkansas. The Sustainability
Consortium, 26 pp., 2011.
Chen, C., Wang, E., and Yu, Q.: Modelling the effects of climate variability
and water management on crop water productivity and water balance in the
North China Plain, Agr. Water Manage., 97, 1175–1184, https://doi.org/10.1016/j.agwat.2008.11.012, 2010.
Chen, L., Feng, Q., Li, F., and Li, C.: A bidirectional model for simulating
soil water flow and salt transport under mulched drip irrigation with saline
water, Agr. Water Manage., 146, 24–33, https://doi.org/10.1016/j.agwat.2014.07.021, 2014.
Cui, T., Peeters, L., Pagendam, D., Pickett, T., Jin, H., Crosbie, R.,
Raiber, M., Rassam, D., and Gilfedder, M.: Emulator-enabled approximate
Bayesian computation (ABC) and uncertainty analysis for computationally
expensive groundwater models, J. Hydrol., 564, 191–207, https://doi.org/10.1016/j.jhydrol.2018.07.005, 2018.
Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y., and Wilby, R. L.: Flood
estimation at ungauged sites using artificial neural networks, J. Hydrol., 319, 391–409, https://doi.org/10.1016/j.jhydrol.2005.07.032, 2006.
DeJonge, K., Ascough, J., Andales, A., Hansen, N., Garcia, L., and Arabi, M.:
Improving evapotranspiration simulations in the CERES-Maize model under
limited irrigation, Agr. Water Manage., 115, 92–103, https://doi.org/10.1016/j.agwat.2012.08.013, 2012.
Falkenmark, M.: The Massive Water Scarcity Now Threatening Africa: Why Isn't
It Being Addressed?, Ambio, 18, 112–118, 1989.
Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., and
Bodvarsson, G. S.: Estimating recharge at Yucca Mountain, Nevada, USA,
comparison of methods, Hydrogeol. J., 10, 180–204, https://doi.org/10.1007/s10040-001-0169-1, 2002.
Gao, X., Huo, Z., Qu, Z., Xu, X., Huang, G., and Steenhuis, T. S.: Modeling
contribution of shallow groundwater to evapotranspiration and yield of maize
in an arid area, Sci. Rep.-UK, 7, 43122, https://doi.org/10.1038/srep43122, 2017a.
Gao, X., Huo, Z., Bai, Y., Feng, S., Huang, G., Shi, H., and Qu, Z.: Soil
salt and groundwater change in flood irrigation field and uncultivated land:
a case study based on 4-year field observations, Environ. Earth Sci.,
73, 2127–2139, https://doi.org/10.1007/s12665-014-3563-4, 2015.
Gao, X., Bai, Y., Huo, Z., Xu, X., Huang, G., Xia, Y., and Steenhuis, T. S.:
Deficit irrigation enhances contribution of shallow groundwater to crop
water consumption in arid area, Agr. Water Manage., 185, 116–125, https://doi.org/10.1016/j.agwat.2017.02.012, 2017b.
Gardner, W.: Some study-state solutions of the unsaturated moisture flow
equation with application to evaporation from a water table, Soil Sci.,
85, 228–232, 1958.
Gardner, W., Hillel, D., and Benyamini, Y.: Post-Irrigation Movement Soil
Water 1, Redistribution, Water Resour. Res., 6, 851–860, https://doi.org/10.1029/WR006i003p00851, 1970a.
Gardner, W., Hillel, D., and Benyamini, Y.: Post-Irrigation Movement of Soil
Water 2, Simultaneous Redistribution and Evaporation, Water Resour. Res.,
6, 1148–1153, https://doi.org/10.1029/WR006i004p01148, 1970b.
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B.:
The global volume and distribution of modern groundwater, Nat. Geosci.,
9, 161–167, https://doi.org/10.1038/NGEO2590 2016.
Guo, S., Ruan, B., Chen, H., Guan, X., Wang, S., Xu, N., and Li, Y.:
Characterizing the spatiotemporal evolution of soil salinization in Hetao
Irrigation District (China) using a remote sensing approach, Int. J. Remote Sens., 39, 6805–6825, https://doi.org/10.1080/01431161.2018.1466076, 2018.
Guo, Y. and Shen, Y.: Agricultural water supply/demand changes under
projected future climate change in the arid region of northwestern China, J.
Hydrol., 540, 257–273, https://doi.org/10.1016/j.jhydrol.2016.06.033 2016.
Gupta, S. and Larson, W.: Estimating Soil Water Retention Characteristics
From Particle Size Distribution, Organic Matter Percent and Bulk Density,
Water Resour. Res., 15, 1633–1635, https://doi.org/10.1029/WR015i006p01633, 1979.
Haverkamp, R. and Parlange, J.: Predicting the Water-Retention Curve from
Particle-Size Distribution: 1. Sandy Soils Without Organic Matter1, Soil
Sci., 142, 325–339, https://doi.org/10.1097/00010694-198612000-00001, 1986.
Hinrichsen, D. and Henrylito, D. T.: The Coming Freshwater Crisis is Already
Here, Finding the Source: The Linkages Between Population and Water,
Environmental Change and Security Program, Washington, DC, 26 pp., 2002.
Hoang, L., Schneiderman, E. M., Moore, K. E. B., Mukundan, R., Owens, E. M., and
Steenhuis, T. S.: Predicting saturation-excess runoff distribution with a
lumped hillslope model: SWAT-HS, Hydrol. Process., 31, 2226–2243, https://doi.org/10.1002/hyp.11179, 2017.
Hodnett, M. and Bell, J.: Soil moisture investigations of groundwater
recharge through black cotton soils in Madhya Pradesh, India, Hydrolog. Sci. J., 31, 361–381, https://doi.org/10.1080/02626668609491054, 1986.
Huang, Q., Xu, X., Lu, L., Ren, D., Ke, J., Xiong, Y., Huo, Z., and Huang, G.:
Soil salinity distribution based on remote sensing and its effect on crop
growth in Hetao Irrigation District, Transactions of the Chinese Society of
Agricultural Engineering, 34, 102–109, 2018.
Jakeman, A. J., Letcher, R. A., and Norton, J. P.: Ten iterative steps in
development and evaluation of environmental models, Environ Modell Softw., 21, 602–614, https://doi.org/10.1016/j.envsoft.2006.01.004, 2006.
Jasechko, S. and Taylor, R. G.: Intensive rainfall recharges tropical
groundwaters, Environ. Res. Lett., 10, 124015, https://doi.org/10.1088/1748-9326/10/12/124015, 2015.
Jia, H., Wang, J., Cao, C., Pan, D., and Shi, P.: Maize drought disaster risk
assessment of China based on EPIC model, Int. J. Dig. Earth., 5, 488–515, https://doi.org/10.1080/17538947.2011.590535, 2012.
Kahlown, M., Ashraf, M., and Zia-Ul-Haq.: Effect of shallow groundwater
table on crop water requirements and crop yields, Agr. Water Manage.,
76, 24–35, https://doi.org/10.1016/j.agwat.2005.01.005, 2005.
Katerji, N., van Hoorn, J. W., Hamdy, A., and Mastrorilli, M.: Salinity
effect on crop development and yield, analysis of salt tolerance according
to several classification methods, Agr. Water Manage., 62, 37–66, https://doi.org/10.1016/S0378-3774(03)00005-2, 2003.
Kendy, E., Gérard-Marchant, P., Walter, M. T., Zhang, Y., Liu, C., and
Steenhuis, T. S.: A soil-water-balance approach to quantify groundwater
recharge from irrigated cropland in the North China Plain, Hydrol. Process.,
17, 2011–2031, https://doi.org/10.1002/hyp.1240, 2003.
Kirchner, J. W.: Getting the right answers for the right reasons:
Linkingmeasurements, analyses, and models to advance the science of
hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci., 5, 89–97,
https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S.,
and Provost, A. M.: Documentation for the MODFLOW 6 Groundwater Flow Model:
U.S. Geological Survey Techniques and Methods, book 6, chap. A55, p. 197,
https://doi.org/10.3133/tm6A55, 2017.
Li, C., Yang, Z., and Wang, X.: Trends of Annual Natural Runoff in the
Yellow River Basin. Water Int., 29, 447–454, https://doi.org/10.1080/02508060408691807, 2004.
Li, X., Zhao, Y., Xiao, W., Yang, M., Shen, Y., and Min, L.: Soil moisture
dynamics and implications for irrigation of farmland with a deep groundwater
table, Agr. Water Manage., 192, 138–148, https://doi.org/10.1016/j.agwat.2017.07.003, 2017.
Liu, Z., Chen, H., Huo, Z., Wang, F., and Shock, C. C.: Analysis of the
contribution of groundwater to evapotranspiration in an arid irrigation
district with shallow water table, Agr. Water Manage., 171, 131–141, https://doi.org/10.1016/j.agwat.2016.04.002, 2016.
Luan, X., Wu, P., Sun, S., Wang, Y., and Gao, X.: Quantitative study of the
crop production water footprint using the SWAT model, Ecol. Indic., 89, 1–10, https://doi.org/10.1016/j.ecolind.2018.01.046, 2018.
Luo, Y. and Sophocleous, M.: Seasonal groundwater contribution to
crop-water use assessed with lysimeter observations and model simulations,
J. Hydrol, 389, 325–335, https://doi.org/10.1016/j.jhydrol.2010.06.011,
2010.
Ma, Y., Feng, S., and Song, X.: A root zone model for estimating soil water
balance and crop yield responsesto deficit irrigation in the North China
Plain, Agr. Water Manage., 127, 13–24, https://doi.org/10.1016/j.agwat.2013.05.011, 2013.
Matott, L. S. and Rabideau, A. J.: Calibration of complex subsurface reaction
models using a surrogate-model approach, Adv. Water Resour., 31, 1697–1707, 2008.
Mccuen, R., Rawls, W., and Brakensiek, D.: Statistical Analysis of the
Brooks-Corey and the Green-Ampt Parameters, Water Resour. Res.,
17, 1005–1013, https://doi.org/10.1029/WR017i004p01005, 1981.
Mcdonald, M. and Harbaugh, A.: The history of MODFLOW, Groundwater,
41, 280–283, https://doi.org/10.1111/j.1745-6584.2003.tb02591.x, 2003.
Moges, M., Schmitter, P., Tilahun, S., Langan, S., Dagnew, D., Akale, A., and
Steenhuis, T. S.: Suitability of Watershed Models to Predict Distributed
Hydrologic Response in the Awramba Watershed in Lake Tana Basin, Land Degrad.
Dev., 10, 1386–1397, https://doi.org/10.1002/ldr.2608, 2017.
Moiwo, J. P., Lu, W., Zhao, Y., Yang, Y., and Yang, Y.: Impact of land use on
distributed hydrological processes in the semi-arid wetland ecosystem of
Western Jilin, Hydrol. Process., 24, 492–503, https://doi.org/10.1002/hyp.7503, 2010.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., and Harmel, R. D.:
Model evaluation guidelines for systematic quantification of accuracy in
watershed simulations, T. ASABE., 50, 885–900, 2007.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – a discussion of principles, J. Hydrol., 10, 282–290, 1970.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water
Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in
water resources, Water Resour. Res., 48, W07401, https://doi.org/10.1029/2011WR011527,
2012a.
Razavi, S., Tolson, B. A., and Burn, D. H.: Numerical assessment of
metamodelling strategies in computationally intensive optimization, Environ.
Modell. Softw., 34, 67–86, https://doi.org/10.1016/j.envsoft.2011.09.010,
2012b.
Ren, D., Xu, X., Hao, Y., and Huang, G.: Modeling and assessing field
irrigation water use in a canal system of Hetao, upper Yellow River basin:
Application to maize, sunflower and watermelon, J. Hydrol., 532, 122–139, https://doi.org/10.1016/j.jhydrol.2015.11.040, 2016.
Ren, D., Xu, X., Engel, B., and Huang, G.: Growth responses of crops and
natural vegetation to irrigation and water table changes in an
agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on
maize, sunflower, watermelon and tamarisk, Agr. Water Manage., 199, 93–104,
https://doi.org/10.1016/j.agwat.2017.12.021, 2018.
Ren, D., Xu, X., Engel, B., Huang, Q., Xiong, Y., Huo Z., and Huang, G.:
Hydrological complexities in irrigated agro-ecosystems with fragmented land
cover types and shallow groundwater: Insights from a distributed
hydrological modeling method, Agr. Water Manage., 213, 868–881, https://doi.org/10.1016/j.agwat.2018.12.011, 2019.
Renewable internal freshwater resources per capita (cubic meters), available at: https://data.worldbank.org/indicator/ER.H2O.INTR.PC, last access: 2019.
Ritter, A., and Muñoz-Carpena, R.: Performance evaluation of
hydrological models: Statistical significance for reducing subjectivity in
goodness-of-fit assessments, J. Hydrol., 480, 33–45, https://doi.org/10.1016/j.jhydrol.2012.12.004, 2013.
Rodriguez-Iturbe, I.: Ecohydrology: A hydrologic perspective of
climate-soil-vegetation dynamics, Water Resour. Res., 36, 3–9, https://doi.org/10.1029/1999WR900210, 2000.
Rosa, R. D., Paredes, P., Rodrigues, G. C., Alves, I., Fernando, R. M., Pereira,
L. S., and Allen, R. G.: Implementing the dual crop coefficient approach in
interactive software, 1. Background and computational strategy, Agr. Water
Manage., 103, 8–24, https://doi.org/10.1016/j.agwat.2011.10.013, 2012.
Saleh, A., Steenhuis, T. S., and Walter, M.: Groundwater table simulation
under different rice irrigation practices, J. Irrig. Drain. Eng., 115, 530–544, https://doi.org/10.1061/(ASCE)0733-9437(1989)115:4(530), 1989.
Sau, F., Boote, K., Bostick, W., Jones, J., and Minguez, M.: Testing and
improving evapotranspiration and soil water balance of the DSSAT crop
models, Agron. J., 96, 1243–1257, https://doi.org/10.2134/agronj2004.1243,
2004.
Šimůnek, J., Šejna, M., and van Genuchten, M. T.: The HYDRUS-1D
software package for simulating the one-dimensional movement of water, heat,
and multiple solutes in variably-saturated media. Version 2.0, IGWMC-TPS-70,
Int. Groundwater Modeling Ctr., Colorado Schoolof Mines, Golden, 1998.
Singh, L. K., Jha, M. K., and Pandey, M.: Framework for Standardizing Less
Data-Intensive Methods of Reference Evapotranspiration Estimation, Water
Resour. Manag., 32, 4159–4175, https://doi.org/10.1007/s11269-018-2022-5,
2018.
Sun, S., Wu, P., Wang, Y., Zhao, X., Liu, J., and Zhang, X.: The impacts of
interannual climate variability and agricultural inputs on water footprint
of crop production in an irrigation district of China, Sci. Total Environ.,
444, 498–507, https://doi.org/10.1016/j.scitotenv.2012.12.016, 2013.
Talebizadeh, M., Moriasi, D., Gowda, P., Steiner, J. L., Tadesse, H. K.,
Nelson, A. M., and Starks, P.: Simultaneous calibration of evapotranspiration
and crop yield in agronomic system modeling using the APEX model, Agr. Water
Manage., 208, 299–306, https://doi.org/10.1016/j.agwat.2018.06.043, 2018.
Todini, E.: Hydrological catchment modelling: past, present and future, Hydrol. Earth Syst. Sci., 11, 468–482, https://doi.org/10.5194/hess-11-468-2007, 2007.
van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., van Walsum, P. E. V., Groenendijk, P., van Diepen, C. A.: Theory of SWAP version 2.0, Simulation of
water flow, solute transport and plant growth in the
soil-water-atmosphere-plant environment, Report 71, Deparment Water
Resources, Wageningen Agricultural University, Technical document 45, DLO
Winand Staring Centre, Wageningen, 152 pp., 1997.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Venkatesh, B., Lakshman, N., Purandara, B. K., and Reddy, V. B.: Analysis of
observed soil moisture patterns under different land covers in Western
Ghats, India, J. Hydrol, 397, 281–294, https://doi.org/10.1016/j.jhydrol.2010.12.006, 2011.
Wang, E. and Smith, C. J.: Modelling the growth and water uptake function of
plant root systems: a review, Aust. J. Agr. Res., 55, 501, https://doi.org/10.1071/AR03201, 2004.
Wang, H., Zhang, L., Dawes, W. R., and Liu, C.: Improving water use
efficiency of irrigated crops in the North China Plain – measurements and
modelling, Agr. Water Manage., 48, 151–167, https://doi.org/10.1016/S0378-3774(00)00118-9, 2001.
Wang, X., Huo, Z., Guan, H., Guo, P., and Qu, Z.: Drip irrigation enhances
shallow groundwater contribution to crop water consumption in an arid area,
Hydrol. Process., 32, 747–758, https://doi.org/10.1002/hyp.11451, 2018.
Williams, J., Prebble, R., Williams, W., and Hignett, C.: The influence of
texture, structure and clay mineralogy on the soil moisture characteristic,
Aust. J. Soil Res., 21, 15–32, https://doi.org/10.1071/SR9830015, 1983.
Williams, J., Jones, C., Kiniry, J., and Spanel, D.: The EPIC Crop Growth
Model, T. ASAE, 32, 479–511, 1989.
Xu, X., Huang, G., Qu, Z., and Pereira, L. S.: Assessing the groundwater
dynamics and impacts of water saving in the Hetao Irrigation District,
Yellow River basin, Agr. Water Manage., 98, 301–313, https://doi.org/10.1016/j.agwat.2010.08.025, 2010.
Xu, X., Huang, G., Zhan, H., Qu, Z., and Huang, Q.: Integration of SWAP and
MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas,
J. Hydrol., 412, 170–181, https://doi.org/10.1016/j.jhydrol.2011.07.002, 2012.
Xu, X., Sun, C., Qu, Z., Huang, Q., Ramos, T. B., and Huang, G.: Groundwater
Recharge and Capillary Rise in Irrigated Areas of the Upper Yellow River
Basin Assessed by an Agro-Hydrological Model, Irrig. Drain., 64, 587–599,
https://doi.org/10.1002/ird.1928, 2015.
Xue, J., Huo, Z., Wang, F., Kang, S., and Huang, G.: Untangling the effects
of shallow groundwater and deficit irrigation on irrigation water
productivity in arid region: New conceptual model, Sci. Total Environ.,
619-620, https://doi.org/10.1016/j.scitotenv.2017.11.145, 2018.
Xue, J. and Ren, L.: Assessing water productivity in the Hetao Irrigation
District in Inner Mongolia by an agro-hydrological model, Irrigation Sci.,
35, 357–382, https://doi.org/10.1007/s00271-017-0542-z, 2017.
Yang, X., Chen, Y., Pacenka, S., Gao, W., Ma, L., Wang, G., Yan, P., Sui,
P., and Steenhuis, T. S.: Effect of diversified crop rotations on groundwater
levels and crop water productivity in the North China Plain, J. Hydrol.,
522, 428–438, https://doi.org/10.1016/j.jhydrol.2015.01.010, 2015a.
Yang, X., Chen, Y., Pacenka, S., Gao, W., Zhang, M., Sui, P., and Steenhuis,
T. S.: Recharge and Groundwater Use in the North China Plain for Six
Irrigated Crops for an Eleven Year Period, Plos One, 10, e0115269, https://doi.org/10.1371/journal.pone.0115269, 2015b.
Yang, X., Chen, Y., Steenhuis, T. S., Pacenka, S., Gao, W., Ma, L., Zhang,
M., and Sui, P.: Mitigating Groundwater Depletion in North China Plain with
Cropping System that Alternate Deep and Shallow Rooted Crops, Front. Plant
Sci., 8, 980, https://doi.org/10.3389/fpls.2017.00980, 2017.
Yang, J., Lei, H., Yang, D., Huang, M., Liu, D., and Yuan X.: Impact of
vegetation dynamics on hydrological processes in a semi-arid basin by using
a land surface-hydrology coupled model, J. Hydrol., 551, 116–131, https://doi.org/10.1016/j.jhydrol.2017.05.060, 2017.
Yang, F., Zhang, G., Yin, X., Liu, Z., and Huang, Z.: Study on capillary
rise from shallow groundwater and critical water table depth of a
saline-sodic soil in western Songnen plain of China, Environ. Earth Sci.,
64, 2119–2126, https://doi.org/10.1007/s12665-011-1038-4, 2011.
Yeh, P. J. and Famiglietti, J. S.: Regional Groundwater Evapotranspiration in
Illinois, J. Hydrometeorol., 10, 464–478, https://doi.org/10.1175/2008JHM1018.1, 2009.
Young, P. C. and Ratto, M.: Statistical Emulation of Large Linear Dynamic
Models, Technometrics, 53, 29–43, https://doi.org/10.1198/TECH.2010.07151, 2011.
Zammouri, M.: Case Study of Water Table Evaporation at Ichkeul Marshes
(Tunisia), J. Irrig. Drain. Eng., 127, 265–271, https://doi.org/10.1061/(ASCE)0733-9437(2001)127:5(265), 2001.
Short summary
A novel approach is taken in simulating the hydrology of the vadose zone in areas with shallow groundwater. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.
A novel approach is taken in simulating the hydrology of the vadose zone in areas with shallow...