Articles | Volume 21, issue 12
https://doi.org/10.5194/hess-21-6253-2017
https://doi.org/10.5194/hess-21-6253-2017
Research article
 | 
11 Dec 2017
Research article |  | 11 Dec 2017

Response of water temperatures and stratification to changing climate in three lakes with different morphometry

Madeline R. Magee and Chin H. Wu

Related authors

Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers
Madeline R. Magee, Chin H. Wu, Dale M. Robertson, Richard C. Lathrop, and David P. Hamilton
Hydrol. Earth Syst. Sci., 20, 1681–1702, https://doi.org/10.5194/hess-20-1681-2016,https://doi.org/10.5194/hess-20-1681-2016, 2016
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023,https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022,https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022,https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022,https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022,https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary

Cited articles

Antenucci, J. and Imerito, A.: The CWR dynamic reservoir simulation model DYRESM, Centre for Water Research, The University of Western Australia, 2003.
Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler, D. E.: Effects of Climatic Variability on the Thermal Properties of Lake Washington, Limnol. Oceanogr., 49, 256–270, 2004.
Arvola, L., George, G., Livingstone, D. M., Järvinen, M., Blenckner, T., Dokulil, M. T., Jennings, E., Aonghusa, C. N., Nõges, P., Nõges, T., and Weyhenmeyer, G. A.: The Impact of the Changing Climate on the Thermal Characteristics of Lakes, in: The Impact of Climate Change on European Lakes, edited by: George, G., 85–101, Springer Netherlands, 2009.
Austin, J. A. and Allen, J.: Sensitivity of summer Lake Superior thermal structure to meteorological forcing, Limnol. Oceanogr., 56, 1141–1154, https://doi.org/10.4319/lo.2011.56.3.1141, 2011.
Download
Short summary
Water temperatures and stratification in three morphometrically different lakes over the century are examined. Simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, and stability increased. Results showed that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature.