Research article 11 Dec 2017
Research article | 11 Dec 2017
Response of water temperatures and stratification to changing climate in three lakes with different morphometry
Madeline R. Magee and Chin H. Wu
Related authors
Madeline R. Magee, Chin H. Wu, Dale M. Robertson, Richard C. Lathrop, and David P. Hamilton
Hydrol. Earth Syst. Sci., 20, 1681–1702, https://doi.org/10.5194/hess-20-1681-2016, https://doi.org/10.5194/hess-20-1681-2016, 2016
Short summary
Short summary
This paper employs a one-dimensional hydrodynamic ice model to simulate ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-year period (1911–2014) with the purpose of better understanding how the changing climate will affect lakes. It is shown that air temperature and wind speed changes have occurred in stages and ice cover and lake thermal structure have responded in a nonlinear way to these changes.
Madeline R. Magee, Chin H. Wu, Dale M. Robertson, Richard C. Lathrop, and David P. Hamilton
Hydrol. Earth Syst. Sci., 20, 1681–1702, https://doi.org/10.5194/hess-20-1681-2016, https://doi.org/10.5194/hess-20-1681-2016, 2016
Short summary
Short summary
This paper employs a one-dimensional hydrodynamic ice model to simulate ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-year period (1911–2014) with the purpose of better understanding how the changing climate will affect lakes. It is shown that air temperature and wind speed changes have occurred in stages and ice cover and lake thermal structure have responded in a nonlinear way to these changes.
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal
Diverging hydrological drought traits over Europe with global warming
Anthropogenic influence on the Rhine water temperatures
A new form of the Saint-Venant equations for variable topography
Lake thermal structure drives inter-annual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Worldwide lake level trends and responses to background climate variation
Modeling inorganic carbon dynamics in the Seine River continuum in France
A data-based predictive model for spatiotemporal variability in stream water quality
Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics
Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
Historical modelling of changes in Lake Erken thermal conditions
Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization
Lidar-based approaches for estimating solar insolation in heavily forested streams
Numerical study on the response of the largest lake in China to climate change
Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes
Future projections of temperature and mixing regime of European temperate lakes
Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage
Modelling Lake Titicaca's daily and monthly evaporation
Principal components of thermal regimes in mountain river networks
Modelling the water balance of Lake Victoria (East Africa) – Part 1: Observational analysis
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections
Breeze effects at a large artificial lake: summer case study
Impacts of changing hydrology on permanent gully growth: experimental results
Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks
Passive acoustic measurement of bedload grain size distribution using self-generated noise
Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?
Tributaries affect the thermal response of lakes to climate change
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management
Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China
Consistent initial conditions for the Saint-Venant equations in river network modeling
Can spatial statistical river temperature models be transferred between catchments?
Climate and basin drivers of seasonal river water temperature dynamics
Examining the impacts of precipitation isotope input (δ18Oppt) on distributed, tracer-aided hydrological modelling
Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands
The internal seiche field in the changing South Aral Sea (2006–2013)
A practical approach to lake water density from electrical conductivity and temperature
Comment on "Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand" by Morgenstern et al. (2015)
Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers
Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes
A hybrid model to simulate the annual runoff of the Kaidu River in northwest China
Computation of vertically averaged velocities in irregular sections of straight channels
Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model
A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation
A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Alex Zavarsky and Lars Duester
Hydrol. Earth Syst. Sci., 24, 5027–5041, https://doi.org/10.5194/hess-24-5027-2020, https://doi.org/10.5194/hess-24-5027-2020, 2020
Short summary
Short summary
River water temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used as a cooling agent by power plants and production facilities. We study long-term trends in river water temperature and correlate them to meteorological influences and power production or economic indices.
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020, https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-349, https://doi.org/10.5194/hess-2020-349, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations at Lake Mendota.
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020, https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Short summary
The impacts of different levels of global warming on the thermal structure of Lake Erken are assessed. We used the General Ocean Turbulence Model (GOTM) to simulate water temperature driven by meteorological scenarios supplied by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and tested its ability at different frequencies. Then, daily ISIMIP meteorological scenarios were disaggregated and assessed for the effects of climate change on lake thermal structure.
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020, https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Short summary
Although geomorphic recovery is a key issue in many rivers worldwide, controlled floods have been rarely designed using geomorphological criteria. An integrated approach is used to assess the effects of different controlled-flood scenarios in a strongly regulated river. None of the controlled-flood strategies provide significant morphological benefits. Nevertheless, this study represents a significant contribution for the management and restoration of highly disturbed rivers.
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Short summary
Lake levels go up and down due to natural variability in the climate. But the effects of natural variability on lake levels can sometimes be confused for the influence of humans. Here we used long-term data from 200 globally distributed lakes and an advanced statistical approach to show that the effects of natural variability on lake levels can be disentangled from other effects leading to better estimates of long-term changes that may be partially caused by humans.
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020, https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Short summary
Rivers have been recognized as an active part of the carbon cycle where transformations are associated with CO2 outgassing. To understand it, we propose a modeling approach with the biogeochemical model, pyNuts-Riverstrahler. We implemented it on the human-impacted Seine River. Sources of carbon to the river were characterized by field measurements in groundwater and in wastewater. Outgassing was the most important in streams, and peaks were simulated downstream of wastewater treatment effluent.
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Vo Quoc Thanh, Dano Roelvink, Mick van der Wegen, Johan Reyns, Herman Kernkamp, Giap Van Vinh, and Vo Thi Phuong Linh
Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, https://doi.org/10.5194/hess-24-189-2020, 2020
Short summary
Short summary
The Vietnamese Mekong Delta (VMD) is a rice bowl of not only Vietnam, but also the world; agriculture is the main source of livelihood in the delta. The VMD is facing threats related to water management and hydraulic structures. Dykes are built to protect agricultural crops in the floodplains and may influence water regimes downstream in the VMD. If the VMD floodplains are completely protected by dykes, yearly mean water levels could increase by 3 cm (at Can Tho) and 1.5 cm (at My Thuan).
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Simone Moras, Ana I. Ayala, and Don C. Pierson
Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, https://doi.org/10.5194/hess-23-5001-2019, 2019
Short summary
Short summary
We used a hydrodynamic model to reconstruct daily historical water temperature of Lake Erken (Sweden) between 1961 and 2017 to demonstrate the ongoing effect of climate change on lake thermal conditions. The results show that the lake has warmed most rapidly in the last 30 years and that it is now subject to a longer and more stable stratification. The methods used here to reconstruct historical water temperature records can be easily extended to other lakes.
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Short summary
This article evaluates the influence of sediment representation in a sediment transport model. A short-term simulation is used to assess how far changing the sediment characteristics in the modelling experiment changes riverbed evolution and sediment redistribution during a small flood event. The study shows in particular that representing sediment with extended grain-size and grain-density distributions allows for improving model accuracy and performances.
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019, https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary
Short summary
High stream temperatures can be detrimental to the survival of aquatic species such as endangered salmon. Stream temperatures can be reduced by shade provided by trees in riparian areas. Two lidar-based methods were effective at assessing stream shading. These methods can be used in place of expensive field measurements.
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
Chloé Poulin, Bruno Hamelin, Christine Vallet-Coulomb, Guinbe Amngar, Bichara Loukman, Jean-François Cretaux, Jean-Claude Doumnang, Abdallah Mahamat Nour, Guillemette Menot, Florence Sylvestre, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 23, 1705–1724, https://doi.org/10.5194/hess-23-1705-2019, https://doi.org/10.5194/hess-23-1705-2019, 2019
Short summary
Short summary
This study investigates the water budget of two intertropical lake systems in the absence of long-term hydrological monitoring. By coupling dry season isotopic data with satellite imagery, we were able to provide quantitative constrains on the hydrological balance and show that these two lake systems can be considered miniature analogs of Lake Chad, making them important targets in the future setup of any large-scale program on the hydro-climatic evolution in the Sahel region.
Tom Shatwell, Wim Thiery, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, https://doi.org/10.5194/hess-23-1533-2019, 2019
Short summary
Short summary
We used models to project future temperature and mixing in temperate lakes. Lakes will probably warm faster in winter than in summer, making ice less frequent and altering mixing. We found that the layers that form seasonally in lakes (ice, stratification) and water clarity affect how lakes accumulate heat. Seasonal changes in climate were thus important. This helps us better understand how different lake types respond to warming and which physical changes to expect in the future.
Ben R. Hodges
Hydrol. Earth Syst. Sci., 23, 1281–1304, https://doi.org/10.5194/hess-23-1281-2019, https://doi.org/10.5194/hess-23-1281-2019, 2019
Short summary
Short summary
A new derivation of the equations for one-dimensional open-channel flow in rivers and storm drainage systems has been developed. The new approach solves some long-standing problems for obtaining well-behaved solutions with conservation forms of the equations. This research was motivated by the need for highly accurate models of large-scale river networks and the storm drainage systems in megacities. Such models are difficult to create with existing equation forms.
Ramiro Pillco Zolá, Lars Bengtsson, Ronny Berndtsson, Belen Martí-Cardona, Frederic Satgé, Franck Timouk, Marie-Paule Bonnet, Luis Mollericon, Cesar Gamarra, and José Pasapera
Hydrol. Earth Syst. Sci., 23, 657–668, https://doi.org/10.5194/hess-23-657-2019, https://doi.org/10.5194/hess-23-657-2019, 2019
Short summary
Short summary
The evaporation was computed at a daily time step and compared with the estimated evaporation using mean monthly meteorological observations. We found that the most reliable method of determining the annual lake evaporation is using the heat balance approach.
Daniel J. Isaak, Charles H. Luce, Gwynne L. Chandler, Dona L. Horan, and Sherry P. Wollrab
Hydrol. Earth Syst. Sci., 22, 6225–6240, https://doi.org/10.5194/hess-22-6225-2018, https://doi.org/10.5194/hess-22-6225-2018, 2018
Short summary
Short summary
Description of thermal regimes in flowing waters is key to understanding physical processes and improving bioassessments, but has been limited by sparse data sets. Using a large annual temperature data set from a mountainous area of the western U.S., we explored thermal regimes using principle component analysis. A small number of summary metrics adequately represented most of the variation in this data set given strong temporal coherence among sites.
Inne Vanderkelen, Nicole P. M. van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 5509–5525, https://doi.org/10.5194/hess-22-5509-2018, https://doi.org/10.5194/hess-22-5509-2018, 2018
Short summary
Short summary
Lake Victoria is the largest lake in Africa and one of the two major sources of the Nile river. The water level of Lake Victoria is determined by its water balance, consisting of lake precipitation and evaporation, inflow from rivers and lake outflow, controlled by two hydropower dams. Here, we present a water balance model for Lake Victoria, which closely represents the observed lake levels. The model results highlight the sensitivity of the lake level to human operations at the dam.
Inne Vanderkelen, Nicole P. M. van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 5527–5549, https://doi.org/10.5194/hess-22-5527-2018, https://doi.org/10.5194/hess-22-5527-2018, 2018
Short summary
Short summary
Lake Victoria is the second largest freshwater lake in the world and one of the major sources of the Nile River, which is controlled by two hydropower dams. In this paper we estimate the potential consequences of climate change for future water level fluctuations of Lake Victoria. Our results reveal that the operating strategies at the dam are the main controlling factors of future lake levels and that regional climate simulations used in the projections encompass large uncertainties.
Maksim Iakunin, Rui Salgado, and Miguel Potes
Hydrol. Earth Syst. Sci., 22, 5191–5210, https://doi.org/10.5194/hess-22-5191-2018, https://doi.org/10.5194/hess-22-5191-2018, 2018
Short summary
Short summary
Lakes and reservoirs can affect local weather regimes but usually it is difficult to trace and assess it. In this work we used the Meso-NH atmospheric model to study the impact of the Alqueva reservoir, one of the largest artificial lakes in western Europe, located in the southeast of Portugal, on meteorological parameters and the formation of a lake breeze system. The magnitude of this impact as well as the intensity of the breeze are shown in the paper.
Stephanie S. Day, Karen B. Gran, and Chris Paola
Hydrol. Earth Syst. Sci., 22, 3261–3273, https://doi.org/10.5194/hess-22-3261-2018, https://doi.org/10.5194/hess-22-3261-2018, 2018
Short summary
Short summary
Permanent gullies are deep steep-sided channels that erode as water falls over the upstream end. Erosion of these features is a concern where people and climate change have altered how water moves over the land. This paper analyzes a set of experiments that were used to determine how changing gully flows impact erosion. We found that while increasing the volume of water will increase erosion, changing the flow rate into gullies will not impact the total erosion, but will alter gully shape.
Aurélien Beaufort, Nicolas Lamouroux, Hervé Pella, Thibault Datry, and Eric Sauquet
Hydrol. Earth Syst. Sci., 22, 3033–3051, https://doi.org/10.5194/hess-22-3033-2018, https://doi.org/10.5194/hess-22-3033-2018, 2018
Short summary
Short summary
Streams which may stop flowing are poorly gauged. To improve their characterisation, we use an extended network providing monthly visual observations stating whether streams are flowing or not across France. These observations are combined with discharge and groundwater level in models to predict daily regional probability of drying. This approach allows identification of the most impacted regions by flow intermittence and estimation of the probability of drying dynamics over the last 27 years.
Teodor Petrut, Thomas Geay, Cédric Gervaise, Philippe Belleudy, and Sebastien Zanker
Hydrol. Earth Syst. Sci., 22, 767–787, https://doi.org/10.5194/hess-22-767-2018, https://doi.org/10.5194/hess-22-767-2018, 2018
Short summary
Short summary
Our interest is focused on developing the hydrophone technique to estimate the size of particles transported in rivers. The analytic spectral solution of the impact between rigid particles is used to model the power spectrum of a sediment mixture, or the sediment-generated noise. Estimations of grain size distributions in the Isère River using real measured spectra are successfully validated by the physical sampling techniques. Moreover, the grain size sorting process is revealed by acoustics.
Heidelinde Trimmel, Philipp Weihs, David Leidinger, Herbert Formayer, Gerda Kalny, and Andreas Melcher
Hydrol. Earth Syst. Sci., 22, 437–461, https://doi.org/10.5194/hess-22-437-2018, https://doi.org/10.5194/hess-22-437-2018, 2018
Short summary
Short summary
In eastern Austria, where air temperature rise is double that recorded globally, stream temperatures of a human-impacted river were simulated during heat waves, as calculated by regional climate models until 2100. An increase of up to 3 °C was predicted – thus exceeding thresholds of resident cold-adapted species. Vegetation management scenarios showed that adding vegetation can reduce both absolute temperatures and its rate of increase but is not able to fully mitigate the expected rise.
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, https://doi.org/10.5194/hess-22-31-2018, 2018
Short summary
Short summary
Responses of inland waters to climate change vary on global and regional scales. Shifts in river discharge regimes act as positive and negative feedbacks in influencing water temperature. The extent of this effect on warming is controlled by the change in river discharge and lake hydraulic residence time. A shift of deep penetrating river intrusions from summer towards winter can potentially counteract the otherwise negative climate effects on deep-water oxygen content.
José-Luis Guerrero, Patricia Pernica, Howard Wheater, Murray Mackay, and Chris Spence
Hydrol. Earth Syst. Sci., 21, 6345–6362, https://doi.org/10.5194/hess-21-6345-2017, https://doi.org/10.5194/hess-21-6345-2017, 2017
Short summary
Short summary
Lakes are sentinels of climate change, and an adequate characterization of their feedbacks to the atmosphere could improve climate modeling. These feedbacks, as heat fluxes, can be simulated but are seldom measured, casting doubt on modeling results. Measurements from a small lake in Canada established that the model parameter modulating how much light penetrates the lake dominates model response. This parameter is measurable: improved monitoring could lead to more robust modeling.
Marie Arnoux, Florent Barbecot, Elisabeth Gibert-Brunet, John Gibson, and Aurélie Noret
Hydrol. Earth Syst. Sci., 21, 5875–5889, https://doi.org/10.5194/hess-21-5875-2017, https://doi.org/10.5194/hess-21-5875-2017, 2017
Short summary
Short summary
Future climate and recharge change scenarios are tested on lake hydrological balances to simulate changes in lake isotopic signature and water quality. Results highlight that lake water evolution depends mainly on the location and the intensity of recharge changes. Lake water isotopic composition appears to be particularly sensitive to future changes in recharge for lakes with between 50 % and 80 % of groundwater in their total inflows.
Hanghui Zhang, Shuguang Liu, Jianchun Ye, and Pat J.-F. Yeh
Hydrol. Earth Syst. Sci., 21, 5339–5355, https://doi.org/10.5194/hess-21-5339-2017, https://doi.org/10.5194/hess-21-5339-2017, 2017
Short summary
Short summary
The Huangpu River, an important river of the basin connecting Lake Taihu upstream and the Yangtze River estuary downstream, drains two-fifths of the entire basin. Constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. Results of quantitative analyses show that the Huangpu Gate is effective at evacuating floodwaters.
Cheng-Wei Yu, Frank Liu, and Ben R. Hodges
Hydrol. Earth Syst. Sci., 21, 4959–4972, https://doi.org/10.5194/hess-21-4959-2017, https://doi.org/10.5194/hess-21-4959-2017, 2017
Short summary
Short summary
This research proposes a new method for determining efficient and effective synthetic initial conditions for an unsteady model using the Saint-Venant equations for a large river network. The proposed method increases the efficiency of initial condition convergence up to 3700 times. This can not only help the hydrology research move from empirically based to mechanistic-based models for large river networks but also provide a computationally effective approach for initial conditions for modelers.
Faye L. Jackson, Robert J. Fryer, David M. Hannah, and Iain A. Malcolm
Hydrol. Earth Syst. Sci., 21, 4727–4745, https://doi.org/10.5194/hess-21-4727-2017, https://doi.org/10.5194/hess-21-4727-2017, 2017
Short summary
Short summary
River temperature (Tw) is important to fish populations, but one cannot monitor everywhere. Thus, models are used to predict Tw, sometimes in rivers with no data. To date, the accuracy of these predictions has not been determined. We found that models including landscape predictors (e.g. altitude, tree cover) could describe spatial patterns in Tw in other rivers better than those including air temperature. Such findings are critical for developing Tw models that have management application.
Cédric L. R. Laizé, Cristian Bruna Meredith, Michael J. Dunbar, and David M. Hannah
Hydrol. Earth Syst. Sci., 21, 3231–3247, https://doi.org/10.5194/hess-21-3231-2017, https://doi.org/10.5194/hess-21-3231-2017, 2017
Short summary
Short summary
Stream temperature controls many river processes, making it vital to know how climate affects it. Climate and stream temperatures at 35 British sites and associated basin properties were used to model climate–water temperature associations and to assess how they are influenced by basins. Associations vary with season and water temperature range. Basin permeability, size, and elevation have the main influence; smaller upland or impermeable basins are the most sensitive to climate.
Carly J. Delavau, Tricia Stadnyk, and Tegan Holmes
Hydrol. Earth Syst. Sci., 21, 2595–2614, https://doi.org/10.5194/hess-21-2595-2017, https://doi.org/10.5194/hess-21-2595-2017, 2017
Short summary
Short summary
Hydrological models have large amounts of uncertainty in streamflow predictions. Using extra data (e.g. isotope tracers) helps evaluate whether the model is getting the right answers for the right reasons. In a Canadian basin, three types of isotope in precipitation input are used to drive a tracer-aided model and assess the resulting model uncertainty. This study shows how a tracer-aided model can be used at the larger scale, and that the model can be of value in such regions.
Georgiy Kirillin, Lijuan Wen, and Tom Shatwell
Hydrol. Earth Syst. Sci., 21, 1895–1909, https://doi.org/10.5194/hess-21-1895-2017, https://doi.org/10.5194/hess-21-1895-2017, 2017
Short summary
Short summary
We report a first description of the seasonal temperature, mixing, and ice regime in the two largest freshwater lakes of the Tibetan Plateau. We perform a validation of lake model FLake for the parameterization of the Tibetan lake system in regional climate models and present evidence of the absent warming trend in the Tibetan lakes despite significant atmospheric warming. The reason for this unexpected behavior is the significant decrease in solar radiation at the surface.
Elena Roget, Elizaveta Khimchenko, Francesc Forcat, and Peter Zavialov
Hydrol. Earth Syst. Sci., 21, 1093–1105, https://doi.org/10.5194/hess-21-1093-2017, https://doi.org/10.5194/hess-21-1093-2017, 2017
Short summary
Short summary
This is the first work on the internal seiches of the South Aral Sea, which is also of general interest as the lake is considered a paradigm for the lakes whose surface levels are decreasing. It is based on field data and numerical simulations. For autumn 2006 and 2013, the fundamental mode is discussed together with other modes which are found to be higher vertical modes. The importance of sea level variation on the development of higher horizontal modes is also discussed.
Santiago Moreira, Martin Schultze, Karsten Rahn, and Bertram Boehrer
Hydrol. Earth Syst. Sci., 20, 2975–2986, https://doi.org/10.5194/hess-20-2975-2016, https://doi.org/10.5194/hess-20-2975-2016, 2016
Short summary
Short summary
Density calculations in lakes are essential in the study of stability, stratification and numerical modelling. However, density equations which use fixed constant coefficients are still common in use, despite their limitations. We present a practical approach which can specifically include the effect of dissolved substances by fitting two coefficients. The method has been tested against density equations and density measurements in lakes.
Jonathan M. Abell, David P. Hamilton, and Christopher G. McBride
Hydrol. Earth Syst. Sci., 20, 2395–2401, https://doi.org/10.5194/hess-20-2395-2016, https://doi.org/10.5194/hess-20-2395-2016, 2016
Short summary
Short summary
We comment on "Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand" by Morgenstern et al. (2015). They propose that "the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load". We outline four reasons why it is important to instead limit both phosphorus and nitrogen loads to this iconic lake, consistent with current policy.
Madeline R. Magee, Chin H. Wu, Dale M. Robertson, Richard C. Lathrop, and David P. Hamilton
Hydrol. Earth Syst. Sci., 20, 1681–1702, https://doi.org/10.5194/hess-20-1681-2016, https://doi.org/10.5194/hess-20-1681-2016, 2016
Short summary
Short summary
This paper employs a one-dimensional hydrodynamic ice model to simulate ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-year period (1911–2014) with the purpose of better understanding how the changing climate will affect lakes. It is shown that air temperature and wind speed changes have occurred in stages and ice cover and lake thermal structure have responded in a nonlinear way to these changes.
Camille Bouchez, Julio Goncalves, Pierre Deschamps, Christine Vallet-Coulomb, Bruno Hamelin, Jean-Claude Doumnang, and Florence Sylvestre
Hydrol. Earth Syst. Sci., 20, 1599–1619, https://doi.org/10.5194/hess-20-1599-2016, https://doi.org/10.5194/hess-20-1599-2016, 2016
Short summary
Short summary
Flows out of Lake Chad are constrained by a modeling of the hydrological, chemical, and isotopic budgets, based on a review of existing data along with new data. This innovative approach allows one to determine the proportions of evaporation, transpiration, and infiltration out of the lake while the two last flows are often neglected in semi-arid environments. Moreover, it allows to investigate the lake hydrological and chemical regulations under the large climatic changes in Sahel since 1950.
Jianhua Xu, Yaning Chen, Ling Bai, and Yiwen Xu
Hydrol. Earth Syst. Sci., 20, 1447–1457, https://doi.org/10.5194/hess-20-1447-2016, https://doi.org/10.5194/hess-20-1447-2016, 2016
E. Spada, T. Tucciarelli, M. Sinagra, V. Sammartano, and G. Corato
Hydrol. Earth Syst. Sci., 19, 3857–3873, https://doi.org/10.5194/hess-19-3857-2015, https://doi.org/10.5194/hess-19-3857-2015, 2015
Short summary
Short summary
We present two new methods for uniform flow computation, named LHRM and INCM.
We also present the calibration and first validation from laboratory experimental data, second validation by field discharge hydrographs estimated by measured water level data, and the third validation from a 3-D solution of CFX code applied to a reach of the Alzette River.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
Z. N. Musa, I. Popescu, and A. Mynett
Hydrol. Earth Syst. Sci., 19, 3755–3769, https://doi.org/10.5194/hess-19-3755-2015, https://doi.org/10.5194/hess-19-3755-2015, 2015
Short summary
Short summary
Hydrological data collection is a challenge for the scientific community, especially as some events e.g. floods occur in un-gauged rivers or infrequently.
Some such events are however recorded by satellites.
Using satellite remote sensing in estimating surface water parameters has its limitations, but recent improvements in sensor specifications, expansion in research methods and knowledge of satellite data have increased its utilization.
The review is on modelling and mapping with RS.
A. Šiljeg, S. Lozić, and S. Šiljeg
Hydrol. Earth Syst. Sci., 19, 3653–3666, https://doi.org/10.5194/hess-19-3653-2015, https://doi.org/10.5194/hess-19-3653-2015, 2015
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, 2009.
Antenucci, J. and Imerito, A.: The CWR dynamic reservoir simulation model DYRESM, Centre for Water Research, The University of Western Australia, 2003.
Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler, D. E.: Effects of Climatic Variability on the Thermal Properties of Lake Washington, Limnol. Oceanogr., 49, 256–270, 2004.
Arvola, L., George, G., Livingstone, D. M., Järvinen, M., Blenckner, T., Dokulil, M. T., Jennings, E., Aonghusa, C. N., Nõges, P., Nõges, T., and Weyhenmeyer, G. A.: The Impact of the Changing Climate on the Thermal Characteristics of Lakes, in: The Impact of Climate Change on European Lakes, edited by: George, G., 85–101, Springer Netherlands, 2009.
Austin, J. A. and Allen, J.: Sensitivity of summer Lake Superior thermal structure to meteorological forcing, Limnol. Oceanogr., 56, 1141–1154, https://doi.org/10.4319/lo.2011.56.3.1141, 2011.
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007.
Baron, J. and Caine, N.: Temporal coherence of two alpine lake basins of the Colorado Front Range, USA, Freshw. Biol., 43, 463–476, https://doi.org/10.1046/j.1365-2427.2000.00517.x, 2000.
Birge, E. A., Juday, C., and March, H. W.: The temperature of the bottom deposits of Lake Mendota; a chapter in the heat exchanges of the lake, Trans. Wis. Acad. Sci. Arts Lett., XXIII, available at: http://digicoll.library.wisc.edu/cgi-bin/WI/WI-idx?type=article&did=WI.WT1927.EABaird&id=WI.WT1927&isize=M (last access: 1 October 2015), 1927.
Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46, 2006RG000210, https://doi.org/10.1029/2006RG000210, 2008.
Breslow, P. B. and Sailor, D. J.: Vulnerability of wind power resources to climate change in the continental United States, Renew. Energy, 27, 585–598, https://doi.org/10.1016/S0960-1481(01)00110-0, 2002.
Butcher, J. B., Nover, D., Johnson, T. E., and Clark, C. M.: Sensitivity of lake thermal and mixing dynamics to climate change, Clim. Change, 129, 295–305, https://doi.org/10.1007/s10584-015-1326-1, 2015.
Carpenter, S. R. and Lathrop, R. C.: Probabilistic Estimate of a Threshold for Eutrophication, Ecosystems, 11, 601–613, https://doi.org/10.1007/s10021-008-9145-0, 2008.
Desai, A. R., Austin, J. A., Bennington, V., and McKinley, G. A.: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient, Nat. Geosci., 2, 855–858, https://doi.org/10.1038/ngeo693, 2009.
Dobiesz, N. E. and Lester, N. P.: Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002, J. Gt. Lakes Res., 35, 371–384, https://doi.org/10.1016/j.jglr.2009.05.002, 2009.
Fang, X. and Stefan, H. G.: Long-term lake water temperature and ice cover simulations/measurements, Cold Reg. Sci. Technol., 24, 289–304, https://doi.org/10.1016/0165-232X(95)00019-8, 1996.
Ficker, H., Luger, M., and Gassner, H.: From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change, Freshw. Biol., 62, 1335–1345, https://doi.org/10.1111/fwb.12946, 2017.
Francis, T. B., Wolkovich, E. M., Scheuerell, M. D., Katz, S. L., Holmes, E. E., and Hampton, S. E.: Shifting Regimes and Changing Interactions in the Lake Washington, USA, Plankton Community from 1962–1994, PLoS ONE, 9, e110363, https://doi.org/10.1371/journal.pone.0110363, 2014.
Gal, G., Imberger, J., Zohary, T., Antenucci, J., Anis, A., and Rosenberg, T.: Simulating the thermal dynamics of Lake Kinneret, Ecol. Model., 162, 69–86, 2003.
Gal, G., Makler-Pick, V., and Shachar, N.: Dealing with uncertainty in ecosystem model scenarios: Application of the single-model ensemble approach, Environ. Model. Softw., 61, 360–370, https://doi.org/10.1016/j.envsoft.2014.05.015, 2014.
Gerten, D. and Adrian, R.: Differences in the persistency of the North Atlantic Oscillation signal among lakes, Limnol. Oceanogr., 46, 448–455, https://doi.org/10.4319/lo.2001.46.2.0448, 2001.
Golosov, S., Maher, O. A., Schipunova, E., Terzhevik, A., Zdorovennova, G., and Kirillin, G.: Physical background of the development of oxygen depletion in ice-covered lakes, Oecologia, 151, 331–340, https://doi.org/10.1007/s00442-006-0543-8, 2007.
Gunn, J. M.: Impact of the 1998 El Niño event on a Lake Charr, Salvelinus Namaycush, Population Recovering from Acidification, Environ. Biol. Fishes, 64, 343–351, https://doi.org/10.1023/A:1016058606770, 2002.
Hadley, K. R., Paterson, A. M., Stainsby, E. A., Michelutti, N., Yao, H., Rusak, J. A., Ingram, R., McConnell, C., and Smol, J. P.: Climate warming alters thermal stability but not stratification phenology in a small north-temperate lake, Hydrol. Process., 28, 6309–6319, https://doi.org/10.1002/hyp.10120, 2014.
Hamilton, D. P. and Schladow, S. G.: Prediction of water quality in lakes and reservoirs. Part I – Model description, Ecol. Model., 96, 91–110, https://doi.org/10.1016/S0304-3800(96)00062-2, 1997.
Hamilton, D. P., Magee, M. R., Wu, C. H., and Kratz, T. K.: Ice cover and thermal regime in a dimictic seepage lake under climate change, Inland Waters, in review, 2017.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Hennings, R. G. and Connelly, J. P.: Average ground-water temperature map, Wisconsin, Wisconsin Geological and Natural History Survey, Madison, Wisconsin, USA, 2008.
Hetherington, A. L., Schneider, R. L., Rudstam, L. G., Gal, G., DeGaetano, A. T., and Walter, M. T.: Modeling climate change impacts on the thermal dynamics of polymictic Oneida Lake, New York, United States, Ecol. Model., 300, 1–11, https://doi.org/10.1016/j.ecolmodel.2014.12.018, 2015.
Hill, J. M. and Kucera, A.: Freezing a saturated liquid inside a sphere, Int. J. Heat Mass Transf., 26, 1631–1637, https://doi.org/10.1016/S0017-9310(83)80083-0, 1983.
Hipsey, M. R., Bruce, L. C., and Hamilton, D. P.: GLM – General Lake Model: Model overview and user information, The University of Western Perth, Perth, Australia, 2014.
Hocking, G. C. and Straškraba, M.: The Effect of Light Extinction on Thermal Stratification in Reservoirs and Lakes, Int. Rev. Hydrobiol., 84, 535–556, https://doi.org/10.1002/iroh.199900046, 1999.
Holgerson, M. A., Farr, E. R., and Raymond, P. A.: Gas transfer velocities in small forested ponds, J. Geophys. Res.-Biogeo., 122, 1011–1021, https://doi.org/10.1002/2016JG003734, 2017.
Hostetler, S. W. and Bartlein, P. J.: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon, Water Resour. Res., 26, 2603–2612, https://doi.org/10.1029/WR026i010p02603, 1990.
Hsieh, Y.: Modeling ice cover and water temperature of Lake Mendota, PhD Thesis, University of Wisconsin-Madison, Madison, Wisconsin, USA, 2012.
Idso, S. B.: On the concept of lake stability, Limnol. Oceanogr., 18, 681–683, 1973.
Imberger, J. and Parker, G.: Mixed layer dynamics in a lake exposed to a spatially variable wind field, Limnol. Oceanogr., 30, 473–488, 1985.
Imberger, J. and Patterson, J. C.: Dynamic reservoir simulation model – DYRESM: 5, in: Transport Models for Inland and Coastal Waters, edited by: Fischer, H. B., 310–361, Academic Press, 1981.
Imberger, J., Loh, I., Hebbert, B., and Patterson, J.: Dynamics of Reservoir of Medium Size, J. Hydraul. Div., 104, 725–743, 1978.
Imerito, A.: Dynamic Reservoir Simulation Model DYRESM v4.0 Science Manual, University of Western Australia Centre for Water Research, 2010.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 3–29, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K., and Salonen, K.: Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland, Aquat. Ecol., 43, 681–692, https://doi.org/10.1007/s10452-009-9275-2, 2009.
Jiang, L., Fang, X., Stefan, H. G., Jacobson, P. C., and Pereira, D. L.: Oxythermal habitat parameters and identifying cisco refuge lakes in Minnesota under future climate scenarios using variable benchmark periods, Ecol. Model., 232, 14–27, https://doi.org/10.1016/j.ecolmodel.2012.02.014, 2012.
Jöhnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., and Stroom, J. M.: Summer heatwaves promote blooms of harmful cyanobacteria, Glob. Change Biol., 14, 495–512, https://doi.org/10.1111/j.1365-2486.2007.01510.x, 2008.
Kara, E. L., Hanson, P., Hamilton, D., Hipsey, M. R., McMahon, K. D., Read, J. S., Winslow, L., Dedrick, J., Rose, K., Carey, C. C., Bertilsson, S., da Motta Marques, D., Beversdorf, L., Miller, T., Wu, C., Hsieh, Y.-F., Gaiser, E., and Kratz, T.: Time-scale dependence in numerical simulations: Assessment of physical, chemical, and biological predictions in a stratified lake at temporal scales of hours to months, Environ. Model. Softw., 35, 104–121, https://doi.org/10.1016/j.envsoft.2012.02.014, 2012.
Kerimoglu, O. and Rinke, K.: Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies, Water Resour. Res., 49, 7518–7527, https://doi.org/10.1002/2013WR013520, 2013.
Kimura, N., Wu, C. H., Hoopes, J. A., and Tai, A.: Diurnal Dynamics in a Small Shallow Lake under Spatially Nonuniform Wind and Weak Stratification, J. Hydraul. Eng., 142, 04016047, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001190, 2016.
Kirillin, G.: Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes, Boreal Environ. Res., 15, 279–293, 2010.
Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G., and Zdorovennov, R.: Physics of seasonally ice-covered lakes: a review, Aquat. Sci., 74, 659–682, https://doi.org/10.1007/s00027-012-0279-y, 2012.
Kniffin, M.: Groundwater status report prepared for Friends of lake Wingra, Edgewood College, Madison, Wisconsin, USA, available at: https://www.lakewingra.org/download/lake_and_watershed_ecology/groundwater status report.pdf (last access: 11 November 2016), 2011.
Kraemer, B. M., Anneville, O., Chandra, S., Dix, M., Kuusisto, E., Livingstone, D. M., Rimmer, A., Schladow, S. G., Silow, E., Sitoki, L. M., Tamatamah, R., Vadeboncoeur, Y., and McIntyre, P. B.: Morphometry and average temperature affect lake stratification responses to climate change, Geophys. Res. Lett., 42, 4981–4988, https://doi.org/10.1002/2015GL064097, 2015.
Krohelski, J. T., Lin, Y.-F., Rose, W. J., and Hunt, R. J.: Simulation of Fish, Mud, and Crystal Lakes and the shallow ground-water system, Dane County, Wisconsin, USGS Numbered Series, U.S. Geological Survey, available at: http://pubs.er.usgs.gov/publication/wri024014 (last access: 24 November 2015), 2002.
Lathrop, R. C., Carpenter, S. R., and Rudstam, L. G.: Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory, Can. J. Fish. Aquat. Sci., 53, 2250–2261, https://doi.org/10.1139/f96-187, 1996.
Leppäranta, M., Lindgren, E., and Shirasawa, K.: The heat budget of Lake Kilpisjärvi in the Arctic tundra, Hydrol. Res., 48, 969–980, https://doi.org/10.2166/nh.2016.171, 2016.
Livingstone, D. M.: Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake, Clim. Change, 57, 205–225, https://doi.org/10.1023/A:1022119503144, 2003.
Luhtala, H. and Tolvanen, H.: Optimizing the Use of Secchi Depth as a Proxy for Euphotic Depth in Coastal Waters: An Empirical Study from the Baltic Sea, ISPRS Int. J. Geo-Inf., 2, 1153–1168, https://doi.org/10.3390/ijgi2041153, 2013.
Lynch, A. J., Taylor, W. W., Beard Jr., T. D., and Lofgren, B. M.: Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes, J. Gt. Lakes Res., 41, 415–422, https://doi.org/10.1016/j.jglr.2015.03.015, 2015.
MacIntyre, S. and Melack, J. M.: Mixing dynamics in lakes across climatic zones, in: Lake Ecosystem Ecology: A Global Perspective, edited by: Likens, G. E., 86–95, Academic Press, San Diego, CA, 2010.
MacKay, M. D., Neale, P. J., Arp, C. D., De Senerpont Domis, L. N., Fang, X., Gal, G., Jöhnk, K. D., Kirillin, G., Lenters, J. D., Litchman, E., MacIntyre, S., Marsh, P., Melack, J., Mooij, W. M., Peeters, F., Quesada, A., Schladow, S. G., Schmid, M., Spence, C., and Stokesr, S. L.: Modeling lakes and reservoirs in the climate system, Limnol. Oceanogr., 54, 2315–2329, https://doi.org/10.4319/lo.2009.54.6_part_2.2315, 2009.
Magee, M. R. and Wu, C. H.: Effects of changing climate on ice cover in three morphometrically different lakes, Hydrol. Process., 31, 308–323, https://doi.org/10.1002/hyp.10996, 2017.
Magee, M. R., Wu, C. H., Robertson, D. M., Lathrop, R. C., and Hamilton, D. P.: Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers, Hydrol. Earth Syst. Sci., 20, 1681–1702, https://doi.org/10.5194/hess-20-1681-2016, 2016.
Magnuson, J. J., Benson, B. J., and Kratz, T. K.: Temporal coherence in the limnology of a suite of lakes in Wisconsin, USA, Freshw. Biol., 23, 145–159, https://doi.org/10.1111/j.1365-2427.1990.tb00259.x, 1990.
Mantyka-Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., and Rhodes, J. R.: Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish, J. Appl. Ecol., 51, 572–581, https://doi.org/10.1111/1365-2664.12236, 2014.
McKee, T. B., Doesken, N. J., Davey, C. A., and Pielke, S.: Climate data continuity with ASOS. Report for period April 1996 through June 2000, Colorado Climate Center, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 2000.
Meehl, G. A. and Tebaldi, C.: More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century, Science, 305, 994–997, https://doi.org/10.1126/science.1098704, 2004.
Nõges, P., Nõges, T., Ghiani, M., Paracchini, B., Pinto Grande, J., and Sena, F.: Morphometry and trophic state modify the thermal response of lakes to meteorological forcing, Hydrobiologia, 667, 241–254, https://doi.org/10.1007/s10750-011-0691-7, 2011.
NTL LTER: North Temperate Lakes LTER: Snow and Ice Depth 1982–current, available at: doi:10.6073/pasta/e323699d2b7ed56ef29357dbdbbb3458 (last access: 25 July 2015), 2012a.
NTL LTER: North Temperature Lakes LTER: Physical Limnology of Primary Study Lakes 1981-current, available at: doi:10.6073/pasta/2ce2dedbf9a0759bacbbff235298bc5f, (last access: 25 July 2015), 2012b.
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015.
Paerl, H. W. and Paul, V. J.: Climate change: Links to global expansion of harmful cyanobacteria, Water Res., 46, 1349–1363, https://doi.org/10.1016/j.watres.2011.08.002, 2012.
Palmer, M. E., Yan, N. D., and Somers, K. M.: Climate change drives coherent trends in physics and oxygen content in North American lakes, Clim. Change, 124, 285–299, https://doi.org/10.1007/s10584-014-1085-4, 2014.
Patterson, J. C. and Hamblin, P. F.: Thermal simulation of a lake with winter ice cover, Limnol. Oceanogr., 33, 323–338, https://doi.org/10.4319/lo.1988.33.3.0323, 1988.
Perroud, M., Goyette, S., Martynov, A., Beniston, M., and Anneville, O.: Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models, Limnol. Oceanogr.-Methods, 54, 1574–1594, 2009.
Pryor, S. C., Barthelmie, R. J., and Kjellström, E.: Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model, Clim. Dynam., 25, 815–835, https://doi.org/10.1007/s00382-005-0072-x, 2005.
Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A., Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of lake mixing and stratification indices from high-resolution lake buoy data, Environ. Model. Softw., 26, 1325–1336, https://doi.org/10.1016/j.envsoft.2011.05.006, 2011.
Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., and Wu, C. H.: Lake-size dependency of wind shear and convection as controls on gas exchange, Geophys. Res. Lett., 39, L09405, https://doi.org/10.1029/2012GL051886, 2012.
Rempfer, J., Livingstone, D. M., Blodau, C., Forster, R., Niederhauser, P., and Kipfer, R.: The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: A foretaste of the future?, Limnol. Oceanogr., 55, 2170–2180, https://doi.org/10.4319/lo.2010.55.5.2170, 2010.
Rice, E., Dam, H. G., and Stewart, G.: Impact of Climate Change on Estuarine Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in Copepod Size and Community Structure, Estuaries Coasts, 38, 13–23, https://doi.org/10.1007/s12237-014-9770-0, 2015.
Robertson, D. M.: The use of lake water temperature and ice cover as climatic indicators, PhD Thesis, University of Wisconsin-Madison, Madison, Wisconsin, USA, 1989.
Robertson, D. M. and Ragotzkie, R. A.: Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature, Aquat. Sci., 52, 360–380, https://doi.org/10.1007/BF00879763, 1990.
Rodionov, S. and Overland, J. E.: Application of a sequential regime shift detection method to the Bering Sea ecosystem, ICES J. Mar. Sci. J. Cons., 62, 328–332, https://doi.org/10.1016/j.icesjms.2005.01.013, 2005.
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448, 2004.
Rogers, C. K., Lawrence, G. A., and Hamblin, P. F.: Observations and numerical simulation of a shallow ice-covered midlatitude lake, Limnol. Oceanogr., 40, 374–385, https://doi.org/10.4319/lo.1995.40.2.0374, 1995.
Rose, K. C., Greb, S. R., Diebel, M., and Turner, M. G.: Annual precipitation regulates spatial and temporal drivers of lake water clarity, Ecol. Appl., 27, 632–643, https://doi.org/10.1002/eap.1471, 2017.
Rueda, F. and Schladow, G.: Mixing and stratification in lakes of varying horizontal length scales: Scaling arguments and energy partitioning, Limnol. Oceanogr., 54, 2003–2017, https://doi.org/10.4319/lo.2009.54.6.2003, 2009.
Schindler, D. W., Beaty, K. G., Fee, E. J., Cruikshank, D. R., Debruyn, E. R., Findlay, D. L., Linsey, G. A., Shearer, J. A., Stainton, M. P., and Turner, M. A.: Effects of climatic warming on lakes of the central boreal forest, Science, 250, 967–970, https://doi.org/10.1126/science.250.4983.967, 1990.
Schmid, M. and Köster, O.: Excess warming of a Central European lake driven by solar brightening, Water Resour. Res., 52, 8103–8116, https://doi.org/10.1002/2016WR018651, 2016.
Sharma, S., Vander Zanden, M. J., Magnuson, J. J., and Lyons, J.: Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations, PLoS ONE, 6, e22906, https://doi.org/10.1371/journal.pone.0022906, 2011.
Shimoda, Y., Azim, M. E., Perhar, G., Ramin, M., Kenney, M. A., Sadraddini, S., Gudimov, A., and Arhonditsis, G. B.: Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes?, J. Gt. Lakes Res., 37, 173–193, https://doi.org/10.1016/j.jglr.2010.10.004, 2011.
Smith, D. G. and Hoover, M.: Standardization of Secchi disk measurements, including use of a viewer box, in Proceedings of the 2000 National Water Quality Monitoring Conference. available at: http://acwi.gov/monitoring/nwqmc.org/2000proceeding/papers/pap_smith.pdf (last access: 20 July 2016), 2000.
Snortheim, C. A., Hanson, P. C., McMahon, K. D., Read, J. S., Carey, C. C., and Dugan, H. A.: Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake, Ecol. Model., 343, 39–53, https://doi.org/10.1016/j.ecolmodel.2016.10.014, 2017.
Stefan, H. G., Hondzo, M., Fang, X., Eaton, J. G., and McCormick, J. H.: Simulated long term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits, Limnol. Oceanogr., 41, 1124–1135, https://doi.org/10.4319/lo.1996.41.5.1124, 1996.
Stewart, K. M.: Physical limnology of some Madison lakes, PhD Thesis, University of Wisconsin-Madison, Madison, Wisconsin, USA, 1965.
Tanentzap, A. J., Hamilton, D. P., and Yan, N. D.: Calibrating the Dynamic Reservoir Simulation Model (DYRESM) and filling required data gaps for one-dimensional thermal profile predictions in a boreal lake, Limnol. Oceanogr. Methods, 5, 484–494, https://doi.org/10.4319/lom.2007.5.484, 2007.
Tanentzap, A. J., Yan, N. D., Keller, B., Girard, R., Heneberry, J., Gunn, J. M., Hamilton, D. P., and Taylor, P. A.: Cooling lakes while the world warms: Effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake, Limnol. Oceanogr., 53, 404–410, https://doi.org/10.4319/lo.2008.53.1.0404, 2008.
Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O.: Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles, J. Climate, 18, 1524–1540, https://doi.org/10.1175/JCLI3363.1, 2005.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., and Williams, S. E.: Extinction risk from climate change, Nature, 427, 145–148, https://doi.org/10.1038/nature02121, 2004.
Thompson, R., Kamenik, C., and Schmidt, R.: Ultra-sensitive Alpine lakes and climate change, J. Limnol., 64, 139–152, 2005.
Van Cleave, K., Lenters, J. D., Wang, J., and Verhamme, E. M.: A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niñ winter of 1997–1998, Limnol. Oceanogr., 59, 1889–1898, https://doi.org/10.4319/lo.2014.59.6.1889, 2014.
Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., and Ciais, P.: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness, Nat. Geosci., 3, 756–761, https://doi.org/10.1038/ngeo979, 2010.
Verburg, P. and Hecky, R. E.: The physics of the warming of Lake Tanganyika by climate change, Limnol. Oceanogr., 54, 2418–2430, 2009.
Voutilainen, A., Huttula, T., Juntunen, J., Rahkola-Sorsa, M., Rasmus, K., and Viljanen, M.: Diverging site-specific trends in the water temperature of a large boreal lake in winter and summer due to mixed effects of local features and climate change, Boreal Environ. Res., 19, 104–114, 2014.
Weinberger, S. and Vetter, M.: Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee, Ecol. Model., 244, 38–48, https://doi.org/10.1016/j.ecolmodel.2012.06.016, 2012.
Wilhelm, S., Hintze, T., Livingstone, D. M., and Adrian, R.: Long-term response of daily epilimnetic temperature extrema to climate forcing, Can. J. Fish. Aquat. Sci., 63, 2467–2477, https://doi.org/10.1139/f06-140, 2006.
Williams, D. T., Drummond, G. R., Ford, D. E., and Robey, D. L.: Determination of light extinction coefficients in lakes and reservoirs, in Proceedings of the Symposium on Surface Water Impoundments, 1329–1335, Minneapolis, MN, USA, 1980.
Winslow, L. A., Read, J. S., Hansen, G. J. A., and Hanson, P. C.: Small lakes show muted climate change signal in deepwater temperatures, Geophys. Res. Lett., 42, 355–361, https://doi.org/10.1002/2014GL062325, 2015.
Woo, M.: Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience: Volume 2: Hydrologic Processes, Springer Science & Business Media, 2007.
Woolway, R. I., Jones, I. D., Maberly, S. C., French, J. R., Livingstone, D. M., Monteith, D. T., Simpson, G. L., Thackeray, S. J., Andersen, M. R., Battarbee, R. W., DeGasperi, C. L., Evans, C. D., Eyto, E. de, Feuchtmayr, H., Hamilton, D. P., Kernan, M., Krokowski, J., Rimmer, A., Rose, K. C., Rusak, J. A., Ryves, D. B., Scott, D. R., Shilland, E. M., Smyth, R. L., Staehr, P. A., Thomas, R., Waldron, S., and Weyhenmeyer, G. A.: Diel Surface Temperature Range Scales with Lake Size, PLOS ONE, 11, e0152466, https://doi.org/10.1371/journal.pone.0152466, 2016.
Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D., and Laas, A.: Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake, Clim. Change, 141, 759–773, https://doi.org/10.1007/s10584-017-1909-0, 2017a.
Woolway, R. I., Dokulil, M. T., Marszelewski, W., Schmid, M., Bouffard, D., and Merchant, C. J.: Warming of Central European lakes and their response to the 1980s climate regime shift, Clim. Change, 142, 505–520, https://doi.org/10.1007/s10584-017-1966-4, 2017b.
Wüest, A. and Lorke, A.: Small-Scale Hydrodynamics in Lakes, Annu. Rev. Fluid Mech., 35, 373–412, https://doi.org/10.1146/annurev.fluid.35.101101.161220, 2003.
Yao, H., Samal, N. R., Joehnk, K. D., Fang, X., Bruce, L. C., Pierson, D. C., Rusak, J. A., and James, A.: Comparing ice and temperature simulations by four dynamic lake models in Harp Lake: past performance and future predictions, Hydrol. Process., 28, 4587–4601, https://doi.org/10.1002/hyp.10180, 2014.
Yeates, P. S. and Imberger, J.: Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs, Int. J. River Basin Manag., 1, 297–319, https://doi.org/10.1080/15715124.2003.9635214, 2003.
Ying, L., Shen, Z., and Piao, S.: The recent hiatus in global warming of the land surface: Scale-dependent breakpoint occurrences in space and time, Geophys. Res. Lett., 42, 6471–6478, https://doi.org/10.1002/2015GL064884, 2015.
Zhong, Y., Notaro, M., Vavrus, S. J., and Foster, M. J.: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers, Limnol. Oceanogr., 61, 1762–1786, https://doi.org/10.1002/lno.10331, 2016.
Short summary
Water temperatures and stratification in three morphometrically different lakes over the century are examined. Simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, and stability increased. Results showed that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature.
Water temperatures and stratification in three morphometrically different lakes over the century...