Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3557-2017
https://doi.org/10.5194/hess-21-3557-2017
Research article
 | 
14 Jul 2017
Research article |  | 14 Jul 2017

Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

Dagang Wang, Guiling Wang, Dana T. Parr, Weilin Liao, Youlong Xia, and Congsheng Fu

Related authors

A 1 km daily soil moisture dataset over China using in situ measurement and machine learning
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022,https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
A review of the global soil property maps for Earth system models
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019,https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
140-year daily ensemble streamflow reconstructions over 661 catchments in France
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024,https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024,https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary

Cited articles

Ahmed, M., Sultan, M., Yan, E., and Wahr, J.: Assessing and improving land surface model outputs over africa using GRACE, field, and remote sensing data, Surv. Geophys., 37, 1–28, 2016.
AmeriFlux network: Latent flux measurements, available at: http://ameriflux.lbl.gov/, last access: 31 December 2016.
Amsterdam Critical Zone Hydrology Group: Global streamflow characteristic dataset, multi-year annual average, available at: http://hydrology-amsterdam.nl/valorisation/GSCD.html, 2010.
Beck, H. E., Dijk, A. I. J. M., Miralles, D. G., Jeu, R. A. M. D., Bruijnzeel, L. A., Mcvicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, 2013.
Beck, H., De Roo, A., and Van Dijk, A.: Global maps of streamflow characteristics based on observations from several thousand catchments, J. Hydrometeorol., 16, 1478–1501, 2015.
Download
Short summary
Land surface models bear substantial biases. To reduce model biases, we apply a simple but efficient bias correction method to a land surface model. We first derive a relationship between observations and model simulations, and apply this relationship in the application period. While the bias correction method improves model-based estimates without improving the model physical parameterization, results do provide guidance for physically based model development effort.