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Abstract. Land surface models bear substantial biases in
simulating surface water and energy budgets despite the con-
tinuous development and improvement of model parame-
terizations. To reduce model biases, Parr et al. (2015) pro-
posed a method incorporating satellite-based evapotranspi-
ration (ET) products into land surface models. Here we ap-
ply this bias correction method to the Community Land
Model version 4.5 (CLM4.5) and test its performance over
the conterminous US (CONUS). We first calibrate a rela-
tionship between the observational ET from the Global Land
Evaporation Amsterdam Model (GLEAM) product and the
model ET from CLM4.5, and assume that this relationship
holds beyond the calibration period. During the validation or
application period, a simulation using the default CLM4.5
(“CLM”) is conducted first, and its output is combined with
the calibrated observational-vs.-model ET relationship to de-
rive a corrected ET; an experiment (“CLMET”) is then con-
ducted in which the model-generated ET is overwritten with
the corrected ET. Using the observations of ET, runoff, and
soil moisture content as benchmarks, we demonstrate that
CLMET greatly improves the hydrological simulations over
most of the CONUS, and the improvement is stronger in the
eastern CONUS than the western CONUS and is strongest
over the Southeast CONUS. For any specific region, the de-
gree of the improvement depends on whether the relationship
between observational and model ET remains time-invariant

(a fundamental hypothesis of the Parr et al. (2015) method)
and whether water is the limiting factor in places where ET is
underestimated. While the bias correction method improves
hydrological estimates without improving the physical pa-
rameterization of land surface models, results from this study
do provide guidance for physically based model development
effort.

1 Introduction

Land surface models are widely used tools in simulating and
predicting the Earth’s water and energy budgets over a wide
range of spatiotemporal scales (Rodell et al., 2004; Hadde-
land et al., 2011; Getirana, 2014; Xia et al., 2012a, b, Xia
et al., 2016a, b). For example, the Global Land Data Assimi-
lation System (GLDAS) was designed to simulate the terres-
trial water and energy budgets over the globe using multiple
land surface models (Rodell et al., 2004), and its regional
counterpart, the North America Land Data Assimilation Sys-
tem (NLDAS), utilizes four land surface models and focuses
on the conterminous United States at a much higher resolu-
tion (Rodell et al., 2004; Xia et al., 2012a, b). Products from
these two operational systems have been widely used in esti-
mating terrestrial water storage changes (Syed et al., 2008),
investigating land–atmosphere coupling strength (Spenne-
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mann and Saulo, 2015), analyzing soil moisture variability
(Cheng et al., 2015), studying the impact of soil moisture
on dust outbreaks (Kim and Choi 2015), and improving the
data quality of in situ soil moisture observations (Dorigo
et al., 2013; Xia et al., 2015). These model-based estimates
of land surface fluxes and state variables are considered an
important surrogate for observations, as observational data
for some components of the global water and energy cycles
are scarce in many regions of the world, and lack spatial
and temporal continuity where they do exist. However, land
surface models are subject to large uncertainties. Haddeland
et al. (2011) compared 11 models in simulating evapotranspi-
ration (ET), and found that the global ET on the land surface
ranges from 415 to 586 mmyr−1 and that the runoff ranges
from 290 to 457 mmyr−1. Xia et al. (2012a, b, 2016a, b) doc-
umented a large disparity among the four models in NLDAS
phase 2 (NLDAS-2) at both the continental and basin scales,
and showed that the Mosaic and Sacramento Soil Moisture
Accounting (SAC-SMA) models tend to overestimate ET
whereas the Noah and Variable Infiltration Capacity (VIC)
models tend to underestimate ET.

Great efforts have been made to improve model perfor-
mance over the years, by enhancing both the model param-
eterization of land surface processes and the model input
data. For instance, during the past 10 years, the Community
Land Model (CLM) has been upgraded from version 2 to ver-
sion 4.5 (Bonan et al., 2002; Oleson et al., 2008, 2013), ac-
companied by increasingly accurate and high-resolution sur-
face datasets (Lawrence et al., 2011). Comparison with ob-
servations of runoff, evapotranspiration, and total water stor-
age demonstrated continuous improvement of the model per-
formance (Lawrence et al., 2011). The Noah model is an-
other example of a continuous upgrade from its original ver-
sion since the 1980s (Mahrt et al., 1984). Recent model de-
velopments were on vegetation canopy energy balance, the
layered snowpack, frozen soil and infiltration, soil moisture–
groundwater interaction and related runoff production, and
vegetation phenology (Niu et al., 2011). Despite the im-
proved understanding and parameterization of physical pro-
cesses and better input data, substantial model biases remain
(e.g., Parr et al., 2016; Wang et al., 2016).

Another approach to improving model simulations or pre-
dictions is through data assimilation, by merging observa-
tional data and land surface models to obtain optimal esti-
mates for the next time step. Fusing soil moisture observa-
tions into land surface models is a typical practice in land
data assimilation, and it has been reported that data assimi-
lation of soil moisture helped in reducing model biases (Re-
ichle and Koster, 2005; Kumar et al., 2008; Yin et al., 2015).
However, data assimilation is a computationally intensive
task, especially when implementing a multi-model ensemble
approach. Moreover, the data assimilation approach is not ap-
plicable to future prediction. Parr et al. (2015) proposed an
alternative approach to reducing model biases, and applied
it to the Variable Infiltration Capacity (VIC) model over the

Connecticut River Basin for both historical simulations and
future projections. The Parr et al. (2015) approach assumes
that the relationship between the model evapotranspiration
(ET) and observational ET remain unchanged from one pe-
riod to another, and hence the relationship estimated from
the calibration period can be used to correct ET biases and
their effects on other variables for any period, historically
or in the future. When applied to VIC over the Connecticut
River Basin, Parr et al. (2015) found that the ET bias cor-
rection approach significantly reduces systematic biases in
the estimates of both historical ET and historical river flow,
and qualitatively influences the projected future changes in
drought and flood risks.

To establish the robustness of the Parr et al. (2015) method,
it needs to be evaluated over different regions and differ-
ent climate regimes based on different models. In this study,
we implement the Parr et al. (2015) approach in CLM4.5
and evaluate its performance over the whole conterminous
United States (CONUS). The land surface model, study area,
and bias correction method are introduced in Sect. 2. The
data for model calibration and validation, including datasets
of ET, runoff, and soil moisture, are described in Sect. 3. Sec-
tion 4 presents the calibration and validation results. Finally,
the main findings are summarized and discussed in Sect. 5.

2 Model and methodology

2.1 Model and forcing data

CLM4.5 (Oleson et al., 2013) in its offline mode with the
prescribed vegetation phenology is used in this study. The
land surface datasets used in CLM4.5 were derived from dif-
ferent sources. The soil texture data were taken from Bonan
et al. (2012), which were generated using the International
Geopshere-Biosphere Programme soil data (Global Soil Data
Task, 2000). Both the percentage of plant functional types
(PFTs) and the leaf area index within each grid cell were
derived from Moderate Resolution Imaging Spectroradiome-
ter (MODIS) satellite data (Lawrence et al., 2011). Slope
and elevation were obtained from the US Geological Sur-
vey HYDRO1K 1 km dataset (Verdin and Greenlee, 1996).
Parr et al. (2016) found that CLM4.5 can realistically cap-
ture the overall spatial pattern of ET in the CONUS when the
model is forced by the NLDAS-2 meteorological variables.
The spatial correlation coefficients between the simulated an-
nual ET and the FLUXNET-MTE (model tree ensemble) ET
are as high as 0.93. Wang et al. (2016), using multiple at-
mospheric forcing datasets, also reported that CLM4.5 can
reasonably reproduce the large-scale patterns of runoff and
ET. In this study CLM4.5 is forced by the NLDAS-2 meteo-
rological forcing (Xia et al., 2012a). The NLDAS-2 forcing
is available during 1979–present at an hourly resolution on
a 0.125◦ grid system, but is aggregated to a 0.25◦ resolution
in this study as the driving forcing for CLM4.5. The CONUS
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is chosen as the study domain over the globe for the high
quality of atmospheric forcing data in this region.

2.2 Methodology

The division of the CONUS into Northwest, Southwest,
Northeast, and Southeast, which is based on the 40◦ N lat-
itude line and the 98◦W longitude line, was defined by
Lohmann et al. (2004). This division was later adopted by
Xia et al. (2012a) and Tian et al. (2014) when land surface
models were evaluated over the CONUS. We follow this di-
vision in this study, as shown in Fig. 1a.

Although land surface models are capable of capturing
the large-scale pattern of ET, significant biases were found
at finer spatiotemporal scales (Parr et al., 2015, 2016; Wang
et al., 2016), which propagate to influence other components
of the hydrological cycle including runoff and soil moisture
(Parr et al., 2015). Following Parr et al. (2015), we derived
the climatology of modeled ET for each model grid cell and
for each month based on a simulation during the calibration
period and climatology of observational ET from satellite-
based ET data at the same spatiotemporal resolution during
the same period, and estimate the scaling factor between ob-
servational ET and the model ET. This scaling factor, which
has its unique spatial variability and seasonal cycle, is as-
sumed to be time-invariant at the inter-annual and longer
timescales. To correct the ET biases in model simulations
during any period, two types of simulations are conducted
sequentially. In the first type of simulation, named the CLM,
we run the default CLM4.5 and save the output for three com-
ponents of ET, i.e., interception loss, plant transpiration, and
soil evaporation, at the PFT level for every time step. The
corrected interception loss, plant transpiration, and soil evap-
oration are then derived by multiplying the simulated values
by the ET scaling factor, and will be used as the input for the
second type of simulation, named CLMET. In CLMET, we
re-run CLM4.5 for the same period as in the first type, but
overwrite the three ET components simulated by the model
with the corrected values. Since ET simulations affect the
partitioning of precipitation between ET and runoff, the bias
correction in ET is expected to have a direct positive impact
on runoff generation and therefore soil moisture.

In this study, we use 1986–1995 as the calibration period
and 2000–2014 as the validation period. The simulations dur-
ing the calibration period are obtained from a 16-year (1980–
1995) CLM run with the first 6-year run disregarded as the
spinup. Both CLM and CLMET runs during the validation
period start with the initial condition of 1 January 1996 ob-
tained from the calibration period. The time step for both
CLM and CLMET runs is 1 h. Since the overwriting process
in CLMET may break the water balance, the model checks
whether the amount of water stored in the vegetation canopy
is sufficient to sustain the interception loss and whether the
surface soil water storage is sufficient to sustain soil evapo-
ration through the model time step. If not, the interception

loss (soil evaporation) rate is set to be equal to the water
available in the vegetation canopy (soil) divided by the model
time step. This adjustment minimizes the imbalance caused
by overwriting ET components in CLMET.

In this study, the statistics bias, relative bias, and root mean
square error (RMSE) are used to validate models in reproduc-
ing the spatial pattern against the reference dataset. They are
defined as

Bias=
1
N

i=N∑
i=1

(
Si −Ri

)
, (1)

Relative bias=
1
N

i=N∑
i=1

(
Si −Ri

)
Ri

, (2)

RMSE=

√√√√√ i=N∑
i=1

(
Si −Ri

)2
N

, (3)

where N is the total number of grid cells, and Si(Ri) are the
temporal average of the model simulated (reference) value
for grid cell i, which is calculated as

Si =
1
M

j=M∑
j=1

Si,j , (4)

Ri =
1
M

j=M∑
j=1

Ri,j , (5)

where Si,j (Ri,j ) is the model simulated (reference) value at
time j and grid cell i, and M is the total number of time
points. The statistic RMSE is also used to validate models in
reproducing time series where M becomes the total number
of grid cells and N the total number of time points.

3 Data

3.1 ET

3.1.1 GLEAM ET

GLEAM (the Global Land Evaporation Amsterdam Model)
version 3.0a (Miralles et al., 2011; Martens et al., 2016)
is used to calibrate the ET scaling factors and to validate
the CLM and CLMET. As such we assume full trust in the
GLEAM evaporation data with the bias correction method.
GLEAM 3.0a was derived based on reanalysis net radiation
and air temperature, a combination of gauge-based, reanaly-
sis and satellite-based precipitation and satellite-based vege-
tation optical depth, spanning the 35-year period 1980–2014
(http://www.gleam.eu/). Potential evaporation in GLEAM
3.0a was calculated using a Priestley and Taylor equation
based on surface net radiation and near-surface air temper-
ature, and was converted to actual evaporation using the
multiplicative evaporative stress factor. The dataset has been
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Figure 1. (a) Mean annual (1980–2015) precipitation in millimeters over the conterminous USA (CONUS). NW, SW, NE, and SE rep-
resent the Northwest, Southwest, Northeast, and Southeast CONUS, respectively. The black circles represent sites of in situ soil moisture
observations in Alabama, Illinois, Mississippi, Nebraska, and Oklahoma. (b) Locations of the 16 AmeriFlux stations with vegetation types.

used in studying soil moisture–temperature coupling (Mi-
ralles et al., 2012), the impact of land surface on precipitation
(Guillod et al., 2015), and the climate control on land surface
evaporation (Miralles et al., 2014). Recent evaluations con-
ducted at both flux tower site and global scales show that
GLEAM-based ET is superior to MODIS-based and Surface
Energy Balance System (SEBS) based ET products (Michel
et al., 2016; Miralles et al., 2016). The spatial resolution of
the GLEAM dataset is 0.25◦, which is consistent with the
resolution of CLM4.5 used in this study. The temporal res-
olution of the GLEAM dataset is daily, and the monthly ag-
gregated ET is used to derive the scaling factors.

3.1.2 MODIS and FLUXNET-MTE ET

Two other gridded ET products are used for independent
evaluations: MODIS ET and FLUXNET-MTE (model tree

ensemble) ET. Mu et al. (2007, 2011) produced a MODIS-
based global ET dataset using a revised Penman–Monteith
(PM) equation. The dataset is arguably the most widely
used remote sensing-based global ET product (Miralles
et al., 2016). Monthly versions of the MODIS-based prod-
uct at the 0.5◦ spatial resolution are used to validate the
model with the bias correction method. The FLUXNET-
MTE global ET dataset was derived from 253 FLUXNET
eddy covariance towers distributed over the globe using the
model tree ensemble (MTE) approach (Jung et al., 2009,
2010). The record gaps of half-hourly eddy covariance fluxes
were filled first, and the complete tower-based dataset was
then used to train the MTE to produce the monthly global
ET dataset at the 0.5◦ spatial resolution. The data have been
used to study the ET trend (Jung et al., 2010) and to im-
prove canopy processes in a land surface model (Bonan et al.,
2011). As FLUXNET sites over the CONUS are fairly dense,
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Figure 2. Scaling factor as the ratio of the CLM simulated ET to the GLEAM ET for each month during 1986–1995. The numbers in titles
are CONUS-averaged values, and the numbers within figures are area-averaged values for each of the four sub-regions (NW, SW, NE, and
SE). The areas with negative scaling factors are masked out.

the quality of the FLUXNET-MTE dataset in our study do-
main is expected to be good. The MODIS dataset is available
for 2000–2014, and the FLUXNET-MTE dataset is available
for 1982–2011. We chose the overlap period of these two
products, 2000–2011, for model validations using MODIS
and the FLUXNET-MTE dataset.

3.1.3 Flux tower ET

ET observations (in energy unit) at 16 sites from the Ameri-
Flux network are used to validate the model on the grid cell
scale (Fig. 1b). Those sites span four sub-regions (i.e., NW,

SW, NE, and SW) of the CONUS with five different veg-
etation types (i.e., grass, crop, evergreen needleleaf forest,
mixed forest, and deciduous broadleaf forest). More details
about these flux tower sites can be found in Xia et al. (2015b).
For most sites, the year of 2005 is selected for validation be-
cause data for this year have the least amount of missing
records; three sites are exceptions due to data availability:
2002 for the site of Sylvania Wilderness, and 2004 for the
sites of Donaldson and Walnut River. Both daily and monthly
ET observations at these 16 sites are compared with model
simulations.

www.hydrol-earth-syst-sci.net/21/3557/2017/ Hydrol. Earth Syst. Sci., 21, 3557–3577, 2017
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Figure 3. Mean annual ET from (a) GLEAM, (b) the CLM, and (c) CLMET, the relative difference between (d) CLMET and the CLM,
(e) the CLM and GLEAM, (f) CLMET and GLEAM, and (g) the difference between the absolute value of (e) and the absolute value of (f)
during the period 2000–2014. Numbers in titles are CONUS-averaged values.

3.2 Observation-based runoff coefficient

The runoff coefficient (the ratio of runoff to precipitation) of
the Global Streamflow Characteristics Dataset (GSCD) ver-
sion 1.9 (Beck et al., 2013, 2015) is used to evaluate the
model performance in simulating runoff. The GSCD dataset
was produced based on streamflow observations from ap-
proximately 7500 catchments over the globe. A data-driven
approach was adopted to derive the gridded streamflow char-
acteristics at the 0.125◦ resolution on a global scale. This
dataset is relatively reliable for the grid cells within which
a large number of catchment data are used. The uncertainty
is low in North America, Europe, and southeastern Australia,
where a large number of observations are available.

3.3 In situ soil moisture observations

The North American Soil Moisture Database (NASMD,
Quiring et al., 2016) is used to evaluate the model perfor-

mance in simulating soil moisture in both the surface (0–
10 cm) and root-zone (0–100 cm) layers. The NASMD was
initiated in 2011 to provide support for developing climate
forecasting tools, calibrating land surface models, and vali-
dating satellite-derived soil moisture algorithms. A homoge-
nized procedure has been implemented, as the measurement
stations are across a variety of in situ networks. In addition,
a quality control (QC) algorithm was applied to the mea-
surement records (Xia et al., 2015; Liao et al., submitted
to the Journal of Hydrometeorology, 2017). The in situ ob-
servations in Alabama (AL), Illinois (IL), Mississippi (MS),
Nebraska (NE), and Oklahoma (OK) from 2006 to 2010 are
selected from the NASMD (Fig. 1a). A large number of sta-
tions is evenly distributed over these states and observation
records during this period are relatively complete after QC.
The numbers of stations in AL, IL, MS, NE, and OK are
10, 19, 14, 45, 105, and 39, respectively. Since the soil layer
where measurement was taken varies with stations, we lin-
early interpolate the volumetric soil water content to the 5
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Table 1. Spatial evaluations of simulated ET from two different types of runs (CLM and CLMET) against GLEAM-derived ET over the
CONUS, Northwest (NW), Southwest (SW), Northeast (NW), and Southeast (SW) annually and seasonally during the period 2000–2014.
March–April–May: MAM; June–July–August: JJA; September–October–November: SON; December–January–February: DJF.

Season Region Bias (mmday−1) Relative bias (%) RMSE (mmday−1)

CLM CLMET CLM CLMET CLM CLMET

Annual CONUS 0.137 −0.006 10.8 −0.1 0.266 0.144
NW 0.029 −0.03 7.9 0.3 0.25 0.199
SW 0.074 −0.025 10.2 −3.1 0.181 0.118
NE 0.138 −0.012 9.6 −0.1 0.243 0.132
SE 0.315 0.041 15.6 2.1 0.355 0.099

MAM CONUS −0.081 −0.062 −5.8 −3.3 0.351 0.227
NW −0.138 −0.074 −6.7 −2.7 0.326 0.244
SW −0.211 −0.122 −17.9 −9.3 0.318 0.206
NE −0.191 −0.078 −8.3 −2.8 0.429 0.293
SE 0.19 0.023 8.9 1.5 0.346 0.165

JJA CONUS 0.094 −0.041 6.4 −1.3 0.451 0.331
NW −0.137 −0.121 −3.9 −4.0 0.487 0.408
SW 0.147 −0.006 18.3 −0.9 0.352 0.232
NE 0.045 −0.124 2.5 −2.7 0.55 0.452
SE 0.332 0.075 9.1 2.1 0.414 0.181

SON CONUS 0.360 0.055 51 7.8 0.428 0.155
NW 0.271 0.044 76.4 14.0 0.346 0.147
SW 0.228 0.044 39.5 5.0 0.282 0.117
NE 0.481 0.077 50.4 7.3 0.527 0.242
SE 0.499 0.061 34.5 4.1 0.531 0.11

DJF CONUS 0.182 0.009 77.7 18.9 0.265 0.115
NW 0.114 −0.013 104.2 28.8 0.252 0.122
SW 0.132 −0.014 42.3 −1.9 0.182 0.056
NE 0.239 0.077 146.4 65.3 0.334 0.199
SE 0.24 0.004 49.5 2.7 0.292 0.072

and 50 cm depths for all stations to compare them with the
modeled soil moisture for the 0–10 and 0–100 cm layers.

4 Results

4.1 Calibration of ET scaling factor

Figure 2 shows the climatological scaling factors for each
month over the CONUS based on the 1986–1995 period. The
GLEAM-derived dew and the CLM simulated dew are not
consistent in some areas of the Northwest CONUS. If that
happens, the scaling factors became negative, because ET is
negative for one and positive for the other. We did not scale
ET when the scaling factor is negative, and those areas are
masked out in Fig. 2. This treatment (scaling in some months
and no scaling in other months) may introduce a seasonal
bias correction effect in these areas. The model simulations
generally agree better with GLEAM estimations during the
warm seasons, whereas the difference between simulations
and GLEAM estimations remains large during the cold sea-

sons. The scaling factors greatly vary with region. For in-
stance, the area-averaged scaling factors for November are
0.34, 0.58, 0.28, and 0.52 for Northwest, Southwest, North-
east, and Southeast, respectively. The overestimation is over-
whelming during October, November, December, and Jan-
uary, whereas underestimation occurs in many areas during
March, April, and May. The overestimation is especially se-
vere over the Northeast CONUS where simulated ET is al-
most 5 times the GLEAM estimate in December.

4.2 Evaluation

We evaluate the effectiveness of the ET bias correction ap-
proach in CLM4.5 by comparing results from the CLM and
CLMET with the reference dataset. The evaluation metrics
examined include bias, relative bias, and root mean square
error (RMSE) as described in Sect. 2.2. Since the spatial res-
olution of some gridded reference data is not consistent with
the model resolution, we upscale the finer resolution data to
match the coarser resolution data using simple arithmetic av-
erages. For example, when the MODIS and FLUXNET-MTE

www.hydrol-earth-syst-sci.net/21/3557/2017/ Hydrol. Earth Syst. Sci., 21, 3557–3577, 2017
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Figure 4. (a) Relative bias (RB) for the CLM (RBCLM), (b) RB for CLMET (RBCLMET) during the period 2000–2014, (c) difference in
scaling factor fET between the period 1986–1995 and the period 2000–2014 (fET(86)−fET(00)), and (d) scatter plots of fET(86)−fET(00)

vs. RBCLMET in (1) January (Jan), (2) April (Apr), (3) July (Jul), and (4) November (Nov).

ET are used for validation, we average ET from the four
0.25◦ model grid cells within each 0.5◦ observational grid
cell; for the GSCD runoff data, we aggregate observations
from 0.125 to 0.25◦ to match the model resolution. As in situ
soil moisture observations are technically at the point scale,
we spatially average observed soil moisture in each state and
compare the averaged observations with the model simula-
tions averaged across grid cells within the same state.

4.2.1 ET

Figure 3 shows the multi-year averages (2000–2014) of ET
derived from GLEAM, simulated by the CLM and CL-
MET, and the relative bias of simulations against GLEAM.
Over most of the CONUS, the CLM overestimates ET
and CLMET reduces ET as well as ET biases relative to
GLEAM data. The averaged relative bias in the CLM over

the CONUS is 10.8 %, with a relative bias exceeding 10 %
in a substantial portion of the CONUS; and in CLMET, the
CONUS-averaged relative bias is reduced to −0.1 %, and
it is within 10 % over most of the CONUS. This improve-
ment is more significant over the eastern CONUS than the
western CONUS. Table 1 shows the statistics on the model
performance with these two schemes during different sea-
sons and in four sub-regions. The CLM overestimates the
CONUS-averaged ET in all other seasons except for March–
April–May (MAM), and the largest overestimation occurs in
the Northeast CONUS during December–January–February
(DJF), with a relative bias as large as 146.4 %. The under-
estimation in MAM is largest over the Southwest CONUS,
with a relative bias of −17.9 %. CLMET substantially im-
proves the model performance, as indicated by the various
metrics. All the statistics in CLMET are superior to those
in the CLM, with a few exceptions in bias or relative bias.
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Table 2. Similar to Table 1, but based on comparison with MODIS-derived ET during the period 2000–2011.

Season Region Bias (mmday−1) Relative bias (%) RMSE (mmday−1)

CLM CLMET CLM CLMET CLM CLMET

Annual CONUS 0.321 0.177 30.8 19.1 0.427 0.321
NW 0.28 0.232 35.8 27.9 0.367 0.326
SW 0.282 0.183 39.7 25.6 0.428 0.36
NE 0.278 0.125 19.6 9.1 0.316 0.193
SE 0.431 0.159 24.9 10.6 0.538 0.348

MAM CONUS 0.514 0.533 50.1 55.8 0.631 0.635
NW 0.564 0.628 67.2 74.5 0.636 0.687
SW 0.345 0.438 45.9 61.8 0.538 0.599
NE 0.547 0.655 51.7 61.9 0.58 0.675
SE 0.596 0.436 34.6 25.8 0.735 0.578

JJA CONUS 0.251 0.116 18.2 12.1 0.759 0.691
NW 0.263 0.281 23.8 25.6 0.704 0.71
SW 0.344 0.192 28.8 14.5 0.806 0.724
NE 0.028 −0.144 2.9 −2.4 0.662 0.564
SE 0.31 0.052 13.2 5.8 0.829 0.72

SON CONUS 0.345 0.039 48.2 9.8 0.459 0.284
NW 0.261 0.038 56.8 9.4 0.369 0.261
SW 0.284 0.096 55.9 20.8 0.43 0.306
NE 0.448 0.043 47.4 5.6 0.483 0.207
SE 0.417 −0.019 32.1 2.7 0.547 0.329

DJF CONUS 0.181 0.025 82.2 28 0.383 0.276
NW 0.043 −0.049 77.6 40.4 0.385 0.365
SW 0.156 0.007 70.5 19.4 0.292 0.191
NE 0.091 −0.051 96.7 14.8 0.344 0.214
SE 0.403 0.169 87.5 33.6 0.474 0.281

The improvement from the CLM to CLMET is more sub-
stantial for September–October–November (SON) and DJF
than MAM and June–July–August (JJA). The relative bias
of 51 % (77.7 %) in the CLM is reduced to 7.8 % (18.9 %)
in CLMET over the CONUS during SON (DJF). For the re-
gional average, the improvement is greatest over the South-
east CONUS. All the positive biases in all seasons over the
Southeast CONUS are substantially reduced.

To understand the differences between the CLM and CL-
MET, we select four months representing each of the four
seasons, January, April, July, and November, to examine the
relationship between the relative bias of model simulations
and the scaling factor changes from the calibration period
(1986–1995) to the validation period (2000–2014) in Fig. 4.
The improvement from the CLM to CLMET is evident, es-
pecially in January and November (Fig. 4a and b). Although
the bias is dramatically reduced in CLMET, it remains large
in the Northeast CONUS in January (Fig. 4b1). In addition,
the bias in CLMET appears larger in the western CONUS
than the eastern CONUS (Fig. 4b). The spatial patterns of the
relative biases in CLMET and the scaling factor differences
between the two periods demonstrate a great degree of sim-

ilarity (Fig. 4b and c), and the scatter plots between the two
quantities (Fig. 4d) reflect a strong correlation. Not surpris-
ingly, the degree to which CLMET can improve model per-
formance in simulating ET greatly depends on how stable the
scaling factor is from the calibration period to the validation
period, i.e., how well the assumption of a time-invariant scal-
ing relationship holds. Over most of the CONUS, changes in
the scaling factor are within 10 % (Fig. 4d). This temporal
stability of the relationship between observed ET and simu-
lations guarantees improvements from the CLM to CLMET.

CLM and CLMET performances are also evaluated us-
ing two independent observation datasets of ET, MODIS-
based and FLUXNET-MTE-based ET (Fig. 5, Tables 2 and
3). For the multi-year averaged ET, the relative bias in CL-
MET is smaller than that in the CLM, and the improvement
is greater in the eastern CONUS than the western CONUS,
as compared with either MODIS- or FLUXNET-MTE-based
ET. Note that there is still a substantial overestimation in the
western CONUS in CLMET compared with the MODIS ET.
With the reference of the MODIS or FLUXNET-MTE ET,
CLMET corrects biases for all three other seasons except for
MAM (Tables 2 and 3). Bias, relative bias, and RMSE in CL-
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Table 3. Similar to Table 1, but based on comparison with FLUXNET-MTE ET during the period 2000–2011.

Season Region Bias (mmday−1) Relative bias (%) RMSE (mmday−1)

CLM CLMET CLM CLMET CLM CLMET

Annual CONUS 0.207 0.065 13.3 3.2 0.328 0.24
NW 0.07 0.013 5.8 0.0 0.222 0.234
SW 0.051 −0.047 6.8 −4.7 0.244 0.241
NE 0.309 0.165 21.9 12.2 0.334 0.238
SE 0.427 0.154 21.3 7.6 0.461 0.248

MAM CONUS 0.27 0.292 15.8 19.5 0.418 0.399
NW 0.266 0.33 22.4 28.0 0.349 0.401
SW −0.042 0.051 −7.3 2.5 0.298 0.301
NE 0.288 0.401 21.6 30.4 0.338 0.435
SE 0.561 0.4 26.4 18.5 0.6 0.448

JJA CONUS 0.197 0.063 7.0 0.5 0.608 0.517
NW −0.149 −0.13 −8.7 −7.5 0.506 0.506
SW 0.029 −0.122 9.2 −6.1 0.594 0.555
NE 0.415 0.257 13.6 8.8 0.492 0.369
SE 0.565 0.304 16.9 9.4 0.779 0.585

SON CONUS 0.216 −0.088 20.3 −9.4 0.353 0.294
NW 0.072 −0.151 9.2 −22.8 0.224 0.286
SW 0.132 −0.055 21.1 −5.2 0.311 0.277
NE 0.356 −0.034 33.7 −1.1 0.473 0.385
SE 0.346 −0.091 21.2 −5.4 0.396 0.23

DJF CONUS 0.149 −0.004 40.1 −1 0.268 0.189
NW 0.104 0.014 27 −4.9 0.279 0.26
SW 0.086 −0.063 20.9 −14.4 0.17 0.129
NE 0.176 0.037 78.5 19.2 0.329 0.208
SE 0.236 0.002 42.8 0.8 0.282 0.129

MET are greater than in the CLM for the whole CONUS,
Northwest, Southwest, and Northeast in MAM. The most
considerable improvement occurs in SON compared with the
other three seasons. CLMET deteriorates the ET estimate for
MAM by enhancing the overestimation already occurring in
the CLM, which is different from the validation against the
GLEAM-based ET.

The analysis of time series of ET from MODIS,
FLUXNET-MTE, and the two types of simulations also
demonstrates improvement from the CLM to CLMET. Cli-
matological seasonal cycles of ET over the CONUS and
four sub-regions for the period 2000–2011 are shown in
Fig. 6. CLMET outperforms the CLM over the CONUS, with
a smaller RMSE (0.31 vs. 0.40 against MODIS, 0.19 vs. 0.25
against FLUXNET-MTE). The improvement mainly results
from reduction of the overestimation existing in the CLM
for SON and DJF. However, the model performance greatly
varies with region. As indicated by the ET RMSE values, CL-
MET and the CLM perform similarly over some areas of the
western CONUS, whereas CLMET improves the ET simula-
tion over the eastern CONUS no matter which reference data
are used. Figure 7 compares the temporal evolution of the

simulated ET in the CLM and CLMET against MODIS and
FLUXNET-MTE ET over the CONUS and four sub-regions.
It is evident that the bias correction method in CLMET is
very effective in reducing overestimation (positive bias) but
does not work as well in correcting the underestimation (neg-
ative bias) in water-limited regimes. The difference has to do
with the specific ET regime, i.e., whether ET is limited by
water or energy. When an overestimated ET is overwritten
with a lower value, the water on land is sufficient to sup-
port the reduced ET; in contrast, when an underestimated ET
is overwritten with a higher value, the land surface model
checks whether water storage in the soil layer and vegeta-
tion canopy can sustain the elevated ET and further adjust
if necessary to keep with the mass conservation equation.
The extent to which ET can be increased is limited by the
availability of water stored in the soil layer and vegetation
canopy. Therefore, in water-limited ET regimes, if ET is un-
derestimated in the CLM, the actual ET in CLMET after the
water availability check can be substantially lower than the
corrected ET fed into the model, which diminishes the effect
of the bias correction algorithm under such circumstances.

Hydrol. Earth Syst. Sci., 21, 3557–3577, 2017 www.hydrol-earth-syst-sci.net/21/3557/2017/



D. Wang et al.: Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5 3567

Figure 5. Mean annual ET from (a1) MODIS, (b1) FLUXNET-MTE, the relative differences between (a2) the CLM and MODIS, (b2)
the CLM and FLUXNET-MTE, (a3) CLMET and MODIS, and (b3) CLMET and FLUXNET-MTE, and the differences between (a4) the
absolute value of (a2) and the absolute value of (a3), and (b4) the absolute value of (b2) and the absolute value of (b3) during the period
2000–2011. Numbers in titles are CONUS-averaged values.

In addition, the ET validation is also conducted at the site
scale (Figs. 8, 9, and 10). Except for Port Peck and Wind
River Crane stations in the Northwest CONUS, for all other
stations the monthly mean ET from CLMET agrees better
with the observed ET than that from the CLM (Fig. 8). The
same statement holds for daily mean ET (Figs. 9 and 10).
Generally, the CLM overestimates ET as compared with sta-
tion observations, and CLMET alleviates this overestimation,
which is consistent with comparisons between the modelled
ET and satellite-based ET products.

4.2.2 Runoff

Using the runoff coefficient (the ratio of runoff to total pre-
cipitation) derived from GSCD as the benchmark, we evalu-
ate the model performance in the CLM and CLMET in sim-
ulating runoff (Fig. 11). The CONUS-averaged runoff coef-
ficients in the CLM and CLMET are 0.18 and 0.21, which

are comparable to the GSCD-based runoff coefficient (0.22).
However, the CLM underestimates runoff in most areas of
the CONUS due to an overestimation of ET. CLMET alle-
viates the underestimation by reducing ET, thereby increas-
ing the runoff, especially over the eastern CONUS. The rel-
ative bias of CLMET against GSCD is 1.1 %, which is much
smaller than the value in the CLM (−9.2 %). Table 4 shows
the regional difference in runoff simulations in the CLM
and CLMET. The improvement is greater over the eastern
CONUS than the western CONUS, which is consistent with
the improvement of ET simulations. The most striking im-
provement occurs in the Southeast CONUS, with the rela-
tive bias (RMSE) reduced from −24.7 % (0.091) to −8.2 %
(0.06). Because only the multi-year mean annual runoff co-
efficient is available for GSCD, we cannot examine the sea-
sonal dependency of the model performance improvement.

The increase in runoff from the CLM to CLMET is mainly
due to the increase in subsurface runoff (not shown). The
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Figure 6. Seasonal cycles of ET from MODIS, FLUXNET-MTE, the CLM, and CLMET over (a) the CONUS, (b) Northwest, (c) Southwest,
(d) Northeast, and (e) Southeast during the period 2000–2011.

Table 4. Statistics of simulated annual runoff coefficients (ratio of runoff to total precipitation) against GSCD observations over the CONUS,
Northwest (NW), Southwest (SW), Northeast (NW), and Southeast (SW) during the period 2000–2014.

Bias Relative bias (%) RMSE

CLM CLMET CLM CLMET CLM CLMET

CONUS −0.053 −0.027 −18.5 −6.7 0.198 0.192
Northwest −0.046 −0.036 −13.5 −5.6 0.146 0.144
Southwest −0.026 −0.019 −19.9 −11.4 0.373 0.373
Northeast −0.06 −0.022 −15.7 −1.5 0.108 0.092
Southeast −0.074 −0.026 −24.7 −8.2 0.091 0.06

same values of the ET scaling factor within each grid cell are
applied to three components of ET (interception loss, plant
transpiration, and soil evaporation) in this study. Because in-
terception loss accounts for a small portion of total ET, the
absolute change in interception loss (decrease from the CLM

to CLMET over most areas) is much smaller compared with
plant transpiration and soil evaporation (not shown). As a re-
sult, the increase in throughfall does not change much from
the CLM to CLMET, which leads to smaller increases in sur-
face runoff. By contrast, plant transpiration and soil evapo-
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Figure 7. Time series of ET differences between model (CLM or CLMET) and reference data (MODIS or FLUXNET-MTE) over (a) the
CONUS, (b) Northwest, (c) Southwest, (d) Northeast, and (e) Southeast during the period 2000–2011.

ration are more significantly reduced by CLMET, inducing
wetter soil and therefore more subsurface runoff.

4.2.3 Soil moisture

As analyzed in Sect. 4.2.2, reductions in all three components
of ET interception loss, plant transpiration, and soil evapora-
tion from the CLM to CLMET slow down moisture depletion
from the soil. As a result, the water content in different soil
layers increases with reduced ET. Figure 12 shows soil wa-
ter at the surface and root-zone layers simulated by the CLM
and CLMET, and their differences in August. From the CLM
to CLMET, the changes over the CONUS show an over-
whelmingly increasing signal for both surface and root-zone
soil moisture. The moisture increase in the top 0–100 cm
soil layer from the CLM to CLMET in the central CONUS
is very evident, which may have significant implications in

drought monitoring and assessment. For example, the Cen-
tral Great Plains experienced a severe drought in the summer
of 2012, and soil moisture derived from land surface mod-
els was used to evaluate the intensity of the drought event
(Hoerling et al., 2014; Livneh and Hoerling, 2016). Unfor-
tunately, land surface models tend to systematically overes-
timate drought (Milly and Dunne, 2016; Ukkol et al., 2016).
The more accurate estimates of ET and soil moisture result-
ing from the bias correction method in this study may prove
useful for improving drought monitoring and assessment.

Due to the strong spatial heterogeneity of soil moisture
and the lack of large-scale distributed data, the comparisons
between observed soil moisture and modeled soil moisture
from the CLM and CLMET are done based on the spa-
tial averages across stations within each state and at the
monthly scale during 2006–2010 for the top 0–10 cm and
top 0–100 cm soil, respectively. The soil water increase from
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Figure 8. Monthly mean latent heat fluxes from the CLM and CLMET and observations at 16 flux tower sites. RMSECLM and RMSECLMET
represent the root mean square error against observations for the CLM and CLMET, respectively. Note that the CLM and CLMET simulations
are driven with meteorological forcings at the grid cell level (as opposed to site-specific forcing).

the CLM to CLMET is more evident during SON and DJF,
which is consistent with changes in ET that also features
more decreases during SON and DJF. The soil in the CLM
shows dry biases over most of the examined states, with
the exception of soil moisture in the top 10 cm layer in Al-
abama and Illinois, and CLMET generally alleviates these
dry biases. The RMSE values against the NASMD observa-
tions in CLMET are smaller than or at least the same as the
RMSE values in the CLM. An exception exists for the top
0–10 cm layer in Alabama and Illinois, where a wet bias is
found in the CLM. The soil water content difference between
the CLM and CLMET is larger for the 0–100 cm layer than
the 0–10 cm layer, because plant transpiration, with which
a large fraction of ET and therefore a large fraction of ET

bias correction are associated, primarily depletes moisture
from the rooting zone, which is deeper than 10 cm. As such,
the improvement is more evident for the top 0–100 cm layer.
For example, in Mississippi, the RMSE is reduced from
0.048 m3 m−3 in the CLM to 0.042 in CLMET in the top
0–10 cm layer, and from 0.07 to 0.06 m3 m−3 in the top 0–
100 cm layer. The improvements in Alabama, Mississippi,
Nebraska, and Oklahoma are summarized in Table 5.

5 Summary and discussions

In this study, we implemented the online bias correction ap-
proach proposed by Parr et al. (2015) to CLM4.5, and eval-
uated the effectiveness of the approach in reducing model
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Figure 9. Daily mean latent heat fluxes from the CLM and CLMET grids and station observations at ARM SGP Burn, Audubon Grassland,
Bondville, Donaldson, Flagstaff Forest, Fort Dix, Fort Peck, and Little Prospect. RMSECLM and RMSECLMET represent the root mean
square error against observations for the CLM and CLMET, respectively.

biases over the CONUS. The bias correction algorithm was
calibrated using the GLEAM ET product combined with the
default CLM4.5 output over the period of 1986–1995, and
was validated over the period of 2000–2014 using both grid-
ded and site-based ET datasets, the GSCD runoff product,
and the NASMD soil moisture data. Results from all evalu-
ation metrics indicate improved estimation of the terrestrial
hydrological cycle across most of the model domain, with
different degrees of improvement among the CONUS sub-
regions.

Qualitatively, whether the Parr et al. (2015) ET bias cor-
rection approach improves the quantification of the hydro-
logical cycle depends on whether ET is limited by water or
energy and whether ET is underestimated or overestimated.
The approach works well when/where ET is not limited by
water availability; in water-limited regimes, the approach is
effective in correcting the positive ET biases, but does not
work well if ET is underestimated. Quantitatively, the degree
of the model improvement derived from this bias correction
algorithm is highly related to whether the fundamental as-
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Figure 10. Daily mean latent heat fluxes from the CLM and CLMET grids and station observations at Mead Rainfed, Metolius Pine, Missouri
Ozark, Morgan Forest, Sylvania Wilderness, Tonzi Ranch, Walnut River, and Wind River Crane. RMSECLM and RMSECLMET represent the
root mean square error against observations for the CLM and CLMET, respectively.

sumption of Parr et al. (2015) (on a time-invariant relation-
ship characterizing the default model biases) holds or not.
Although the scaling factors between observations and sim-
ulations do not change much from the calibration period to
the validation period over most regions in most seasons, dra-
matic changes do exist in some areas. Differences in the scal-
ing factors between the calibration and validation/application
periods greatly influence the effectiveness of the bias correc-
tion method, with large differences causing the approach to
be less effective, leaving substantial biases in CLMET. The

Northeast CONUS during winter is an example of having
a large bias in CLMET due to greater changes in the ET
scaling factor from the calibration period to the verification
period.

Another factor affecting the degree of the model improve-
ment is whether the ET scaling is applied at all. As shown in
Fig. 2, we do not scale ET in some areas of the Northwest
CONUS during the winter months due to the inconsistency
in the ET sign (positive or negative) between GLEAM and
the CLM. In these areas and season(s), ET in CLMET is not
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Figure 11. Mean annual runoff coefficient (the ratio runoff to total precipitation) from (a) the Global Streamflow Characteristics Dataset
(GSCD), (b) the CLM, and (c) CLMET, and the relative differences between (d) the CLM and GSCD, (e) CLMET and GSCD, and (f)
CLMET and the CLM during the period 2000–2014. Runoff coefficients of less than 0.02 are blanked out. Numbers in titles are CONUS-
averaged values.

corrected at all. All of these three factors (i.e., whether the
scaling factor differs significantly between calibration and
validation periods, whether ET is underestimated in water-
limited regimes, and whether ET scaling is applied at all) in-
fluence the effectiveness of the bias correction approach, but
one or two of them may dominate for a given region/season.
For example, regardless of which product is used as the ref-
erence for comparison (Figs. 3g, 5a4, and b4), the approach
reduces ET biases over the eastern CONUS where the ET
scaling is applied in most places/seasons and the scaling fac-
tor shows little difference between the calibration and valida-
tion periods. In contrast, in the northern part of the Midwest,
some positive biases still remain in CLMET, as the ET scal-
ing is not applied in winter months and the scaling factor
differs quite substantially between these two periods. Over
some areas of the western CONUS, the bias correction ap-
proach is less effective due to the underestimation of ET un-
der a water-limited condition and large differences between
calibration and validation periods in the scaling factor.

For a given grid cell and given month, the scaling factors
for all three ET components, i.e., interception loss, plan tran-
spiration, and soil evaporation, are the same in this study, set
to be the ratio of the remote sensing ET to the modeled ET.
Since the GLEAM dataset contains values of three compo-
nents besides the total ET, we conducted additional experi-
ments in which the scaling factor for each ET component was

estimated separately, using the ratio of each ET component
from the GLEAM product to the corresponding ET compo-
nent from the CLM during the same calibration period. How-
ever, results based on the component-specific scaling do not
show further improvement, which is likely due to the inaccu-
rate partitioning of ET into interception loss, plan transpira-
tion, and soil evaporation in the GLEAM product. Miralles
et al. (2016) compared the ET partitioning for three widely
used remote sensing-based ET products, and found that the
contribution of each component to ET is dramatically differ-
ent among these three products. For instance, they found that
the percentage of global ET accounted for by soil evapora-
tion ranges from 14 to 52 %, and the ranges are even larger
at the regional and local scales. Because the in situ measure-
ments of separate components of ET are very scarce, it is par-
ticularly challenging to validate the accuracy of the remote
sensing-based estimates of the three ET components. These
challenges led Miralles et al. (2016) to recommend against
the use of any single product in partitioning ET.

The bias correction method evaluated in this study can ef-
fectively improve the estimates of surface fluxes and state
variables in the absence of improved physical parameter-
izations in land surface models. It is applicable to not
only historical simulations, but also future predictions (Parr
et al., 2015). It provides an alternative approach to, but would
in no way replace, model improvement through better pa-

www.hydrol-earth-syst-sci.net/21/3557/2017/ Hydrol. Earth Syst. Sci., 21, 3557–3577, 2017



3574 D. Wang et al.: Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

Figure 12. Simulated soil moisture (mm) in the top (a) 0–10 cm and (b) 0–100 cm layers in August from (1) the CLM and (2) CLMET, (3)
their differences, and (4) their relative differences during the period 2000–2014.

Table 5. Root mean square error (RMSE) values of monthly vol-
umetric soil moisture (m−3 m−3) simulated by CLM and CLMET
relative to the quality controlled NASMD for the top 0–10 cm soil
layer and for the top 0–100 cm soil layer over Alabama, Illinois,
Mississippi, Nebraska, and Oklahoma.

top 0–10 cm soil top 0–10 cm soil
water content water content

CLM CLMET CLM CLMET

Alabama 0.044 0.048 0.027 0.020
Illinois 0.019 0.021 0.038 0.034
Mississippi 0.048 0.042 0.070 0.060
Nebraska 0.014 0.014 0.032 0.025
Oklahoma 0.050 0.045 0.039 0.032

rameterization of physical processes. Development of better
physical parameterizations has to be based on improved un-
derstanding of physical processes, more effective mathemat-
ical formulations, and higher-quality surface type datasets,
which require a long-term commitment from the land surface
modeling community. Model parameter calibration (e.g., tun-
ing surface resistance) is another way to reduce model bias
(Ren et al., 2016). However, the parameter space may con-
tain nonphysical parameter subsets (Ray et al., 2015), which
is especially an issue when model parameter tuning is used
to offset unrelated model deficits. The method used in this
study attempts to avoid such issues by improving the model
performance without dealing with calibration of model phys-
ical parameters. However, results from this study can provide
useful guidance for physically based land surface model de-
velopment. As can be seen from Fig. 3g, the bias correction
algorithm improves ET estimation over most of the US, indi-
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cating a strong potential for performance improvement that
can be derived from improving the physical parameteriza-
tion of ET processes in the model. Over regions where the
bias correction approach does not improve the ET estimate
(which are mostly places where ET is water-limited, while
the model underestimates ET), parameterizations for other
processes that influence soil moisture (e.g., runoff genera-
tion, groundwater interactions) are the most likely cause of
model biases and should be the focus of physically based
model development effort.
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bgc-jena.mpg.de/geodb/projects/Data.php (Max Planck Institute
for Biogeochemistry, 2011). The GSCD runoff data were provided
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