Articles | Volume 20, issue 11
https://doi.org/10.5194/hess-20-4483-2016
https://doi.org/10.5194/hess-20-4483-2016
Research article
 | 
08 Nov 2016
Research article |  | 08 Nov 2016

Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA

Caitlin A. Orem and Jon D. Pelletier

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021,https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary
Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography
Jon D. Pelletier and Jason P. Field
Earth Surf. Dynam., 4, 391–405, https://doi.org/10.5194/esurf-4-391-2016,https://doi.org/10.5194/esurf-4-391-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
To what extent does river routing matter in hydrological modeling?
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023,https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023,https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
An advanced tool integrating failure and sensitivity analysis into novel modeling of the stormwater flood volume
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023,https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
airGRteaching: an open-source tool for teaching hydrological modeling with R
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023,https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023,https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary

Cited articles

Baeck, M. L. and Smith, J. A.: Rainfall estimates by the WSR-88D for heavy rainfall events, Weather Forecast., 13, 416–436, 1998.
Baker, V. R.: Paleoflood hydrology and extraordinary flood events, J. Hydrol., 96, 77–99, 1987.
Brutsaert, W.: Review of Green's functions for linear open channels, J. Eng. Mech.-ASCE, 99, 1247–1257,1973.
Buishand, T. A.: Extreme rainfall estimation by combining data from several sites, Hydrolog. Sci. J., 36, 345–365, https://doi.org/10.1080/02626669109492519, 1991.
Burton Jr., G. A. and Pitt, R. E. (Eds.): Stormwater effects handbook: a toolbox for watershed managers, scientists, and engineers, Lewis Publishers, Boca Raton, Florida, 2001.
Download
Short summary
We present a new method that incorporates flood-envelope-curve methods, radar-derived precipitation data, and flow-routing algorithms to calculate frequency-magnitude-area curves (FMAC). Our results show that flood discharges increase as a power-law function for small contributing areas, but start to increase more slowly at higher contributing areas. We find that our FMACs have similar and/or higher flood discharges than published flood-envelope curves for the same areas.