Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-1049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fault damage zone volume and initial salinity distribution determine intensity of shallow aquifer salinisation in subsurface storage
Elena Tillner
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Maria Langer
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Thomas Kempka
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Michael Kühn
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
University of Potsdam, Institute of Earth- and Environmental Science, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Related authors
No articles found.
Michael Kühn, Giorgia Stasi, Viktor J. Bruckman, Sonja Martens, and Johannes Miocic
Adv. Geosci., 65, 113–115, https://doi.org/10.5194/adgeo-65-113-2024, https://doi.org/10.5194/adgeo-65-113-2024, 2024
Stefan Kunz, Alexander Schulz, Maria Wetzel, Maximilian Nölscher, Teodor Chiaburu, Felix Biessmann, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3484, https://doi.org/10.5194/egusphere-2024-3484, 2024
Short summary
Short summary
Accurate groundwater level predictions are essential for a sustainable groundwater management. This study applies two machine learning (ML) models—N-HiTS and TFT—to seasonally predict groundwater levels for 5,288 monitoring wells across Germany. Both approaches provided good predictions across diverse hydrogeological conditions, whereby N-HiTS outperformed the TFT. Both models showed better perforance in areas with high data density, in lowlands, and when distinct seasonal dynamics occurred.
Michael Kühn, Vaughan Stagpoole, Graham Paul D. Viskovic, and Thomas Kempka
Adv. Geosci., 65, 1–7, https://doi.org/10.5194/adgeo-65-1-2024, https://doi.org/10.5194/adgeo-65-1-2024, 2024
Short summary
Short summary
Waiwera is a small coastal village located on New Zealand's North Island above a geothermal reservoir. The origin of the warm water is not well understood. An inferred fault zone at the base of the reservoir is thought to channelise the uprising thermal water. The observed characteristic cold and hot water distribution in the system was simulated and the temperature profiles show an improved agreement in the near field around the centre of the reservoir.
Michael Kühn, Viktor J. Bruckman, Sonja Martens, Johannes Miocic, and Giorgia Stasi
Adv. Geosci., 62, 67–69, https://doi.org/10.5194/adgeo-62-67-2024, https://doi.org/10.5194/adgeo-62-67-2024, 2024
Theresa Hennig and Michael Kühn
Adv. Geosci., 62, 21–30, https://doi.org/10.5194/adgeo-62-21-2023, https://doi.org/10.5194/adgeo-62-21-2023, 2023
Short summary
Short summary
Uranium migration for a close to real case situation is quantified with reactive transport simulations using input data from the deep geothermal borehole Schlattingen, which is near the targeted area in Switzerland, and including the effect of the multi-barrier system on the source term. The hydrogeological system must always be considered in safety assessments since adjacent aquifers have a major impact on the pore water geochemistry, and hence sorption processes.
Theresa Hennig and Michael Kühn
Saf. Nucl. Waste Disposal, 2, 147–147, https://doi.org/10.5194/sand-2-147-2023, https://doi.org/10.5194/sand-2-147-2023, 2023
Short summary
Short summary
Migration of uranium in the potential host rock Opalinus Clay is used as an example to demonstrate the extent to which simulated migration lengths can vary for a million years, depending on the model concept and on the underlying data and parameters. To reduce the uncertainty in this context, the calcite carbonate ion and the hydrogeological system at a potential disposal site need to be known, whereas the quantity of clay minerals plays a subordinate role, as long as it is enough.
Michael Kühn, Dirk Bosbach, Horst Geckeis, Vinzenz Brendler, and Olaf Kolditz
Saf. Nucl. Waste Disposal, 2, 195–195, https://doi.org/10.5194/sand-2-195-2023, https://doi.org/10.5194/sand-2-195-2023, 2023
Short summary
Short summary
The Repository Site Selection Act explicitly emphasises that targeting the disposal of high-level radioactive waste is a so-called learning process. We are of the opinion that the procedure and the available data should be combined with geoscientific knowledge to support the identification of siting regions. We propose this workshop and invite all experts who have dealt with the search for a repository site from a geoscientific perspective.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, and Michael Kühn
Adv. Geosci., 58, 87–91, https://doi.org/10.5194/adgeo-58-87-2022, https://doi.org/10.5194/adgeo-58-87-2022, 2022
Morgan Tranter, Svenja Steding, Christopher Otto, Konstantina Pyrgaki, Mansour Hedayatzadeh, Vasilis Sarhosis, Nikolaos Koukouzas, Georgios Louloudis, Christos Roumpos, and Thomas Kempka
Adv. Geosci., 58, 67–76, https://doi.org/10.5194/adgeo-58-67-2022, https://doi.org/10.5194/adgeo-58-67-2022, 2022
Short summary
Short summary
The quantification of the impacts on the environment and human health is a crucial prerequisite for geological sub-surface utilisation projects. With the presented approach, the shortcomings of using conceptually simplified models are substantially reduced, since subsurface complexities are accounted for. The transparency of the assessment basis should generally increase the acceptance of geoengineering projects, considered one of the crucial aspects for geological subsurface utilisation.
Christopher Otto, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár, and Thomas Kempka
Adv. Geosci., 58, 55–66, https://doi.org/10.5194/adgeo-58-55-2022, https://doi.org/10.5194/adgeo-58-55-2022, 2022
Short summary
Short summary
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater pollution resulting from a water-borne contaminant pool has been undertaken. A sensitivity analysis was carried out by means of numerical simulations. Simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of shallow groundwater aquifers. A parameter correlation analysis is presented.
Elena Chabab, Michael Kühn, and Thomas Kempka
Adv. Geosci., 58, 47–54, https://doi.org/10.5194/adgeo-58-47-2022, https://doi.org/10.5194/adgeo-58-47-2022, 2022
Short summary
Short summary
The present study, uses density-driven flow and transport models to evaluate mechanisms of saline water intrusion from deep aquifers into the freshwater column used for drinking water supply under different boundary conditions and for a specific site in the German Federal State of Brandenburg. Results show that mainly decreasing groundwater recharge leads to increased and earlier salinisation which highlights the need for waterworks to initiate effective countermeasures quickly and in time.
Michael Kühn, Melissa Präg, Ivy Becker, Christoph Hilgers, Andreas Grafe, and Thomas Kempka
Adv. Geosci., 58, 31–39, https://doi.org/10.5194/adgeo-58-31-2022, https://doi.org/10.5194/adgeo-58-31-2022, 2022
Short summary
Short summary
The geothermal hot water reservoir below the small town of Waiwera in New Zealand has been known to the indigenous Maori for many centuries. Overproduction by European immigrants led to a water level decrease and consequently artesian flow from the wells and the seeps on the beach ceased. The Te Kaunihera o Tāmaki Makaurau Auckland Council established the Waiwera Thermal Groundwater Allocation and Management Plan to allow the geothermal system to recover.
Thomas Kempka, Svenja Steding, and Michael Kühn
Adv. Geosci., 58, 19–29, https://doi.org/10.5194/adgeo-58-19-2022, https://doi.org/10.5194/adgeo-58-19-2022, 2022
Short summary
Short summary
The TRANSPORT Simulation Environment (TRANSPORTSE) was coupled with the geochemical reaction module PHREEQC, providing multiple new features that make it applicable to complex reactive transport problems in various geoscientific fields. Two computationally demanding and complex geochemical benchmarks were used in the present study to successfully verify the code implementation.
Theresa Hennig and Michael Kühn
Adv. Geosci., 58, 11–18, https://doi.org/10.5194/adgeo-58-11-2022, https://doi.org/10.5194/adgeo-58-11-2022, 2022
Short summary
Short summary
Safety assessments must demonstrate that radionuclides in potential disposal sites are retained within the containment providing rock zone using reactive transport simulations. Here, this is quantified for the example of uranium in the hydrogeological system of the Opalinus Clay at Mont Terri. Our work clearly shows how sensitive migration lengths resulting from simulations are to the model conceptualisation and selection of underlying data.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 58, 1–10, https://doi.org/10.5194/adgeo-58-1-2022, https://doi.org/10.5194/adgeo-58-1-2022, 2022
Short summary
Short summary
Porosity-permeability relations are simulated for a precipitation-dissolution cycle in a virtual sandstone. A hysteresis in permeability is observed depending on the geochemical process and dominating reaction regime, whereby permeability varies by more than two orders of magnitude. Controlling parameters for this hysteresis phenomenon are the closure and re-opening of micro-scale flow channels, derived from changes in pore throat diameter and connectivity of the pore network.
Marco De Lucia, Michael Kühn, Alexander Lindemann, Max Lübke, and Bettina Schnor
Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021, https://doi.org/10.5194/gmd-14-7391-2021, 2021
Short summary
Short summary
POET is a parallel reactive transport simulator which implements a mechanism to store and reuse previous results of geochemical simulations through distributed hash tables. POET parallelizes chemistry using a master/worker design with noncontiguous grid partitions to maximize its efficiency and load balance on shared-memory machines and compute clusters.
Michael Kühn and Leonard Grabow
Adv. Geosci., 56, 107–116, https://doi.org/10.5194/adgeo-56-107-2021, https://doi.org/10.5194/adgeo-56-107-2021, 2021
Short summary
Short summary
The geothermal reservoir at Waiwera has been subject to active exploitation for a long time. However, the continuous production of geothermal water, to supply hotels and spas, had a negative impact on the reservoir. The aim of this work was to link the influence of the abstraction rates to the measured water level data to derive reservoir properties. For the analysis, a modified deconvolution algorithm was implemented and shown to be applicable and in accordance to results of a pumping test.
Dirk Bosbach, Horst Geckeis, Frank Heberling, Olaf Kolditz, Michael Kühn, Katharina Müller, Thorsten Stumpf, and the iCROSS team
Saf. Nucl. Waste Disposal, 1, 85–87, https://doi.org/10.5194/sand-1-85-2021, https://doi.org/10.5194/sand-1-85-2021, 2021
Short summary
Short summary
The present contribution provides an overview on the collaborative project iCROSS and reports selected results. The impact of considering complex coupled processes in repository subsystems for the assessment of the integrity of a given (generic) repository arrangement will be discussed. The interdisciplinary team combines experimental work in the lab, in the underground rock laboratory and environmental simulations in order to achieve process understanding across variable scales.
Theresa Hennig and Michael Kühn
Adv. Geosci., 56, 97–105, https://doi.org/10.5194/adgeo-56-97-2021, https://doi.org/10.5194/adgeo-56-97-2021, 2021
Short summary
Short summary
Uranium migration in the Swiss Opalinus Clay is used as an example to quantify the influence of varying values of a stability constant in the underlying thermodynamic database within the law of mass action on the migration lengths. The difference of the stability constant of 1.33 log units lead to changed migration lengths of 5 m to 7 m. With a maximum diffusion distance of 22 m the influence of an uncertain stability constant is negligible for the host rock scale.
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021, https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Short summary
Barite formation is an important factor for many use cases of the geological subsurface because it may change the rock.
In this modelling study, the replacement reaction of celestite to barite is investigated.
The steps that were identified to play a role are celestite dissolution followed by two-step precipitation of barite: spontaneous formation of small crystals and their subsequent growth.
Explicitly including the processes improve the usability of the models for quantified prediction.
Marco De Lucia and Michael Kühn
Adv. Geosci., 56, 33–43, https://doi.org/10.5194/adgeo-56-33-2021, https://doi.org/10.5194/adgeo-56-33-2021, 2021
Short summary
Short summary
RedModRphree is an R extension package to leverage the PHREEQC engine for geochemical models, providing convenience functions to efficiently setup computations and program algorithms involving geochemical models. Version 0.3.6 ships with a novel implementation of Pourbaix (potential/pH) diagram computation which considers the full speciation of the solution at each diagram point.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021, https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary
Short summary
DecTree evaluates a hierarchical coupling method for reactive transport simulations in which pre-trained surrogate models are used to speed up the geochemical subprocess, and equation-based
full-physicssimulations are called only if the surrogate predictions are implausible. Furthermore, we devise and evaluate a decision tree surrogate approach designed to inject domain knowledge of the surrogate by defining engineered features based on law of mass action or stoichiometric reaction equations.
Melissa Präg, Ivy Becker, Christoph Hilgers, Thomas R. Walter, and Michael Kühn
Adv. Geosci., 54, 165–171, https://doi.org/10.5194/adgeo-54-165-2020, https://doi.org/10.5194/adgeo-54-165-2020, 2020
Short summary
Short summary
Utilization of geothermal reservoirs as alternative energy source is becoming increasingly important worldwide. Here, we studied the surface expression of a warm water reservoir in Waiwera, New Zealand, that has been known for many centuries but remained little explored. Using thermal infrared cameras we were able to show renewed activity of the hot springs on the beachfront and identified faults and fractures as important fluid pathways, as well as individual fluid conducting lithologies.
Michael Kühn, Natalie C. Nakaten, and Thomas Kempka
Adv. Geosci., 54, 173–178, https://doi.org/10.5194/adgeo-54-173-2020, https://doi.org/10.5194/adgeo-54-173-2020, 2020
Short summary
Short summary
Energy supply in Germany is subject to a profound change. The present paper addresses the German potential of storing excess energy from renewable power sources in the geological subsurface. Wind and solar electricity can be transformed into hydrogen, and with carbon dioxide subsequently into methane. The current potential for combined subsurface storage of methane and carbon dioxide allows to store far more than required to date and is estimated to provide the entire coverage in 2050.
Thomas Kempka
Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020, https://doi.org/10.5194/adgeo-54-67-2020, 2020
Short summary
Short summary
The TRANsport Simulation Environment (TRANSE) has been developed to improve the flexibility for coupling chemical libraries with fluid flow and the transport of heat and chemical species. The Python-based implementation of TRANSE enables users not experienced in low-level programming languages (e.g., C, C++ or FORTRAN) to undertake required code modifications and integrate chemical modules as required. TRANSE has been successfully verified against benchmarks on density-driven fluid flow.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 54, 33–39, https://doi.org/10.5194/adgeo-54-33-2020, https://doi.org/10.5194/adgeo-54-33-2020, 2020
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Márk Somogyvári, Michael Kühn, and Sebastian Reich
Adv. Geosci., 49, 207–214, https://doi.org/10.5194/adgeo-49-207-2019, https://doi.org/10.5194/adgeo-49-207-2019, 2019
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Michael Kühn and Tim Schöne
Adv. Geosci., 45, 235–241, https://doi.org/10.5194/adgeo-45-235-2018, https://doi.org/10.5194/adgeo-45-235-2018, 2018
Short summary
Short summary
The water level of the Waiwera geothermal reservoir increased in the hours and days after the Kaikoura earthquake on 14 November 2016. We determined in a continuous time series consisting of monthly means of water level data and pumping rates starting in 1986 if events above a certain strength alter groundwater dynamics at Waiwera. A clear correlation cannot be proven but none of the recorded earthquakes led to such a high energy density in Waiwera as the Kaikoura event did.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Kristen Mitchell, Luke Griffiths, and Michael Kühn
Adv. Geosci., 45, 163–166, https://doi.org/10.5194/adgeo-45-163-2018, https://doi.org/10.5194/adgeo-45-163-2018, 2018
M. De Lucia, T. Kempka, and M. Kühn
Geosci. Model Dev., 8, 279–294, https://doi.org/10.5194/gmd-8-279-2015, https://doi.org/10.5194/gmd-8-279-2015, 2015
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
A high-resolution map of diffuse groundwater recharge rates for Australia
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Technical note: A model of chemical transport in a wellbore–aquifer system
Disentangling coastal groundwater level dynamics in a global dataset
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
On the challenges of global entity-aware deep learning models for groundwater level prediction
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
A general model of radial dispersion with wellbore mixing and skin effects
Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization with application to Lake Vrana, Croatia
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Three-dimensional hydrogeological parametrization using sparse piezometric data
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments
Experimental study of non-Darcy flow characteristics in permeable stones
Karst spring discharge modeling based on deep learning using spatially distributed input data
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Early hypogenic carbonic acid speleogenesis in unconfined limestone aquifers by upwelling deep-seated waters with high CO2 concentration: a modelling approach
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Short summary
In this paper, we investigate the impact of climatic and anthropogenic factors on future groundwater availability. The changes are simulated using hydrological and groundwater flow models. We find that future groundwater status is influenced more by anthropogenic factors than climatic factors. The results are beneficial for informing responsible parties in operational water management about achieving future (ground)water governance.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024, https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
EGUsphere, https://doi.org/10.5194/egusphere-2024-794, https://doi.org/10.5194/egusphere-2024-794, 2024
Short summary
Short summary
This study explores how deep learning can improve our understanding of groundwater levels, using an approach that combines climate data and physical characteristics of aquifers. By focusing on different types of groundwater levels and employing techniques like clustering and wavelet transform, the study highlights the importance of targeting relevant information. This research not only advances groundwater simulation but also emphasizes the benefits of different modelling approaches.
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024, https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
Short summary
We investigate the interaction of transport with dissolution–precipitation reactions in porous media using the concepts of entropy and work to quantify the emergence of preferential flow paths. We show that the preferential-flow-path phenomenon and the hydraulic power required to maintain the driving pressure drop intensify over time along with the heterogeneity due to the interaction between the transport and the reactive processes. This is more pronounced in diffusion-dominated flows.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024, https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary
Short summary
1. A revised 3D model of solute transport is developed in the well–aquifer system. 2. The accuracy of the new model is tested against benchmark analytical solutions. 3. Previous models overestimate the concentration of solute in both aquifers and wellbores in the injection well test case. 4. Previous models underestimate the concentration in the extraction well test case.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024, https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
Short summary
Pollutant release history and source identification are helpful for managing water resources, but it remains a challenge to reliably identify such information for real-world, complex transport processes in rivers and aquifers. In this study, we filled this knowledge gap by deriving a general backward governing equation and developing the efficient solver. Field applications showed that this model and solver are applicable for a broad range of flow systems, dimensions, and spatiotemporal scales.
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023, https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary
Short summary
Wetlands are important ecosystems that store carbon and play a vital role in the water cycle. However, hydrological computer models do not always represent wetlands and their interaction with groundwater accurately. We tested different possible ways to include groundwater–wetland interactions in these models. We found that the optimal method to include wetlands and groundwater in the models is reliant on the intended use of the models and the characteristics of the land and soil being studied.
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023, https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short summary
Understanding groundwater travel time (groundwater age) is crucial for tracking flow and contaminants. While groundwater age is usually inferred from age tracers, this study utilised two machine learning techniques with common groundwater chemistry data. The results of both methods correspond to traditional approaches. They are useful where hydrochemistry data exist but age tracer data are limited. These methods could help enhance our knowledge, aiding in sustainable freshwater management.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023, https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
Short summary
The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for estimating aquifer parameters required in the optimization design of remediation strategies. A general model and associated analytical solutions are developed in this study. The new model represents the most recent advancement on radial dispersion studies and incorporates a host of important processes that are not taken into consideration in previous investigations.
Vanja Travaš, Luka Zaharija, Davor Stipanić, and Siniša Družeta
Hydrol. Earth Syst. Sci., 27, 1343–1359, https://doi.org/10.5194/hess-27-1343-2023, https://doi.org/10.5194/hess-27-1343-2023, 2023
Short summary
Short summary
In order to model groundwater flow in karst aquifers, it is necessary to approximate the influence of the unknown and irregular structure of the karst conduits. For this purpose, a procedure based on inverse modeling is adopted. Moreover, in order to reconstruct the functional dependencies related to groundwater flow, the particle swarm method was used, through which the optimal solution of unknown functions is found by imitating the movement of ants in search of food.
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023, https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Short summary
We documented the step-like increases of water level, flow rate, and water temperatures in a confined aquifer following multiple earthquakes. By employing tidal analysis and a coupled temperature and flow rate model, we find that post-seismic vertical permeability changes and recharge model could explain the co-seismic response. And co-seismic temperature changes are caused by mixing of different volumes of water, with the mixing ratio varying according to each earthquake.
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023, https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Short summary
The reproduction of flows and contaminations underground requires a good estimation of the parameters of the geological environment (mainly permeability and porosity), in three dimensions. While most researchers rely on geophysical methods, which are costly and difficult to implement in the field, this study proposes an alternative using data that are already widely available: piezometric records (monitoring of the water table) and the lithological description of the piezometric wells.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022, https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022, https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Short summary
Assessment of the karst network geometry is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an approach for the identification of effective three-dimensional discrete karst conduit networks conditioned on tracer tests and geophysical data. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site in Poitiers, France.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Short summary
This work demonstrates the relevance of using a water budget model to understand long-term transient and regional-scale groundwater recharge (GWR) in cold and humid climates where groundwater observations are scarce. Monthly GWR is simulated for 57 years on 500 m x 500 m cells in Canada (36 000 km2 area) with limited uncertainty due to a robust automatic calibration method. The increases in precipitation and temperature since the 1960s have not yet produced significant changes in annual GWR.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021, https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Franci Gabrovšek and Wolfgang Dreybrodt
Hydrol. Earth Syst. Sci., 25, 2895–2913, https://doi.org/10.5194/hess-25-2895-2021, https://doi.org/10.5194/hess-25-2895-2021, 2021
Short summary
Short summary
The evolution of karst aquifers is often governed by solutions gaining their aggressiveness in depth. Although the principles of
hypogene speleogenesisare known, modelling studies based on reactive flow in fracture networks are missing. We present a model where dissolution at depth is triggered by the mixing of waters of different origin and chemistry. We show how the initial position of the mixing zone and flow instabilities therein determine the position and shape of the final conduits.
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Cited articles
Bense, V. F. and Person, M. A.: Faults as conduit-barrier systems to fluid
flow in siliciclastic sedimentary aquifers, Water Resour. Res., 47, W05421, https://doi.org/10.1029/2005WR004480, 2006.
Bergmo, P. E. S., Grimstad, A.-A., and Lindeberg, E.: Simultaneous CO2
injection and water production to optimise aquifer storage capacity, Int. J.
Greenh. Gas Con., 5, 555–564, https://doi.org/10.1016/j.ijggc.2010.09.002, 2011.
Beutler, G. and Stackebrandt, W.: Der Schollenbau des Tafeldeckgebirges von
Brandenburg – Vorschlag für eine einheitliche Benennung [The tectonic
pattern of the sedimentary cover of Brandenburg – suggestion for a uniform
nomenclature], Brandenburgische Geowissenschaftliche Beiträge, 19,
93–109, 2012.
Birkholzer, J. T., Zhou, Q., and Tsang, C.-F.: Large-scale impact of CO2
storage in deep saline aquifers: a sensitivity study on pressure response in
stratified systems, Int. J. Greenh. Gas Con., 3, 181–194,
https://doi.org/10.1016/j.ijggc.2008.08.002, 2009.
Birkholzer, J. T., Nicot, J. P., Oldenburg, C. M., Zhou, Q., Kraemer, S., and
Bandilla, K.: Brine flow up a well caused by pressure perturbation from
geologic carbon sequestration: static and dynamic evaluations, Int. J.
Greenh. Gas Con., 5, 850–861, https://doi.org/10.1016/j.ijggc.2011.01.003, 2011.
Buscheck, T. A., Sun, Y., Hao, Y., Wolery, T. J., Bourcier, W., Tompson, A.
F. B., Jones, E. D., Friedmann, S. J., and Aines, R. D.: Combining brine
extraction, desalination, and residual-brine reinjection with CO2
storage in saline formations: Implications for pressure management,
capacity, and risk mitigation, Energy Procedia, 4, 4283–4290,
https://doi.org/10.1016/j.egypro.2011.02.378, 2011.
Caine, J., Evans, J., and Forster, C.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028,
https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2,
1996.
Cappa, F. and Rutqvist, J.: Modeling of coupled deformation and permeability
evolution during fault reactivation induced by deep underground injection of
CO2, Int. J. Greenh. Gas Con., 5, 336–346,
https://doi.org/10.1016/j.ijggc.2010.08.005, 2011.
Cavanagh, A. and Wildgust, N.: Pressurization and brine displacement issues
for deep saline formation CO2 storage, Energy Procedia, 4, 4814–4821,
https://doi.org/10.1016/j.egypro.2011.02.447, 2011.
Chin, L. Y., Raghavan, R., and Thomas, L. K.: Fully coupled geomechanics and
fluid-flow analysis of wells with stress-dependent permeability, SPE J.,
5, 32–45, https://doi.org/10.2118/58968-PA, 2000.
Chiaramonte, L., Zoback, M. D., Friedmann, S. J., and Stamp, V.: Seal
integrity and feasibility of CO2 sequestration in the Teapot Dome EOR
Pilot: Geomechanical site characterization, Environ. Geol., 54,
1667–1675, https://doi.org/10.1007/s00254-007-0948-7, 2008.
Court, B., Bandilla, K. W., Celia, M. A., Buscheck, T. A., Nordbotten, J. M.,
Dobossy, M., and Janzen, A.: Initial evaluation of advantageous synergies
associated with simultaneous brine production and CO2 geological
sequestration, Int. J. Greenh. Gas Con., 8, 90–100,
https://doi.org/10.1016/j.ijggc.2011.12.009, 2012.
Crawford, B. R., Faulkner, D. R., and Rutter, E. H.: Strength, porosity, and
permeability development during hydrostatic and shear loading of synthetic
quartz-clay fault gouge, J. Geophys. Res.-Sol. Ea., 113, B03207,
https://doi.org/10.1029/2006JB004634, 2008.
Dempsey, D., Kelkar, S., and Pawar, R.: Passive injection: A strategy for
mitigating reservoir pressurization, induced seismicity and brine migration
in geologic CO2 storage, Int. J. Greenh. Gas Con., 28, 96–113,
https://doi.org/10.1016/j.ijggc.2014.06.002, 2014.
Egholm, D. L., Clausen, O. R., Sandiford, M., Kristensen, M. B., and
Korstgård, J. A.: The mechanics of clay smearing along faults, Geology,
36, 787–790, https://doi.org/10.1130/G24975A.1, 2008.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K.,
Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments
concerning the structure, mechanics and fluid flow properties of fault
zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Fisher, Q. J. and Knipe, R. J.: The permeability of faults within
siliciclastic petroleum reservoirs of the North Sea and Norwegian
Continental Shelf, Mar. Petrol. Geol., 18, 1063–1081,
https://doi.org/10.1016/S0264-8172(01)00042-3, 2001.
Fitts, J. P. and Peters, C. A.: Caprock Fracture Dissolution and CO2
Leakage, Rev. Mineral. Geochem., 77, 459–479, https://doi.org/10.2138/rmg.2013.77.13, 2013.
Forster, C. B. and Evans, J. P.: Fluid flow in thrust faults and crystalline
thrust sheets: Results of combined field and modeling studies, Geophys. Res.
Lett., 18, 979–982, 1991.
Grube, A., Wichmann, K., Hahn, J., and Nachtigall, K.: Geogene
Grundwasserversalzung in den Poren-Grundwasserleitern Norddeutschlands und
ihre Bedeutung für die Wasserwirtschaft, DVGW-Technologiezentrum Wasser,
Band 9, Karlsruhe, 2000.
Hannemann, M. and Schirrmeister, W.: Paläohydrogeologische Grundlagen
der Entwicklung der Süß-/Salzwassergrenze und der
Salzwasseraustritte in Brandenburg [Paleohydrological basics of the
development of the boundary of fresh and salt water as well as of the salt
water-outlets in Brandenburg], Brandenburgische Geowissenschaftliche
Beiträge, 5, 61–72, 1998.
Harris, S. D., McAllister, E., Knipe, R. J., and Odling, N. E.: Predicting the
three-dimensional population characteristics of fault zones: a study using
stochastic models, J. Struct. Geol., 25, 1281–1299,
https://doi.org/10.1016/S0191-8141(02)00158-X, 2003.
Hotzan, G. and Voss, T.: Komplexe hydrogeochemisch-genetische Kartierung zur
Einschätzung der Salzwassergefährdung pleistozäner und
tertiärer Grundwasserleiter im Raum Storkow-Frankfurt
(Oder)-Eisenhüttenstadt [Complex hydrogeochemic-genetic mapping for
evaluation of the endangerment of pleistocene and tertiary aquifers by
saline waters in the region Storkow-Frankfurt (Oder)-Eisenhüttenstadt],
Brandenburgische Geowissenschaftliche Beiträge, 20, 62–82, 2013.
IEA Greenhouse Gas R&D Programme (IEA GHG): CCS Site Characterization
Criteria, Technical Study, Report No. 2009/10, 130 pp., 2008.
IPCC – Metz, B., Davidson, O., de Coninck, H.C., Loos, M. and Meyer L.A.
(Eds.): IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared
by Working Group III of the Intergovernmental Panel on Climate Change,
Cambridge University Press, New York, 431 pp., 2005.
Jourde, H., Flodin, E., Aydin, A., Durlovsky, L., and Wen, X.: Computing
permeability of fault zones in eolian sandstone from outcrop measurements,
AAPG Bull., 86, 1187–1200,
https://doi.org/10.1306/61EEDC4C-173E-11D7-8645000102C1865D, 2002.
Kempka, T., Klapperer, S., and Norden, B.: Coupled hydro-mechanical
simulations demonstrate system integrity at the Ketzin pilot site for
CO2 storage, in: Rock Engineering and Rock Mechanics: Structures in and on Rock
Masses; Proceedings of EUROCK 2014, ISRM European Regional Symposium, edited by:
Alejano, L., Perucho, A., Olalla, C., and Jiménez,
R., Leiden: CRC Press/Balkema, 1317–1322, 2014.
Kempka, T., Herd, R., Huenges, E., Endler, R., Jahnke, C., Janetz, S.,
Jolie, E., Kühn, M., Magri, F., Meinert, P., Moeck, I., Möller, M.,
Muñoz, G., Ritter, O., Schafrik, W., Schmidt-Hattenberger, C., Tillner,
E., Voigt, H.-J., and Zimmermann, G.: Joint Research Project Brine: Carbon
Dioxide Storage in Eastern Brandenburg: Implications for Synergetic
Geothermal Heat Recovery and Conceptualization of an Early Warning System
Against Freshwater Salinization, in: Geological Storage of CO2 – Long Term Security Aspects, edited by:
Liebscher, A. and Münch, U.,
GEOTECHNOLOGIEN Science Report No.22, Advanced Technologies in Earth
Sciences, Springer International Publishing, 139–166, 2015a.
Kempka, T., Nielsen, C. M., Frykman, P., Shi, J.-Q., Bacci, G., and Dalhoff,
F.: Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by
Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation
Fluid Extraction, Oil Gas Sci. Technol., 70, 599–613,
https://doi.org/10.2516/ogst/2014029, 2015b.
Kühn, M. and Kempka, T.: CO2 Pressurisation of a Storage Reservoir
does not Lead to Salinization of Shallower Aquifers through Intact Caprocks,
Energy Procedia, 76, 607–615, https://doi.org/10.1016/j.egypro.2015.07.880, 2015.
Magri, F., Tillner, E., Wang, W., Watanabe, N., Zimmermann, G., and Kempka,
T.: 3-D Hydro-mechanical Scenario Analysis to Evaluate Changes of the Recent
Stress Field as a Result of Geological CO2 Storage, Energy Procedia, 40,
375–383, https://doi.org/10.1016/j.egypro.2013.08.043, 2013.
Mitchell, T. and Faulkner, D.: The nature and origin of off-fault damage
surrounding strike-slip fault zones with a wide range of displacements: A
field study from the Atacama fault system, northern Chile, J. Struct. Geol.,
31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002, 2009.
Nakaten, B., Tillner, E., and Kempka, T.: Virtual Elements for Representation
of Faults, Cracks and Hydraulic Fractures in Dynamic Flow Simulations,
Energy Procedia, 40, 447–453, https://doi.org/10.1016/j.egypro.2013.08.051, 2013.
Nicot, J.: Evaluation of large-scale CO2 storage on fresh-water
sections of aquifers: An example from the Texas Gulf Coast Basin, Int. J.
Greenh. Gas Con., 2, 582–593, https://doi.org/10.1016/j.ijggc.2008.03.004, 2008.
Nordbotten, J. M., Celia, M. A., and Bachu, S.: Analytical solutions for
leakage rates through abandoned wells, Water Resour. Res., 40, W04204,
https://doi.org/10.1029/2003WR002997, 2004.
Odling, N. E., Harris, S. D., and Knipe, R. J.: Permeability scaling properties
of fault damage zones in siliclastic rocks, J. Struct. Geol., 26,
1727–1747, https://doi.org/10.1016/j.jsg.2004.02.005, 2004.
Oldenburg, C. M. and Rinaldi, A. P.: Buoyancy Effects on Upward Brine
Displacement caused by CO2 Injection, Transport Porous. Med., 87,
525–550, https://doi.org/10.1007/s11242-010-9699-0, 2011.
Person, M., Banerjee, A., Rupp, J., Medina, C., Lichtner, P., Gable, C.,
Pawar, R., Celia, M., McIntosh, J., and Bense, V.: Assessment of basin-scale
hydrologic impacts of CO2 sequestration, Illinois basin, Int. J.
Greenh. Gas Con., 4, 840–854, https://doi.org/10.1016/j.ijggc.2010.04.004, 2010.
Pruess, K.: ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water,
NaCl, and CO2, Lawrence Berkeley National Laboratory, Berkeley, CA, 66
pp., 2005.
Rinaldi, A. P., Vilarrasa, V., Rutqvist, J., and Cappa, F.: Fault reactivation
during CO2 sequestration: effects of well orientation on seismicity and
leakage, Greenhouse Gases: Science and Technology, 5, 645–656,
https://doi.org/10.1002/ghg.1511, 2015.
Röhmann, L., Tillner, E., Magri, F., Kühn, M., and Kempka, T.: Fault
Reactivation and Ground Surface Uplift Assessment at a Prospective German
CO2 Storage Site, Energy Procedia 40, 437–446,
https://doi.org/10.1016/j.egypro.2013.08.050, 2013.
Schlumberger: Petrel Seismic-to-Evaluation Software, Version 2011.2.7, 2011.
Shipton, Z. K. and Cowie, P. A.: A conceptual model for the origin of fault
damage zone structures in high-porosity sandstone, J. Struct. Geol., 25,
333–344, https://doi.org/10.1016/S0191-8141(02)00037-8, 2003.
Shipton, Z. K., Soden, A., Kirkpatrick, J., Bright, A., and Lunn, R.: How
Thick is a Fault? Fault Displacement-Thickness Scaling Revisited, in: Earthquakes:
Radiated Energy and the Physics of Faulting, edited by: Abercrombie, R.,
McGarr, A., Di Toro, G., and Kanamori, H., American Geophysical Union,
Washington DC, 193–198, https://doi.org/10.1029/170GM19, 2006.
Span, R. and Wagner, W.: A New Equation of State for Carbon Dioxide Covering
the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up
to 800 MPa, J. Phys. Chem. Ref. Data, 25, 1509–1596,
https://doi.org/10.1063/1.555991, 1996.
Stackebrandt, W.: Grundzüge des geologischen Baus von Brandenburg
[Outline of the geological setting of Brandenburg], Brandenburgische
Geowissenschaftliche Beiträge, 5, 3–7, 1998.
Stackebrandt, W. and Manhenke, V. (Eds.): Atlas zur Geologie von Brandenburg,
1 : 1 000 000. Landesamt für Geowissenschaften und Rohstoffe Brandenburg (LGRB), 146 pp., 2004.
Tesch, J., Burmann, G., Schwamm, G., and Nillert, P.: Hydrogeologischer
Ergebnisbericht mit Grundwasservorratsberechnung, Vorerkundung
Fürstenwalde, VEB Hydrogeologie Nordhausen, BT Berlin, 1–309, Berlin,
1987 (unpublished).
Tillner, E., Kempka, T., Nakaten, B., and Kühn, M.: Brine migration
through fault zones: 3-D numerical simulations for a prospective CO2
storage site in Northeast Germany, Int. J. Greenh. Gas Con., 19, 689–703,
https://doi.org/10.1016/j.ijggc.2013.03.012, 2013a.
Tillner, E., Kempka, T., Nakaten, B., and Kühn, M.: Geological CO2
Storage Supports Geothermal Energy Exploitation: 3-D Numerical Models
Emphasize Feasibility of Synergetic Use, Energy Procedia, 37, 6604–6616,
https://doi.org/10.1016/j.egypro.2013.06.593, 2013b.
Tillner, E., Shi, J.-Q., Bacci, G., Nielsen, C. M., Frykman, P., Dalhoff, F.,
and Kempka, T.: Coupled Dynamic Flow and Geomechanical Simulations for an
Integrated Assessment of CO2 Storage Impacts in a Saline Aquifer,
Energy Procedia, 63, 2879–2893, https://doi.org/10.1016/j.egypro.2014.11.311, 2014.
Trinkwasserverordnung – TrinkwV: Verordnung über die Qualität
von Wasser für den menschlichen Gebrauch vom 21.05.2001 (BGBl. I S.
959). Trinkwasserverordnung in der Fassung der Bekanntmachung vom 2.
August 2013 (BGBl. I S. 2977), die durch Artikel 4 Absatz 22 des Gesetzes
vom 7. August 2013 (BGBl. I S. 3154) geändert worden ist, 2001.
Vattenfall: Antrag auf Erteilung einer Erlaubnis zur
Aufsuchung bergfreier Bodenschätze zu gewerblichen Zwecken,
http://www.lbgr.brandenburg.de/media_fast/4055/Antrag%200_Aufsuchung%20bergfreier%20Bodensch%C3%A4tze_Bkh_20090306.15564291.pdf,
12 pp. (last access: 18 December 2014), 2009.
Vattenfall: Hauptbetriebsplan – Aufsuchungsarbeiten in Bezug auf den
bergfreien Bodenschatz Sole im Erlaubnisfeld Birkholz-Beeskow, 28 pp.,
http://www.lbgr.brandenburg.de/media_fast/4055/Bkh_HBP_Finale.pdf,
(last access: 18 December 2014), 2010.
Vilarrasa, V. and Carrera, J.: Geologic carbon storage is unlikely to
trigger large earthquakes and reactivate faults through which CO2 could
leak, P. Nat. Acad. Sci. USA, 112, 5938–5943, https://doi.org/10.1073/pnas.1413284112, 2015.
Walter, L., Binning, P. J., Oladyshkin, S., Flemisch, B., and Class, H.: Brine
migration resulting from CO2 injection into saline aquifers – An
approach to risk estimation including various levels of uncertainty, Int. J.
Greenh. Gas Con., 9, 495–506, https://doi.org/10.1016/j.ijggc.2012.05.004, 2012.
Wibberley, C. A. J., Yielding, G., and Toro, G.: Recent advances in the
understanding of fault zone internal structure: a review, in: The
Internal Structure of Fault Zones: Implications for Mechanical and
Fluid-Flow Properties, edited by: Wibberley,
C. A. J., Kurz, W., Imber, J., Holdsworth, R. E., and Collettini, C.,
Geological Society of London, 5–33,
https://doi.org/10.1144/SP299.2, 2008.
Yamamoto, H., Zhang, K., Karasakib, K., Marui, A., Hitoshi Uehara, H., and
Nishikawa, N.: Numerical investigation concerning the impact of CO2
geologic storage on regional groundwater flow, Int. J. Greenh. Gas Con.,
3, 586–599, https://doi.org/10.1016/j.ijggc.2009.04.007, 2009.
Zeidouni, M.: Analytical model of leakage through fault to overlying
formations, Water Resour. Res., 48, W00N02, https://doi.org/10.1029/2012WR012582,
2012.
Zhang, K., Wu, Y. S., and Pruess, K.: User's Guide for TOUGH2-MP – A
Massively Parallel Version of the TOUGH2 Code, Earth Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, 108 pp., 2008.
Zhou, Q., Birkholzer, J., Mehnert, E., Lin, Y., and Zhang, K.: Modelling
Basin- and Plume-Scale Processes of CO2 Storage for Full-Scale
Deployment, Ground Water, 48, 494–514, https://doi.org/10.1111/j.1745-6584.2009.00657.x, 2010.
Short summary
The degree of shallow aquifer salinisation triggered by fluid injection into deeper brine-bearing aquifers and brine upward migration through hydraulically conductive faults strongly depends on the regional depth of the freshwater-saltwater boundary, since displaced brines originate only from the upper fault damage zones in the study area. The highest local salinity increase in shallow aquifers occurs in case of closed model boundaries and low fault damage zone volumes.
The degree of shallow aquifer salinisation triggered by fluid injection into deeper...