Articles | Volume 18, issue 9
https://doi.org/10.5194/hess-18-3553-2014
https://doi.org/10.5194/hess-18-3553-2014
Research article
 | 
10 Sep 2014
Research article |  | 10 Sep 2014

Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model

R. Sultana, K.-L. Hsu, J. Li, and S. Sorooshian

Related authors

Comparing machine learning and deep learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation
Yuhang Zhang, Aizhong Ye, Phu Nguyen, Bita Analui, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-377,https://doi.org/10.5194/hess-2022-377, 2022
Preprint under review for HESS
Short summary
Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019,https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
The PERSIANN family of global satellite precipitation data: a review and evaluation of products
Phu Nguyen, Mohammed Ombadi, Soroosh Sorooshian, Kuolin Hsu, Amir AghaKouchak, Dan Braithwaite, Hamed Ashouri, and Andrea Rose Thorstensen
Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018,https://doi.org/10.5194/hess-22-5801-2018, 2018
Short summary
HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community
Chaopeng Shen, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jerad Bales, Fi-John Chang, Sangram Ganguly, Kuo-Lin Hsu, Daniel Kifer, Zheng Fang, Kuai Fang, Dongfeng Li, Xiaodong Li, and Wen-Ping Tsai
Hydrol. Earth Syst. Sci., 22, 5639–5656, https://doi.org/10.5194/hess-22-5639-2018,https://doi.org/10.5194/hess-22-5639-2018, 2018
Short summary
Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau
Xiaomang Liu, Tiantian Yang, Koulin Hsu, Changming Liu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 21, 169–181, https://doi.org/10.5194/hess-21-169-2017,https://doi.org/10.5194/hess-21-169-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023,https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023,https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Hybrid forecasting: blending climate predictions with AI models
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023,https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023,https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Local moisture recycling across the globe
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023,https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary

Cited articles

Albert, M. R. and Krajeski, G. N.: A fast, physically-based point snow melt model for distributed applications, Hydrol. Process., 12, 1809–1824, 1998.
Anderson, E. A.: A Point Energy and Mass Balance Model of a Snow Cover, NOAA Technical Report NWS 19, US Department of Commerce, p. 150, 1976.
Arons, E. M. and Colbeck, S. C.: Geometry of heat and mass transfer in dry snow: A review of theory and experiment, Rev. Geophys., 33, 463–493, 1995.
Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J., Rasmussen, R., Livneh, B., Ek, M., and Mitchell, K.: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains, J. Geophys. Res., 115, D22101, https://doi.org/10.1029/2009JD013470, 2010.
Bengtsson, L.: Percolation of meltwater through a snowpack, Cold Reg. Sci. Technol., 6, 73–81, 1982.
Download