Articles | Volume 18, issue 9
Hydrol. Earth Syst. Sci., 18, 3353–3366, 2014
https://doi.org/10.5194/hess-18-3353-2014

Special issue: Drought forecasting and warning

Hydrol. Earth Syst. Sci., 18, 3353–3366, 2014
https://doi.org/10.5194/hess-18-3353-2014
Research article
05 Sep 2014
Research article | 05 Sep 2014

Real-time drought forecasting system for irrigation management

A. Ceppi et al.

Related authors

Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins
A. Ceppi, G. Ravazzani, A. Salandin, D. Rabuffetti, A. Montani, E. Borgonovo, and M. Mancini
Nat. Hazards Earth Syst. Sci., 13, 1051–1062, https://doi.org/10.5194/nhess-13-1051-2013,https://doi.org/10.5194/nhess-13-1051-2013, 2013

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022,https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022,https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022,https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary

Cited articles

Allen, R., Pereira, L. S., Raes, D., and Smith, M.: FAO, Irrigation and drainage Paper 56, Crop evapotranspiration, Guidelines for computing crop water requirements, 1998.
Azamathulla, Md., H., Wu, F., Ghani, A., Narulkar, S., Zakaria, N., and Chang, C. Comparison between genetic algorithm and linear programming approach for real time operation, J. Hydrol. Environ. Res., 2, 172–181, 2008.
Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and van Dam, J. C.: Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity, Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, 2010.
Brown, P. D., Cochrane, T. A., and Krom, T. D.: Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing, Agr. Water Manage., 97, 892–900, 2010.
Cabelguenne, M, Debaeke, Ph., Puech, J., and Bosc, N.: Real time irrigation management using the EPIC – PHASE model and weather forecasts, Agr. Water Manage., 32, 227–238, 1997.