Research article
26 May 2014
Research article | 26 May 2014
Attribution of climate change, vegetation restoration, and engineering measures to the reduction of suspended sediment in the Kejie catchment, southwest China
X. Ma et al.
Related authors
Greenhouse gas emissions from river riparian wetlands: An example from the Inner Mongolia grassland region in China
Xinyu Liu, Xixi Lu, Ruihong Yu, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-184,https://doi.org/10.5194/bg-2020-184, 2020
Preprint under review for BG
Short summary
Infiltration-Friendly Land Uses for Climate Resilience on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia
Didik Suprayogo, Widianto, Kurniatun Hairiah, Nabilla Meilasari, Abdul Lathief Rabbani, Rizky Maulana Ishaq, and Meine van Noordwijk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-2,https://doi.org/10.5194/hess-2020-2, 2020
Manuscript not accepted for further review
Short summary
High Riverine CO2 Outgassing affected by Land Cover Types in the Yellow River Source Region
Mingyang Tian, Xiankun Yang, Lishan Ran, Yuanrong Su, Lingyu Li, Ruihong Yu, Haizhu Hu, and Xi Xi Lu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-292,https://doi.org/10.5194/bg-2018-292, 2018
Preprint withdrawn
Short summary
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018,https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018,https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018,https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018,https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China
L. Ran, X. X. Lu, J. E. Richey, H. Sun, J. Han, R. Yu, S. Liao, and Q. Yi
Biogeosciences, 12, 921–932, https://doi.org/10.5194/bg-12-921-2015,https://doi.org/10.5194/bg-12-921-2015, 2015
Short summary
Related subject area
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020,https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020,https://doi.org/10.5194/hess-24-3111-2020, 2020
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020,https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Niger discharge from radar altimetry: bridging gaps between gauge and altimetry time series
Stefan Schröder, Anne Springer, Jürgen Kusche, Bernd Uebbing, Luciana Fenoglio-Marc, Bernd Diekkrüger, and Thomas Poméon
Hydrol. Earth Syst. Sci., 23, 4113–4128, https://doi.org/10.5194/hess-23-4113-2019,https://doi.org/10.5194/hess-23-4113-2019, 2019
Short summary
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019,https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Assimilation of SMOS brightness temperature into a large-scale distributed conceptual hydrological model
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-414,https://doi.org/10.5194/hess-2019-414, 2019
Revised manuscript accepted for HESS
Short summary
Global sinusoidal seasonality in precipitation isotopes
Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 3423–3436, https://doi.org/10.5194/hess-23-3423-2019,https://doi.org/10.5194/hess-23-3423-2019, 2019
Short summary
Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework
Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng
Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019,https://doi.org/10.5194/hess-23-3405-2019, 2019
Short summary
Cited articles
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and watetr quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007.
Abbaspour, K. C., Faramarizi, M., Ghasemi, S. S., and Yang, H.: Assessing the impact of climate change on water resources in Iran, Water Resour. Res., 45, 1–16, 2009.
Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005.
Arnold, J. G., Williams, J. R., and Maidment, D. R.: Continuous-Time Water and Sediment-Routing Model for Large Basins, J. Hydraul. Eng.-ASCE, 121, 171–183, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(171), 1995.
Azimi, M., Heshmati, Gh. A., Farahpour, M., Faramarzi, M., and Abbaspour, K. C.: Modeling the impact of rangland management on forage production of sagebrush species in arid and semi-arid regions of Iran, Ecol. Model., 250, 1–14, 2013.
Bagnold, R. A.: Bed load transport by natural rivers, Water Resour. Res., 13, 303–312, https://doi.org/10.1029/WR013i002p00303, 1977.
Betrie, G. D., Mohamed, Y. A., van Griensven, A., and Srinivasan, R.: Sediment management modelling in the Blue Nile Basin using SWAT model, Hydrol. Earth Syst. Sci., 15, 807–818, https://doi.org/10.5194/hess-15-807-2011, 2011.
Burn, D. H., Cunderlik, J. M., and Pietroniro, A.: Hydrological trends and variability in the Liard River basin / Tendances hydrologiques et variabilité dans le basin de la rivière Liard, Hydrol. Sci. J., 49, 53–67, https://doi.org/10.1623/hysj.49.1.53.53994, 2004.
Cai, T., Li, Q. F., Yu, M. X., Lu, G. B., Cheng, L.P., and Wei, X.: Investigation into the impacts of land-use change on sediment yield characteristics in the upper Huaihe River basin, China, Phys. Chem. Earth, 53–54, 1–9, https://doi.org/10.1016/j.pce.2011.08.023, 2012.
Dai, S. B., Lu, X. X., Yang, S. L., and Cai, A. M.: A preliminary estimate of human and natural contributions to the decline in sediment flux from the Yangtze River to the East China Sea, Quat. Int., 186, 43–54, https://doi.org/10.1016/j.quaint.2007.11.018, 2008.
Dai, S. B., Yang, S. L., and Li, M.: The sharp decrease in suspended sediment supply from China's rivers to the sea: anthropogenic and natural causes, Hydrol. Sci. J., 54, 135–146, https://doi.org/10.1623/hysj.54.1.135, 2009.
Faramarzi, M., Abbaspour, K .C., Schulin, R., and Yang, H.: Modelling blue and green water resources availability in Iran, Hydrol. Process., 23, 486–501, 2009.
Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., and Van Noordwijk, M.: Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung, Forest Ecol. Manag., 224, 45–57, https://doi.org/10.1016/j.foreco.2005.12.007, 2006.
Harrison, C. G. A.: What factors control machanical erosion rates? Int. J. Earth Sci., 88, 752–763, 2000.
Huang, M. B. and Zhang, L.: Hydrological responses to conservation practices in a catchment of the Loess Plateau, China, Hydrol. Process., 18, 1885–1898, https://doi.org/10.1002/hyp.1454, 2004.
Kendall, M. G.: Rank Correlation Methods, Oxford, England, Griffin, 1948.
Liu, C., Sui, J., and Wang, Z. Y.: Sediment load reduction in Chinese rivers, Int. J. Sediment Res., 23, 44–55, https://doi.org/10.1016/S1001-6279(08)60004-9, 2008.
Lu, X. X., Ran, L. S., Liu, S., Jiang, T., Zhang, S. R., and Wang, J. J.: Sediment loads response to climate change: A preliminary study of eight large Chinese rivers, Int. J. Sediment Res., 28, 1–14, https://doi.org/10.1016/S1001-6279(13)60013-X, 2013.
Ma, X., Xu, J. C., Luo, Y., Prasad Aggarwal, S., and Li, J. T.: Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China, Hydrol. Process., 23, 1179–1191, https://doi.org/10.1002/hyp.7233, 2009a.
Ma, X., Zhu, X., and Zhao, R.: Index system of DPSIR framework for soil erosion in Yunnan Province, Environmental Science Survey, 28, 1–5, 2009b (in Chinese).
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
Men, G. T.: Treatment and benefit analysis on water and soil loss in Yunnan Province, China, Soil and Water Conservation in China, 2, 34–36, 2011 (in Chinese).
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASAE, 50, 885–900, 2007.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., and Williams, J. R.: Soil and Water Assessment Tool User's Manual: Version 2000, Texas Water Resources Institute, College Station, Texas TWRI Report TR-192, 2002.
Oeurng, C., Sauvage, S., and Sánchez-Pérez, J.-M.: Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model, J. Hydrol., 401, 145–153, 2011.
Oswald, C. J., Richardson, M. C., and Branfireun, B. A.: Water storage dynamics and runoff response of a boreal Shield headwater catchment, Hydrol. Process., 25, 3042–3060, https://doi.org/10.1002/hyp.8036, 2011.
Pimentel, D.: Soil Erosion: A Food and Environmental Threat, Environ. Dev. Sustainability, 8, 119–137, https://doi.org/10.1007/s10668-005-1262-8, 2006.
Qiu, L. J., Zheng, F. L., and Yin, R. S.: SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: capabilities and challenges, Int. J. Sediment Res., 27, 226–234, https://doi.org/10.1016/S1001-6279(12)60030-4, 2012.
Ran, D. C., Luo, Q. H., Zhou, Z. H., Wang, G. Q., and Zhang, X. H.: Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River, Int. J. Sediment Res., 23, 159–166, https://doi.org/10.1016/S1001-6279(08)60015-3, 2008.
Ran, L. S., Lu, X. X., and Xu, J. C.: Effects of vegetation restoration on soil conservation and sediment loads in China: A critical review, Crit. Rev. Env. Sci. Tec., 43, 1384–1415, 2013.
Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., and Yang, H.: Estimation of freshwater availability in the west Africa sub-continent using the SWAT hydrologic model, J. Hydrol., 352, 30–49, 2008a.
Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., and Zehnder, A. J. B.: Modeling blue and green water availability in Africa, Water Resour. Res., 44, 1–18, 2008b.
Shrestha, B., Babel, M. S., Maskey, S., van Griensven, A., Uhlenbrook, S., Green, A., and Akkharath, I.: Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR, Hydrol. Earth Syst. Sci., 17, 1–20, https://doi.org/10.5194/hess-17-1-2013, 2013.
Syvitski, J. P. M., Pechham, S. D., Hilberman, R., and Mulder, T.: Predicating the terrestrial flux of sediment to the global ocean: a planetary perspective, Sediment. Geol., 162, 5–24, 2003.
Tang, L. H., Yang, D. W., Hu, H. P., and Gao, B.: Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation, J. Hydrol., 409, 172–182, 2011.
Team, R. C.: R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing, 1–1731, 2008.
van Belle, G. and Hughes, J. P.: Nonparametric Tests for Trend in Water Quality, Water Resour. Res., 20, 127–136, https://doi.org/10.1029/WR020i001p00127, 1984.
Verbist, B., Poesen, J., van Noordwijk, M., Suprayogo, D., Agus, F., and Deckers, J.: Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape, Catena, 80, 34–46, 2010.
Walling, D. E. and Fang, D.: Recent trends in the suspended sediment loads of the world's rivers, Global Planet. Change, 39, 111–126, 2003.
Wang, G. Y., Innes, J. L., Lei, J. F., Dai, S. Y., and Wu, S. W.: China's forestry reforms, Science, 318, 1556, https://doi.org/10.1126/science.1147247, 2007a.
Wang, H. J., Yang, Z. S., Saito, Y., Liu, J. P., Sun, X. X., and Wang, Y.: Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities, Global Planet. Change, 57, 331–354, 2007b.
Williams, J. R.: SPNM, a model for predicting sediment, phosphorous, and nitrogen yields from agricultural basin, J. Am. Water Resour. As., 16, 843–848, 1980.
Wu, C. S., Yang, S. L., and Lei, Y. P.: Quantifying the anthropogenic and climatic impacts on water discharge and sediment load in the Pearl River (Zhujiang), China (1954–2009), J. Hydrol., 452, 190–204, 2012.
Xu., X. Z., Zhang, H. W., and Zhang, O. Y.: Development of check-dam systems in gullies on the Loess Plateau, China, Environ. Sci. Policy, 7, 79–86, https://doi.org/10.1016/j.envsci.2003.12.002, 2004.
Xu, Y. D., Fu, B. J., and He, C. S.: Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations, Hydrol. Earth Syst. Sci., 17, 2185–2193, https://doi.org/10.5194/hess-17-2185-2013, 2013.
Zhang, G. L., Zhang, Y. J., Dong, J. W., and Xiao, X. M.: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011, P. Natl. Acad. Sci. USA, 110, 4309–4314, 2013.
Zhang, J. G., Hu, B. H., Ruan, H., and Fang, Y. M.: The present situation and control measures of soil and water loss in Changjiang River valley, Journal of Nanjing Forestry University, 23, 17–21, 1999 (in Chinese).
Zhang, P. C., Shao, G. F., Zhao, G., Le Master, D. C., Parker, G. R., Dunning, J. B., and Li, Q. L.: China's forest policy for the 21st century, Science, 288, 2135–2136, https://doi.org/10.1126/science.288.5474.2135, 2000.
Zhou, J., Liu, Y., Guo, H. C., and He, D.: Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China, Hydrol. Process., 28, 521–533, 2014.
Zhu, Y. M., Lu, X. X., and Zhou, Y.: Sediment flux sensitivity to climate change: A case study in the Longchuanjiang catchment of the upper Yangtze River, China, Global Planet. Change, 60, 429–442, 2008.